INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043
COMPUTER SCIENCE AND ENGINEERING
ASSIGNMENT- I AND II QUESTIONS

Course Name	$:$	DESIGN AND ANALYSIS OF ALGORITHMS
Course Code	$:$	A40508
Class	$:$	II B. Tech II Semester
Branch	$:$	Computer Science and Engineering
Year	$:$	$2016-2017$
Course Faculty	$:$Dr. L V Narasimha Prasad, Mr. Y Subba Rayudu Assistant Professor Mrs. G.Vasavi Assistant Professor	

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. NO.	QUESTION	$\begin{gathered} \text { BLOOMS } \\ \text { TAXONOMY } \\ \text { LEVEL } \\ \hline \end{gathered}$	$\begin{aligned} & \text { PROGRAM } \\ & \text { OUTCOME } \end{aligned}$
UNIT - I			
1	Solve the following recurrence relation $T(n)=\left\{2 T\left(\frac{n}{2}\right)+n, \quad \text { and } T(1)=2\right.$	Apply	4
2	Solve the following recurrence relation $\mathrm{T}(\mathrm{n})=7 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}^{2}$	Apply	4
3	Solve the recurrence relation $T(n)=\left\{\begin{aligned} k, & n=1 \\ 3 T\left(\frac{n}{2}\right)+k n, & n>1, \end{aligned} \quad n \text { is powerof } 2\right.$	Apply	4
4	Explain quick sort algorithm and trace the algorithm for following data sequence: $3,5,9,7,1,4,6,8,2$	Apply	7
5	Sort the list of numbers using merge sort $33,44,2,10,25,79,86,47,14,36$	Apply	7

S. NO.	QUESTION	$\begin{gathered} \text { BLOOMS } \\ \text { TAXONOMY } \\ \text { LEVEL } \end{gathered}$	PROGRAM OUTCOME
6	Show that the average case time complexity of quick sort is O(nlogn)	Apply	7
7	Understand merge sort on letters H, K, P,C,S,K,R,A,B,L	Apply	7
8	Understandstrassen's matrix multiplication on following matrices $\left[\begin{array}{ll} 4 & 5 \\ 5 & 9 \end{array}\right],\left[\begin{array}{cc} 2 & 10 \\ 1 & 6 \end{array}\right]$	Apply	7
9	Write and solve recurrence relation for strassen's matrix multiplication	Apply	7
10	Solve the following recurrence relation $\mathrm{T}(\mathrm{n})=\left\{2 \mathrm{~T}\left(\frac{\mathrm{n}}{2}\right)+1, \quad \text { and } \mathrm{T}(1)=2\right.$	Apply	4
UNIT - II			
1	Illustrate BFS traversal of following graph	Apply	5
2	List the articulation points from the following graph	Understand	5
3	Writeinorder, preoreder, post order traversal of the following tree	Understand	5

S. NO.	QUESTION	$\begin{gathered} \text { BLOOMS } \\ \text { TAXONOMY } \\ \text { LEVEL } \end{gathered}$	PROGRAM OUTCOME
4	Illustrate DFS and BFS traversals of following graph	Apply	5
5	Illustrate DFS traversal of following graph	Apply	5
6	Illustrate BFS traversal of following graph	Understand	5
7	List the articulation points from the following graph	Understand	5
8	Writeinorder, preoreder, post order traversal of the following tree	Understand	5

$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { S. NO. } & \begin{array}{c}\text { BLOOMS } \\ \text { TAXONOMY } \\ \text { LEVEL }\end{array} \\ \text { OUTCOME }\end{array}\right]$

