Page	1	of	2

Question Paper Code: AEE017

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech III Semester End Examinations (Regular) - November, 2018

Regulation: IARE – R16

ELECTRICAL TECHNOLOGY

Time: 3 Hours

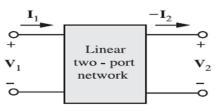
Hall Ticket No

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$


- 1. (a) Determine the transient response of current and voltage in R–L series circuit using differential equations. [7M]
 - (b) A coil of inductance 50 mH and resistance 5Ω is connected to a 110 V, DC supply. Determine (i) The final value of current (ii) The value of current after 4 ms (iii) The value of the voltage across the resistor after 6 ms. [7M]
- 2. (a) Brief the procedure to solve differential equations by using Laplace transforms. [7M]
 - (b) A series RC circuit has a step input V applied to it. Use Laplace transforms to determine an expression for the current i flowing in the circuit given that when time t = 0, i = 0. [7M]

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) Explain the hybrid parameters of a two port network. [7M]
 - (b) For a series connected two port network, show that the overall impedance parameter matrix is simply the sum of impedances matrices of each individual network. [7M]
- 4. (a) Derive the expressions for transmission parameters using terminal variables shown in the Figure 1. [7M]

Figure 1

(b) Find the Z-parameters for the two-port network shown in Figure 2. [7M]

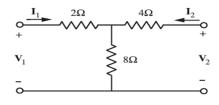


Figure 2

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Classify the types of attenuators and briefly explain any two types of attenuators. [7M]
 - (b) A symmetrical π -attenuator pad has a series arm of 500 Ω resistance and each shunt arm of 1 k Ω resistance. Determine (i) The characteristic impedance (ii) The attenuation (in dB) produced by the pad. [7M]
- 6. (a) Derive the values of L, C and cutoff frequency of constant k low pass filter. [7M]
 - (b) Design a symmetrical lattice attenuator to have characteristic impedance of 800Ω and attenuation of 20 dB. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7. (a) Derive the armature torque expression of a dc motor. [7M]

- (b) A 240 V, 4-pole shunt motor has N = 1500 rpm, output = 15 HP, $I_a = 50$ A, Ra = 0.1 Ω , $I_{sh} = 1$ A. Brush drop 1V/brush, winding = wave, Z = 540. Find useful torque, total torque, and useful flux per pole, rotational losses and efficiency. [7M]
- 8. (a) Explain the classification of DC generators with neat circuit diagrams. [7M]
 - (b) A shunt generator supplies a 20 kW load at 200 V through cables of resistance, $R = 100 \text{ m}\Omega$. If the field winding resistance, $R_f = 50\Omega$ and the armature resistance, $R_a = 40 \text{ m}\Omega$, determine (i) The terminal voltage (ii) The e.m.f. generated in the armature. [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Derive the emf equation of the transformer.
 - (b) A 200KVA, single phase transformer has an efficiency of 98% at full load. The maximum efficiency occurs at 3/4th full load. Calculate: [7M]
 - i. The iron losses
 - ii. The copper losses at full load
 - iii. The efficiency at half load assuming a power factor of 0.8 at all loads.
- 10. (a) Draw and explain the approximate equivalent circuit of a transformer with reference to the primary side. [7M]
 - (b) A single phase, 250/500V transformer gave the following results: [7M]
 Open Circuit test: 250V, 1A, 80W (on low voltage side.)
 Short circuit test: 20V, 12A, 100W (with low voltage winding short circuited)
 Draw the equivalent circuit by showing all the circuit constants.

Page 2 of 2

[7M]