Hall Tick	et No]	Question Paper Code: AEC010
INSTITUTE OF AERONAUTICAL ENGINEERING													
IARE O			(Autonomous)								ous)		
FOR CO	Four	Year	: B.]	Tech	V Se	emes	ster	End	Exa	min	atio	ns	(Regular) - November, 2019
${\bf Regulation: \ IARE-R16}$													

COMPUTER ORGANIZATION

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1.	(a)	Illustrate expanded structure of IAS Computer and explain the component's functions.	[7M]
	(b)	Explain in brief the sign and magnitude representation and how it differs with comple	ement
		representation.	[7M]
2.	(a)	Differentiate computer organization and computer schitecture.	[7M]
	(b)	Explain indexing, direct, indirect and relative addressing modes.	[7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	Explain booth's multiplication algorithm with an example [7M]
	(b)	Explain in detail about the hardware implementation of addition and subtraction algorithm with neat diagram. $[7M]$
4.	(a)	Describe Floating Point Representation as per IEEE and Explain Floating point simple Arithmetic operation procedures with example each. [7M]
	(b)	Explain the 2's complement multiplication using Robertson's algorithm with an example $[7M]$
		$\mathbf{UNIT} - \mathbf{III}$
5.	(a)	Explain about the hardware implementation of hardwired and micro programmed control. $[7M]$
	(b)	Discuss the various hazards that might arise in a pipeline. What are the remedies commonly adopted to overcome/minimize the sehazards. [7M]
6.	(a)	Brief the instruction pipeline, conflicts and specify the advantages and disadvantages of pipelining.
		[7M]
	(b)	Describe superscalar processing and multiple functional units. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Explain the memory hierarchy in a computer system.	[7M]	
	(b) Define cache memory? Explain its operation.	[7M]	

- 8. (a) Explain Virtual Memory and give an example of calculating a virtual address with physical address [7M]
 - (b) Explain in brief optical storage and specify the real time optical storage devices with its capacities. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) What is Direct Memory Access (DMA)? What is the need for DMA? Explain the working of DMA. Also mention its advantages. [7M]
 - (b) Determine the number of clock cycles that it takes to process 200 task in a six segment pipeline.

[7M]

- 10. (a) Write a short note on RISC processors with suitable diagrams [7M]
 - (b) What programming steps are required to check when a source interrupts the computer while it is still being serviced by a previous interrupt request from the same source? [7M]

