

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING ASSIGNMENT

Course Name	COMPILER DESIGN
Course Code	A50514
Class	III B. Tech I Semester
Branch	Computer Science and Engineering
Year	2017-2018
Course Coordinator	Ms. B Ramyasree, Assistant Professor.
Course Faculty	Ms. N Mamatha, Assistant Professor, Mr. N PoornaChandra Rao, Assistant Professor.

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

ASSIGNMENT – I & II

S. No	Question	Blooms Taxonomy	Course Outcome
		Level	
	UNIT – I		
1.	Convert 01*+1 regular expression to finite automata?	Remember	2
2.	Explain phases of a compiler. Also write down the output for the following	Understand	1
	expression after each phase $x = y^*z + 10$?		
3.	Explain the general format of a LEX program with example?	Apply	3
4.	Define regular expression? State the rules, which define regular expression?	Apply	2
5.	Explain the role lexical analyzer and issues of lexical analyzer?	Understand	1
6.	Explain the specification of tokens?	Apply	1
7.	Define Symbol table?	Apply	1
8.	Explain lexeme? Define a regular set?	Remember	2
9.	Explain the differences between pass and phase in detail and explain	Understand	1
	bootstrapping?		
10.	Consider the grammar	Apply	4
	$S \rightarrow 0A 1B 0 1$ $A \rightarrow 0S 1B 1$ $B \rightarrow 0A 1S$		
	Construct left most derivations for parse trees for the sentence.		
	i) 1100101 ii) 0101		

S. No	Question	Blooms	Course
		Taxonomy	Outcome
11.	Write FIRST & FOLLOW, construct predictive parsing table for the	Level Analysis	4
11.	following grammar	Anarysis	-
	$E \rightarrow TE'$		
	$E \rightarrow E + TE' / \xi$		
	$_{\rm T} \rightarrow_{\rm FT}$		
	T' → *FT'/ε		
10	\overrightarrow{F} (E)/id	A 1 .	4
12.	Check the following grammar is LL(1) or not and construct parsing table. S->AaAb/BbBa	Analysis	4
	A-> & B-> &		
13.	Explain elimination of left recursion in the grammar	Analysis	4
	E->E+T/T		
	T->T*F/F		
1.4	F->(E) /id	I I a de note a d	4
14. 15.	Explain top down parsing methods with example? Analyze whether the following grammar is LL(1) or not. Explain your	Understand Analysis	4 4
15.	answer with reasons.	Analysis	4
	\overrightarrow{S} L, R		
	$S L, R \rightarrow$		
	S R		
	$\overset{\rightarrow}{}_{L} \overset{\ast}{}_{R}$		
	→ L id		
	R L		
16.	For the operators given below, calculate the operator-precedence relations	Apply	4
	and operator precedence function.		
	id, +, *, \$		
17.	Check whether the following grammar is a LL(1)grammar	Apply	4
	S→iEtS iEtSeS a		
	$E \rightarrow b$		
	Also define the FIRST and FOLLOW procedures.		
18.	Define the necessary conditions to be carried out before the construction of	Remember	4
1.0	predictive parser?		
19.	Prepare the predictive parser for the following grammar:	Apply	4
	$s \rightarrow a b (T)$		
	$_{T} \rightarrow_{T, S S}$		
	Write down the necessary algorithms and define FIRST and FOLLOW.		
	Show the behavior of the parser in the sentences,		
	i. (a,(a,a))		
	ii. (((a,a),a,(a),a)		
20.	Consider the following fragment of C code:	Apply	1
	float i, j;		
	i = i*70+j+2;	1	
	Write the output at all phases of the compiler for above "C" code.	1	
1	UNIT – II	A 1	-
1.	Construct SLR parsing table for \overrightarrow{s}_{CC}	Apply	5
	S CC C aC/b		
2.	Construct SLR parsing table for	Apply	5
	s ⁷ cc	- * *	
L	$C \rightarrow aC/b$		

S. No	Question	Blooms Taxonomy Level	Course Outcome
3.	Explain Bottom up parsing method	Understand	5
4.	Explain shift reduce parsing method for the following grammar D type tlist ; Tlist tlist,id/id type int/float with input string int id, id;	Apply	5
5.	Explain the error recovery in parsing.	Understand	5
6.	State shift-reduce parsing? Explain in detail the conflicts that may occur during shift-reduce parsing.	Understand	5
7.	Prepare a canonical parsing table for the grammar given below $S \xrightarrow{CC} CC$ $C \xrightarrow{CC d}$	Apply	5
8.	For the grammar given below, calculate the operator precedence relation and the precedence functions $E \rightarrow E + E E - E E * E E / E E .E (E) -E id$	Understand	5
9.	Consider the grammar given below. $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow (E)$ $F \rightarrow id$ Prepare LR parsing table for the above grammar .Give the moves of LR parser on id * id + id.	Apply	5
10.	Analyze whether the following grammar is SLR(1) or not. Explain your answer with reasons. $\overrightarrow{S}_{L,R}$ \overrightarrow{S}_{R} $\overrightarrow{L}^{*}_{R}$ $\overrightarrow{L}^{*}_{R}$ $\overrightarrow{L}^{*}_{L}$	Analysis	5
	UNIT – III		
1.	State L – attributed grammars and S- attributed grammars with an example?	Apply	6
2.	Define triple, Indirect triple, quadruples with examples?	Remember	8
3.	Explain Intermediate code representations?	Understand	8
4.	Brief about Syntax Directed Translator?	Apply	7
5.	Explain Abstract syntax trees with an example?	Understand	8
6.	Define type expression? Explain the equivalence of type expressions with an appropriate example?	Analysis	6
7.	<pre>Generate the three-address code for the following C program fragment while(a > b) { if (c < d) x = y + z; else x = y - z; }</pre>	Understand	8