S. NO.	QUESTION	$\begin{aligned} & \text { BLOOMS } \\ & \text { TAXONOMY } \\ & \text { LEVEL } \end{aligned}$	PROGRAM OUTCOME
4	Understand single source shortest path algorithm for the following graph	Apply	8
5	Use optimal binary search tree algorithm and compute wij, cij, rij, $0<=\mathrm{i}<=\mathrm{j}<=4, \mathrm{p} 1=1 / 10, \mathrm{p} 2=1 / 5, \mathrm{p} 3=1 / 10, \mathrm{p} 4=1 / 120, \mathrm{q} 0=1 / 5$, $\mathrm{q} 1=1 / 10 / \mathrm{q} 2=1 / 5, \mathrm{q} 3=1 / 20, \mathrm{q} 4=1 / 20$.	Apply	8
6	Construct optimal binary search for $(\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4)=(\mathrm{do}$, if,int, while $) \mathrm{p}(1: 4)=(3,3,1,1), \mathrm{q}(0: 4)=(2,3,1,1,1)$	Apply	8
7	$\begin{aligned} & \text { Solve the solution for } 0 / 1 \text { knapsack problem using dynamic programming } \\ & (\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)=(11,21,31,33),(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=(2,11,22,15) \\ & \mathrm{M}=40, \mathrm{n}=4 \text {. } \end{aligned}$	Apply	8
8	Solve the solution for 0/1 knapsack problem using dynamic programming $\mathrm{N}=3, \mathrm{~m}=6$ profits: $(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3)=(1,2,5)$ and weights: $(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3)=(2,3,4)$	Apply	8
9	Find the shortest tour of traveling sales person for the following cost matrix using dynamic Programming $\left[\begin{array}{cccc} \infty & 12 & 5 & 7 \\ 11 & \infty & 13 & 6 \\ 4 & 9 & \infty & 18 \\ 10 & 3 & 2 & \infty \end{array}\right]$	Apply	8
10	Calculate shortest distances using all pairs shortest path algorithm	Apply	9
UNIT - IV			
1	Sketch the state space tree degenerated by 4 queens problem	Knowledge	10
2	Understand the backtracking algorithm to solve the following instance of the sum of subsets problem $S=\{5,10,12,13,15,18\}$ and $d=30$	Apply	10

S. NO.	QUESTION	$\begin{gathered} \text { BLOOMS } \\ \text { TAXONOMY } \\ \text { LEVEL } \end{gathered}$	PROGRAM OUTCOME
3	Sketch the state space tree generated all possible 3-color,4-node graph		10
4	Identify Hamiltonian cycle from the following graph	Knowledge	10
5	Solve the following instance of travelling sales person problem using Least Cost Branch Bound $\left[\begin{array}{ccccc} \infty & 12 & 5 & 7 & \\ 11 & \infty & 13 & 6 & \\ 4 & 9 & \infty & 18 & \\ 10 & 3 & 2 & \infty & \end{array}\right]$	Apply	10
6	Draw the portion of state space tree generated by LCBB by the following knapsack problem for $\mathrm{n}=5(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4, \mathrm{p} 5)=(10,15,6,8,4)$ ($\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4, \mathrm{w} 5$) $=(4,6,3,4,2$) and $\mathrm{m}=12$	Understand	11
7	Draw the portion of state space tree generated by FIFO knapsack instance : $\mathrm{N}=4,(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4)=(10,10,12,18),(\mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3, \mathrm{~W} 4)=(2,4,6,9)$, M=15	Understand	11
8	Solve the following instance of travelling sales person problem using Least Cost Branch Bound	Understand	11

S. NO.	QUESTION	$\begin{gathered} \text { BLOOMS } \\ \text { TAXONOMY } \\ \text { LEVEL } \\ \hline \end{gathered}$	PROGRAM OUTCOME
9	Identify Hamiltonian cycle from the following graph	Understand	10
10	Understand the backtracking algorithm to color the following graph	Understand	10
UNIT - V			
1	State and prove cook's theorem	Knowledge	12
2	Explain deterministic and non-deterministic algorithms	Knowledge	12
3	Write non deterministic algorithm for sorting and searching	Knowledge	12
4	Write a non-deterministic knapsack algorithm	Knowledge	12
5	Explain P and NP problems are related	Understand	12
6	Distinguish NP-hard and NP-complete problems	Knowledge	12
7	Explain decision problem with an example	Understand	12
8	Explain chromatic number decision problem and clique decision problem	Understand	12
9	Explain the strategy to prove that a problem is NP-hard	Understand	12
10	Explain intractable problems with examples	Understand	12

