INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043
CIVIL ENGINEERING
ASSIGNMENT- I AND II QUESTIONS

Course Name	$:$	STRUCTURAL ANALYSIS -I
Course Code	$:$	A40115
Class	$:$	II B. Tech II Semester
Branch	$:$	CIVIL ENGINEERING
Year	$:$	$2016-2017$
Course Faculty	$:$	Mr. G. Anil Kumar, Assistant Professor, CE

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. No	Question	Blooms Taxonomy Level	Course Outcome
UNIT-I			
1.	Using method of Tension Coefficient analysis, determine the forces in the members of the plane truss shown in fig.	Analyze and evaluate	2,5,11
2	Using Method Of sections determine the forces in the members BC, GC and GF of the pin jointed plane truss as shown in fig.	Analyze and evaluate	C

S. No	Question	Blooms Taxonomy Level	Course Outcome
3	Evaluate slope at point A and deflection at point C for the beam shown in fig no. 5 , using castigliano"s theorems. Take $e=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=$ $2 \times 108 \mathrm{~mm} 4$.	Analyze and evaluate	b
4	A cantilever of length 8 m carries UDL of $0.8 \mathrm{Kn} / \mathrm{m}$ length over the whole length. The free end of the cantilever is supported on a prop. The prop sinks by 5 mm . If $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=108 \mathrm{~mm} 4$, then the prop reaction	Analyze and evaluate	2,5,11
5	A cantilever of length 8 m carries udl of $2 \mathrm{Kn} / \mathrm{m}$ run over the whole length. The cantilever is propped rigidly at the free end. If $\mathrm{E}=1 \mathrm{X} 105 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=10$ 8 mm 4 , then determine reaction at the rigid prop and deflection at the center	Analyze and evaluate	1
6	What are the different methods for analysis of Frames? Write the assumptions made in analyzing perfect frame.	Understanding	1
7	A closed coil cylindrical spring of circular cross-section has coils with a 75 mm mean diameter. When loaded with an axial load of 250 N , it is found to extend 160 mm and when subjected to a twisting couple of 3 Nm , there is an angular rotation of 60 degrees. Determine the poisons ratio for the material.	evaluate	1
8	Determine the diameter of a solid steel shaft which will transmit 112.5 kW at 200 rpm . Also determine the length of the shaft if the twist must not exceed 1.5° over the entire length. The maximum shear stress is limited to 55 $\mathrm{N} / \mathrm{mm}^{2}$. Take $\mathrm{G}=8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$	understanding	1
9	The internal diameter of a hollow shaft is $2 / 3^{\text {rd }}$ of its external diameter. Compare its resistance to torsion with that of solid shaft of the same weight and material.	Apply	2
10	In a open coil helical spring having 10 coils, the stresses due to bending and twisting are 98 MPa and 105 MPa respectively, and the spring is axially loaded. Assuming the mean diameter of the coils to be 8 times the diameter of wire, find the maximum permissible load and the diameter of wire for a maximum extension of 2 cm . $\mathrm{E}=210 \mathrm{GPa}$ and $\mathrm{G}=82 \mathrm{GPa}$.	Analyze	1
UNIT-II			
1	Derive the equivalent length of a column for which both ends are fixed using	Analyze	6

