

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

ASSIGNMENT QUESTIONS

Course Name	:	AIRCRAFT VEHICLE STRUCTURES II
Course Code	:	A52109
Class	:	III B. Tech I Semester
Branch	:	AERO
Year	:	2017 - 2018
Course Coordinator	:	Dr. Y B Sudhir Shastry, Professor
Course Faculty	:	Dr. Y B Sudhir Shastry, Professor

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. No	Question	Blooms Taxonomy Level	Course Outcome
	ASSIGNMENT-I		
	UNIT-I		
	THIN PLATE THEORY, STRUCTURAL INSTABILITY	r	
1	Derive the equation $(1/\rho) = M / [D (1+\upsilon)]$ of thin plate subjected to pure bending.	Understand	1
2	Derive the equation $M_{xy} = D(1-v) \partial^2 w/\partial x \partial y$ for a thin plate subjected to bending	Apply	3
	and twisting		
3	A plate 10mmthick is subjected to bending moments Mx equal to 10 Nm/mm and	Apply	2
	plate and the direction of the planes on which this occurs.		
4	A thin rectangular plate $a \times b$ is simply supported along its edges and carries a	Understand	1
	uniformly distributed load of intensity q0. Determine the deflected form of the		
_	plate and the distribution of bending moment.		
5	A rectangular plate $a \times b$, is simply supported along each edge and carries a	Analyze	1
	uniformly distributed load of intensity q0. Assuming a deflected shape given by.		
	$w = A_{11} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}$		
	Determine using the energy method, the value of the coefficient A11 and hence		
	find the maximum value of deflection.		

S. No	Question	Blooms Taxonomy Level	Course Outcome
6	A thin rectangular plate $a \times b$ is simply supported along its edges and carries a uniformly distributed load of intensity $q0$ and supports an in-plane tensile force Nx per unit length. Determine the deflected form of the plate.	Apply	2
7	A rectangular plate $a \times b$, simply supported along each edge, possesses a small initial curvature in its unloaded state given by $w = A_{11} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}$ Determine , using the energy method, its final deflected shape when it is subjected to a compressive load Nx per unit length along the edges $x = 0$, $x = a$.	Understand	1
8	Explain Instability of Stiffened panels.	Apply	2
9	The beam shown in is assumed to have a complete tension field web. If the cross- sectional areas of the flanges and stiffeners are, respectively, 350mm2 and 300mm2 and the elastic section modulus of each flange is 750mm3, determine the maximum stress in a flange and also whether or not the stiffeners will buckle. The thickness of the web is 2mm and the second moment of area of a stiffener about an axis in the plane of the web is 2000mm4; $E = 70\ 000\ \text{N/mm2}$.	Apply	2
10	Derive the equation for critical stress (σ CR) = [$k\pi 2E/12(1-\upsilon 2)$] (t/b)2 for plate subjected to the compressive load.	Apply	2
	UNIT- II BENDING AND SHEAR AND TORSION OF THIN WALLED BEA	MS	
1	Derive $(\sigma) = [(M I - M I) / (I I - I^{2})] x + [(M I - M I) / (I I - I^{2})] y$	Understand	1
2	Figure in pg 495 problem P.16.1of Megson shows the section of an angle purlin. A bending moment of 3000 Nm is applied to the purlin in a plane at an angle of 30° to the vertical y axis. If the sense of the bending moment is such that its components <i>Mx</i> and <i>My</i> both produce tension in the positive <i>xy</i> quadrant, calculate the maximum direct stress in the purlin, stating clearly the point at which it acts.	Understand	1
3	Explain the i) shear flow, ii) shear centre, iii) centre of twist.	Understand	1
4	Write short notes on the following: Symmetrical bending Unsymmetrical bending Anticlastic bending	Understand	1
5	The cross-section of a beam has the dimensions shown in figure. If the beam is subjected to a negative bending moment of 100 kNm applied in a vertical plane.	Understand	1

S. No	Question	Blooms Taxonomy Level	Course Outcome
	determine the distribution of direct stress through the depth of the section.		
6	300 mm $20 mm$ $20 mm20 mm$ $20 mm20 mm$ $20 mm$	Analyze	3
7	Derive the equation to find out the shear center of figure shown. $\begin{array}{c} & & \\ \hline \\ \hline$	Understand	1
8	The beam section of problem 1 above, is subjected to a bending moment of 100 kNm applied in a plane parallel to the longitudinal axis of the beam but inclined at 30° to the left of vertical. The sense of the bending moment is clockwise when viewed from the left-hand edge of the beam section. Determine the distribution of direct stress.	Understand	1
9	A beam having the cross section shown in Figure is subjected to a bending moment of 1500 Nm in a vertical plane. Calculate the maximum direct stress due to bending stating the point at which it acts. 40 mm $80 mm8 mm$ $F80 mm$ $F80 mm$ $F8 mm$	Understand	1
10	A thin-walled circular section beam has a diameter of 200 mm and is 2 m long; it is firmly restrained against rotation at each end. A concentrated torque of 30 kN m is applied to the beam at its mid span point. If the maximum shear stress in the beam is limited to 200 N/mm ² and the maximum angle of twist to 2 ⁰ , calculate the minimum thickness of the beam walls. Take <i>G</i> =25000N/mm ² .	Apply	3

