Page 1 of 2

# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech V Semester End Examinations (Regular) - November, 2018 **Regulation:** IARE – R16

INTEGRATED CIRCUITS APPLICATIONS

Time: 3 Hours

(Common to ECE | EEE)

Max Marks: 70

## Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

### UNIT - I

- 1. (a) Define CMRR and derive the expression for CMRR. (b) For a dual input, balanced output differential amplifier,  $R_C = 2.2 \text{k}\Omega$ ,  $R_E = 4.7 \text{k}\Omega$ ,  $R_{S1} = R_{S2} = 1000 \text{ k}$ 
  - 50 $\Omega$ . The supply voltages are  $\pm 10$  V. the  $h_{fe}$  for the transistor is 50. Assume silicon transistors and  $h_{ie} = 1 \mathrm{k}\Omega$ . Determine the operating point values, differential mode gain, common mode gain [7M]and CMRR.
- [7M]2. (a) What is Input Bias Current and explain how can it be reduced?
  - (b) With the help of neat diagrams explain about pole zero compensation technique. [7M]

### UNIT - II

- (a) Explain the operation of Log Amplifier using IC741. [7M]3. (b) Design an Op-amp circuit to give an output  $V_O = -(3V_1+2V_2+0.1V_3)$  for  $R_f = 10$  k $\Omega$ assume necessary data for  $R_1$ ,  $R_2$ ,  $R_3$ . [7M]
- 4. (a) Design a Practical differentiator at 2KHz. Assume necessary data for  $R_f$  and  $C_{in}$ [7M]
  - (b) With the help of neat circuit diagram and waveform explain the operation of Monostable Multivibrator using IC741. [7M]

### UNIT - III

- (a) Draw the  $1^{st}$  order low pass filter using op-amp and derive the expression for higher cut-off 5. frequency. [7M]
  - (b) Design a wide band reject filter having  $f_h = 400$  Hz and  $f_l = 2$ kHz having pass band gain as 2. Draw the circuit and corresponding frequency response. [7M]



Hall Ticket No

[7M]

| 6.                           | (a) V<br>t          | With the help of circuit diagram and waveform, explain the working of IC 555 Timer as Mor<br>able multivibrator and derive an expression for pulse width. [7 | nos-<br>' <b>M</b> ]  |
|------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                              | (b) I               | Design a Notch filter using Op-Amp at 300 Hz. [7                                                                                                             | M]                    |
| $\mathbf{UNIT}-\mathbf{IV}$  |                     |                                                                                                                                                              |                       |
| 7.                           | (a) E<br>(1)<br>(1) | Explain the following types of digital to analog converters with suitable circuit diagrams. [7<br>(i) R-2R Ladder DAC<br>(ii) Inverted R-2R DAC              | 'M]                   |
|                              | (b) I               | Draw the circuit diagram for flash type ADC and explain in detail. [7                                                                                        | M]                    |
| 8.                           | (a) E<br>V          | Explain the types of digital to analog converters with suitable circuit diagrams for Bin<br>Weighted Resistor DAC. [7                                        | ary<br>' <b>M</b> ]   |
|                              | (b) V<br>c          | With a neat block diagram explain in detail about successive approximation type analog to dig<br>converter. [7                                               | jital<br>' <b>M</b> ] |
| $\mathbf{UNIT} - \mathbf{V}$ |                     |                                                                                                                                                              |                       |
| 9.                           | (a) I               | Design a 4-bit ripple carry adder and explain its working function. [7                                                                                       | $\mathbf{M}$ ]        |

- (b) Design a 4-bit synchronous up-down counter using JK flip-flop. [7M]
- 10. (a) With the help of truth table explain about IC74X85.
  - (b) Explain the operation of 4 bit serial in seriel out shift register with the help of functional table.

[7M]

[7M]

 $-\circ\circ\bigcirc\circ\circ-$