S. No	Question	Blooms Taxonomy Level	Course Outcome
	Euler's theory.		
2	Derive the equivalent length of a column for which one end is fixed and other end is free using Euler's theory.	Understand	4
3	Derive Rankine's formula	Apply	5
4	Derive the maximum and minimum stresses developed in eccentrically loaded long columns	analyze	3
5	Derive the equation for maximum deflection and stresses for a uniformly loaded lateral strut.	analyze	4
6	A hollow circular steel strut with its ends position - fixed, has a length of 3 m , external diameter of 0.4 m and internal diameter 10 cm . Before loading, the strut is bent with a maximum deviation of 0.4 cm . Assuming the central line to be sinusoidal, determine (a) the maximum stress due to a central compressive end load of 8 kN . (B) If the load has an eccentricity of 1.5 cm , then find the maximum stress induced. Take $\mathrm{E}=200 \mathrm{GPa}$	understanding	3
7	A steel strut of circular cross-section 1.25 m long is hinged at both ends. Find the necessary diameter in order that if a thrust of 50 kN deviates at the end by $1 / 10^{\text {th }}$ of the diameter from the axis of the strut, the greatest compressive stress shall not exceed 35 MPa . If the yield stress of steel 300 MPa , find the crippling load. $\mathrm{E}=200 \mathrm{GPa}$	remembering	3
8	Determine the safe axial load a timber column of cross-sectional area $150 \mathrm{~mm} \times 150 \mathrm{~mm}$ and of 4 m length can carry using a factor of safety, 8. Take $E=10 \mathrm{kN} / \mathrm{mm}^{2}$ and for (a)hinged ends (b) fixed ends (c)one end free and other end fixed (d)one end hinged and other end fixed.	remembering	3
9	A steel column consists of two channels ISMC $300 \times 35.8 \mathrm{~kg} / \mathrm{m}$ placed back to back at a clear distance of 15 cm and two plates of $350 \mathrm{~mm} \times 20 \mathrm{~mm}$ are connected to the flanges. Find the crippling load for the column if the distance between the hinged ends is 8 m . Take $\mathrm{E}=210 \mathrm{kN} / \mathrm{mm}^{2}$. Properties of channel sections: Area of cross-section of each channel $=45.64 \mathrm{~cm}^{2}$ $\begin{aligned} & I_{x x}=6362.6 \mathrm{~cm}^{4} \\ & I_{y y}=310.8 \mathrm{~cm}^{4} \\ & C_{y y}=2.36 \mathrm{~cm} \end{aligned}$ Thickness of web $=7.6 \mathrm{~mm}$ Thickness of flange $=13.6 \mathrm{~mm}$	remembering	4
10	A steel strut of circular section is 2 m long and hinged at both ends. Find the necessary diameter such that under a thrust of 100 kN at an eccentricity of 0.1 of the diameter from the axis of the strut, the maximum compressive stress does not exceed $90 \mathrm{kN} / \mathrm{mm}^{2}$. If the yield tress in compression for steel is $400 \mathrm{~N} / \mathrm{mm}^{2}$, find the crippling load of the strut.	apply	4
	UNIT-III		
1	Derive the equation for maximum stress of a strut subjected to compressive axial load and a transverse point load at centre and whose both ends are pinned.	Evaluate	5
2	Derive the equation for maximum bending moment of a strut subjected to compressive axial load and a transverse point load at centre and whose both ends are fixed.	Analyze	5
3	Derive the equation for maximum deflection of a strut subjected to compressive axial load and a transverse point load at centre and whose both ends are fixed.	Evaluate	5
4	Derive the resultant stress when a column of rectangular cross-section is subjected to a load which is eccentric to both axes.	Remembering \&Evaluate	6

S. No	Question	Blooms Taxonomy Level	Course Outcome
5	Explain middle - third rule for rectangular sections	Understanding	6
6	A propeller shaft of 20 cm external diameter and 15 cm internal diameter has to transmit 1103.25 kW at 100 rpm . It is additionally subjected to a bending moment of 10 kNm and an end thrust of 200 kN . Find i) principal stresses and their planes and ii) maximum shear stress and it plane.	Evaluate	10
7	A brick chimney weighs 1600 kN and has internal and external diameters at the base are 2 m and 3 m respectively. The chimney leans by 5° with the vertical. Calculate the maximum stresses in the base. Assume that there is no wind pressure and C.G of chimney is 15 m above the base.	Remembering \& evaluate	10,13
8	Determine the maximum stress induced in a horizontal strut of length 2.5 m and of rectangular cross section 40 mm wide and 80 mm deep when it carries an axial thrust of 100 kN and a vertical load of $6 \mathrm{kN} / \mathrm{m}$ length. The strut is having pin joints at its ends. $\mathrm{E}=208 \mathrm{GPa}$.	Remembering \& evaluate	5
9	A masonry dam of rectangular section, 20 m high and 10 m wide, as water up to a height of 16 m on its one side. Find a) Pressure force due to water and 1 m length of dam b) Position of centre of pressure and the point at which the resultant cuts the base. Take weight density of masonry $=19.62 \mathrm{kN} / \mathrm{m}^{3}$ and of water $=9.81 \mathrm{kN} / \mathrm{m}^{3}$. Calculate the maximum and minimum stress intensities at base of dam.	Understanding	6
10.	A masonry retaining wall of trapezoidal section is 12 m high and retains earth which is level up to the top. The width at the top is 3 m and at the bottom is 6 m and exposed face is vertical. Find the maximum and minimum intensities of normal stress at the base. Take density of earth $=1600 \mathrm{~kg} / \mathrm{m}^{3}$ and density of masonry $=2300 \mathrm{~kg} / \mathrm{m}^{3}$ and angle of repose of earth $=30^{\circ}$	Evaluate	6
UNIT-1V			
1	Derive the equation for shear centre of channel section.	Understanding	7
2	Derive the resultant shear force, F_{R} for equal leg angle section.	Evaluate	7
3	Derive the shear centre for channel section	Apply	7
4	Derive shear centre for unequal I-section	Understanding	7
5	Derive transformation laws for moment and product of inertia.	Analyze	7
6	A simply supported beam T-section, 2.5 m long carries a central concentrated load inclined at 30° to the Y -axis. If the maximum compressive and tensile stresses are not to exceed 75 MPa respectively find the maximum load the beam can carry.	Apply	7
7	A standard I-beam is bent by equal and opposite couples M acting at the ends of the beam in the plane $m-m$. Find the maximum stress and the maximum deflection. $\mathrm{I}=2400 \mathrm{~mm}^{4}, \mathrm{IV}=150 \mathrm{~cm}^{4}, \mathrm{M}=5 \mathrm{kNm}, \mathrm{I}=3 \mathrm{~m}, \varphi=30^{\circ}, \mathrm{E}=$ 200GPa	Apply	7
8	A cantilever beam of I-section is used to support the loads inclined to the V axis as shown in figure. Calculate the stresses at the corners A, B, C and D. Also locate the neutral axis.	Analyze	5,2