S. No	Question	Blooms Taxonomy Level	Course Outcome
	Assume that the walls of the section are only effective in resisting shear stresses while the booms, each of area 300mm2, carry all the direct stresses.		
	S C 200 mm		
5	Determine the maximum shear stress and the warping distribution in the channel section shown in Figure when it is subjected to an anticlockwise torque of 10 Nm. $G=25000 \text{ N/mm}^2$. $S=25000 \text{ N/mm}^2$. $S=1.5 \text{ mm}^2$ $S=1.5 \text{ mm}^2$ S	Understand	1
6	Write short notes on the following: Symmetrical bending Unsymmetrical bending	Understand	1
7	Explain the following terms. Shear center Shear flow Centre of twist	Apply	2
8	Derive the equations to find out the primary and secondary warping of an open cross section subjected to torsion.	Apply	2
9	Derive the Bredt-Batho formula for thin walled closed section beams with the help of neat sketch.	Analyze	3
10	Explain the condition for Zero warping at a section, and derive the warping of cross section.	Analyze	3
UNIT-IV STRUCTURAL AND LOADING DISCONTINUITIES IN THIN WALLED REAMS			
1	Determine the shear flow distribution at the built-in end of a beam whose cross- section is shown in Fig. below. All walls have the same thickness <i>t</i> and shear	Apply	2

S. No	Question	Blooms Taxonomy Level	Course Outcome
	modulus G; $R=200$ mm. q_{12} 2 q_{12} 2 q_{12} 2 q_{12} 2 q_{12} 2 q_{23} q_{34} q_{34}		
2	A shallow box section beam whose cross-section is shown in Fig. 26.20 is simply supported over a span of 2m and carries a vertically downward load of 20 kN at mid span. Idealize the section into one suitable for shear lag analysis, comprising eight booms, and hence determine the distribution of direct stress along the top right-hand corner of the beam. Take $G/E = 0.36$. 3 mm 3 mm 600 mm	Apply	2
3	Determine the shear flow distribution in the thin-walled Z-section shown in Figure due to a shear load Sy applied through the shear center of the section. $y + \frac{S_y + 4}{S_y + 4}$ $h + \frac{S_y + 4}{C + S_2 + 4}$	Apply	2
4	An open section beam of length L has the section shown in Figure. The beam is firmly built-in at one end and carries a pure torque T. Derive expressions for the direct stress and shear flow distributions produced by the axial constraint (the σ_{Γ} and q_{Γ} systems) and the rate of twist of the beam.	Analyze	1

S. No	Question	Blooms Taxonomy Level	Course Outcome
	$ \begin{array}{c} $		
5	A shallow box section beam whose cross-section is shown in Fig. 26.20 is simply supported over a span of 2m and carries a vertically downward load of 20 kN at mid span. Idealize the section into one suitable for shear lag analysis, comprising eight booms, and hence determine the distribution of direct stress along the top right-hand corner of the beam. Take $G/E = 0.36$.	Apply	2
6	Determine the shear flow distribution in the thin-walled Z-section shown in Figure due to a shear load Sy applied through the shear center of the section. $y + s_y + s_y + 4$ $f + s_1 + s_1$	Analyze	1
7	Determine the shear flow distribution at the built-in end of a beam whose cross- section is shown in Fig. below. All walls have the same thickness t and shear modulus G ; R =200 mm.	Analyze	1

S. No	Question	Blooms Taxonomy Level	Course Outcome
3	The wing section shown in Figure has been idealized such that the booms carry all the direct stresses. If the wing section is subjected to a bending moment of 300 kN m applied in a vertical plane, calculate the direct stresses in the booms.	Analyze	2
	Boom areas: $B_1 = B_6 = 2580 \text{ mm}^2 B_2 = B_5 = 3880 \text{ mm}^2 B_3 = B_4 = 3230 \text{ mm}^2$		
	200 mm I 8 7 III 165 mm 230 mm		
	200 mm 230 mm 230 mm		
	1270 mm 1020 mm		
4	Calculate the deflection at the free end of the two cell beam shown in figure below. Allowing for both bending and shear effects. The boom carries all constant thickness throughout, are effective only in shear. Take E =69000 N/mm ² and G =25900 N/mm ² . Boom areas: B1 =B3 =B4 =B5 =B6 =650mm ² ; B2 =B5 =1300mm ² .	Analyze	2
	determine the flange loads and the shear flows in the web at sections 1 and 2m from the free end.		
6	Calculate the shear flows in the web panels and direct load in the flanges and stiffeners of the beam shown in Figure if the web panels resist shear stresses only.	Apply	3
7	flanges of the wing rib shown in Figure. Assume that the web of the rib is effective only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3. $15^{\circ} \qquad \qquad$	Analyze	2
8	A cantilever beam shown in Figure carries concentrated loads as shown. Calculate the distribution of stiffener loads and the shear flow distribution in the	Analyze	2

Prepared By: Dr. Y B Sudhir Shastry, Professor

HOD, AE