S. No	Question	Blooms	Course
		Taxonomy	Outcome
		Level	
8.	Explain Intermediate code generation for Basic block, Control Flow and	Apply	8
8.	Boolean Expressions?		
9.	Explain how declaration is done in a procedure using syntax directed	Apply	7
	translation?		
10.	List the various ways of calling the procedures? Explain in detail?	Analysis	7
11.	Explain type expression, type system, simple type checker?	Understand	7
12.	List different data structures used for symbol table?	Remember	9
13.	State general activation record?	Understand	9
14.	Explain type checking for different expressions?	Understand	7
15.	a. Explain static and stack storage allocations?	Understand	9
15.	b. Explain the limitations of static allocation?		
16.	Write short notes on the specification of a simple type checker?	Understand	7
17.	a. Compare three different storage allocation strategies?	Understand	9
17.	b. Explain symbol table organization using hashing?		
18.	a. List the various attributes of a symbol table?	Understand	9
16.	b. explain symbol table organization using trees?		
19.	Describe various forms of target programs?	Remember	8
20.	Explain heap storage allocation and static storage allocation?	Understand	9
	UNIT – IV		
1.	Describe 3 areas of code optimization?	Understand	10
2.	Define constant folding?	Understand	10
3.	List the advantages of the organization of code optimizer?	Understand	10
4.	Explain Local optimization and loop optimization in detail.	Understand	10
5.	Define Reduction in strength?	Understand	10
6.	Define Common Sub expressions?	Understand	11
7.	Explain runtime memory divisions?	Understand	11
8.	Explain peephole optimization?	Understand	10
9.	Explain in the DAG representation of the basic block with example.	Understand	11
10	a. Explain copy propagation and Dead code elimination?	Remember	12
10.	b. What is live variable?		
	a. Explain local and global common sub expression elimination?	Remember	12
11	b. Define a flow graph. Explain how flow graph can be constructed for a		
11.	given program?		
	a. Explain code hoisting and elimination of loop invariant statements?	Understand	10
12.	b. Explain how? Redundant sub expression elimination? can be done		
12.	at global level in a given program?		
	a. Describe local optimization?	Understand	10
13.	b. Explain any three principal sources of code optimization?		
14.	a. Explain strength reduction and code movement?	Understand	11
	b. Define basic block? write an algorithm for partitioning into blocks ?		
15.	a. Describe peephole optimizations?	Understand	12
	b. Explain about loops in flow graphs ?		
	a. Explain loop optimizations?	Understand	12
16.	b. Describe elimination of common sub expression and elimination of dead		
	Code?		
17.	a. Explain natural loops and inner loops of a flow graph with an example.	Understand	12

S. No	Question	Blooms Taxonomy Level	Course Outcome
	b. State purpose of data flow analysis? Explain available expression and reaching definition?		
18.	a. Explain strength reduction and code movement?b. Define basic block? write an algorithm for partitioning into blocks ?	Understand	11
19.	a. Describe peephole optimizations?b. Explain about loops in flow graphs ?	Understand	12
20.	Explain in detail the optimization technique "Strength Reduction"?	Understand	12
	UNIT – V		
1.	Explain register allocation and assignment?	Understand	13
2.	Show the code sequence generated by the simple code generation algorithm u := a - c v := t + u d := v + u//d live at the end	Apply	13
3.	Explain object code forms, generic code algorithm?	Understand	14
4.	Explain machine dependent and machine independent optimization?	Understand	14
5.	List different data flow properties? Define get reg() function?	Apply	14
	Explain about code generation?	Understand	13
	List various machine dependent code optimization techniques?	Understand	14
8.	Explain the different issues in the design of a code generator?	Understand	13
9.	 a. Describe various register allocation optimization techniques with an example. b. generate code sequence for the following expression using code generation algorithm K :=(a-b) + (a-c) + (a-c) 	Apply	13
10.	a. Explain about directed acyclic graph (DAG) for register allocation?b. Discuss various forms of object code?	Apply	14

Prepared by : Ms. B Ramyasree, Assistant Professor, Ms.N Mamatha, Assistant Professor,

Mr.N Poornachandra Rao, Assistant Professor.

HOD, COMPUTER SCIENCE AND ENGINEERING