S. No	Question	Blooms Taxonomy Level	Course Outcome
9	A cantilever beam has a channel section as shown in the figure. A concentrated load 15 kN lies in the plane of the loads making an angle of 60° with the X -axis. Load lies in the plane of the cross section of the free end of the beam and passes through shear centre C. Locate points of maximum tensile and compressive stresses in the beam and determine their magnitudes. (a) All dimensions in mm (b)	Understand	6
10	A channel section is loaded as shown in the figure. Determine (a) the product of inertia with respect to x and y axes; (b) Shear centre.	Remember	2
UNIT-V			
1	Derive expression for longitudinal stress and maximum shear stress developed in thin cylindrical vessel due to internal pressure.	Evaluate	8
2	Derive circumferential strain and longitudinal strain for a thin cylindrical shell	Evaluate	8

S. No	Question	Blooms Taxonomy Level	Course Outcome
	subjected to internal pressure		
3	Derive the stresses developed in thick cylindrical vessel subjected to internal fluid pressure.	Analyze	8
4	What do you mean by thick compound cylinders? How will you determine the hoop stresses in a thick compound cylinder?	Apply	8
5	Derive an expression for the radial pressure and hoop stress for thick spherical shell.	Apply	8
6	A thick cylindrical pipe of outside diameter 300 mm and thickness of metal 60 mm is subjected to an internal fluid pressure of $40 \mathrm{~N} / \mathrm{mm}^{2}$ and an external pressure of $4 \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the maximum and minimum intensities of circumferential and radial stresses in the pipe section.	remembering	8
7	A compressed air cylinder for laboratory use ordinarily carries approximately $15 \mathrm{~N} / \mathrm{mm}^{2}$ pressure at the time of delivery. The outside diameter of such a cylinder is 250 mm . If the steel has a yield point of $225 \mathrm{~N} / \mathrm{mm}^{2}$ and a safety factor of 25 . Calculate the required wall thickness.	apply	8
8	A cast iron pipe having an internal diameter of 30 cm has wall 6 mm thick and is closely wound with a single layer of steel wire 3 mm diameter under a stress of $8 \mathrm{MN} / \mathrm{m}^{2}$.Calculate the stresses in pipe and the wire when the internal pressure in the pipe is 1 MPa .	remembering	8
9	A cylindrical steel vessel with hemispherical ends is 60 cm long over all, the outside diameter is 10 cm and the thickness 5 mm throughout. Calculate the change in internal volume of the vessel when it is subjected to an internal pressure of 15 MPa . $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{u}=0.28$	Apply	8
10	A copper tube of inside diameter 6 cm and outside diameter 6.5 cm is closely wound with steel wire of diameter 1 mm . Find the tension at which the wire must be wound on the tube if a pressure of 1.5 MPa is required before the copper is subjected to tensile stresses, the tube being free to expand or contract axially. For copper, $\mathrm{E}_{\mathrm{c}}=10 \mathrm{GPa}, \mathrm{u}=0.3$, and for steel, $\mathrm{E}_{\mathrm{s}}=200 \mathrm{GPa}$	evaluate	8

HOD, CIVIL ENGINEERING

