

INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

ASSIGNMENT-I AND II QUESTIONS

Course Name	:	DESIGN AND ANALYSIS OF ALGORITHMS
Course Code	••	A40508
Class	:	II B. Tech II Semester
Branch	:	Information Technology
Year	:	2016 – 2017
Course Faculty	:	Mr. T Vishnu Vardhan Reddy Assistant Professor

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. NO.	QUESTION	BLOOMS TAXONOMY	PROGRAM OUTCOME
		LEVEL	OUTCOME
	UNIT – I		
1	Solve the following recurrence relation	Understand	4
	$T(n) = \left\{2T\left(\frac{n}{2}\right) + n, \text{and} T(1) = 2\right\}$		
2	Solve the following recurrence relation	Understand	4
	$T(n) = 7T(n/2) + cn^2$		
3	Solve the recurrence relation	Understand	4
	k, n = 1		
	$T(n) = \begin{cases} k, & n = 1 \\ 3T(\frac{n}{2}) + kn, & n > 1, & n \text{ is power of } 2 \end{cases}$		
4	Explain quick sort algorithm and trace the algorithm for following data	Understand	7
	sequence:		
	3, 5, 9, 7, 1, 4, 6, 8, 2		
5	Sort the list of numbers using merge sort	Understand	7
	33, 44, 2, 10, 25, 79, 86, 47, 14, 36		
6	Show that the average case time complexity of quick sort is O(nlogn)	Understand	7
7	Understand merge sort on letters H, K, P,C,S,K,R,A,B,L	Understand	7
8	Understandstrassen's matrix multiplication on following matrices	Understand	7

S. NO.	QUESTION	BLOOMS TAXONOMY LEVEL	PROGRAM OUTCOME
	$\begin{bmatrix} 4 & 5 \\ 5 & 9 \end{bmatrix}, \begin{bmatrix} 2 & 10 \\ 1 & 6 \end{bmatrix}$		
9	Write and solve recurrence relation for strassen's matrix multiplication	Understand	7
10	Solve the following recurrence relation $T(n) = \left\{2T\left(\frac{n}{2}\right) + 1, \text{and} T(1) = 2\right\}$	Understand	4
	UNIT - II	1	
1	Illustrate BFS traversal of following graph	Understand	5
	2 3 4 5 7 8 8		
2	List the articulation points from the following graph 3 6	Understand	5
3	Writeinorder, preoreder, post order traversal of the following tree 8 7 11 12 3	Understand	5
4	Illustrate DFS and BFS traversals of following graph	Understand	5

S. NO.	QUESTION	BLOOMS TAXONOMY LEVEL	PROGRAM OUTCOME
	g C e D D B C		
5	Illustrate DFS traversal of following graph 3 4	Understand	5
6	Illustrate BFS traversal of following graph A B F	Understand	5
7	List the articulation points from the following graph 1 2 3	Understand	5
8	Writeinorder, preoreder, post order traversal of the following tree	Understand	5

S. NO.	QUESTION	BLOOMS TAXONOMY LEVEL	PROGRAM OUTCOME
	B B G	22,22	
9	Illustrate BFS and DFS traversals of following graph 1 2 3	Understand	5
10	Illustrate DFS traversal of following graph A B C F	Understand	5
	UNIT - III		
1	Compute the optimal solution for Job Sequencing with Deadlines using greedy method for N=4, profits: $(p1,p2,p3,p4) = (100,10,15,27)$ Deadlines: $(d1,d2,d3,d4) = (2,1,2,1)$	Understand	8
2	Compute the optimal solution for Knapsack problem using greedy method for N=3, M=20, $(p1,p2,p3)=(25,24,15)$, $(w1,w2,w3)=(18,15,10)$	Understand	8
3	Construct minimum cost spanning tree using a) Prims algorithm b) Kruskal algorithm	Understand	8

S. NO.	QUESTION	BLOOMS TAXONOMY LEVEL	PROGRAM OUTCOME
4	Understand single source shortest path algorithm for the following graph	Understand	8
5	Use optimal binary search tree algorithm and compute wij, cij, rij, 0<=i<=j<=4, p1=1/10, p2=1/5, p3=1/10, p4=1/120, q0=1/5, q1=1/10/q2=1/5, q3=1/20,q4=1/20.	Understand	8
6	Construct optimal binary search for $(a1,a2,a3,a4) = (do,if,int, while) p(1:4) = (3,3,1,1), q(0:4) = (2,3,1,1,1)$	Understand	8
7	Solve the solution for 0/1 knapsack problem using dynamic programming (p1, p2, p3, p4) = (11, 21, 31, 33), (w1, w2, w3, w4) = (2, 11, 22, 15) M=40, n=4.	Understand	8
8	Solve the solution for $0/1$ knapsack problem using dynamic programming N=3, m=6 profits: $(p1,p2,p3) = (1,2,5)$ and weights: $(w1,w2,w3) = (2,3,4)$	Understand	8
9	Find the shortest tour of traveling sales person for the following cost matrix using dynamic Programming $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Understand	8
10	Calculate shortest distances using all pairs shortest path algorithm	Understand	9
	UNIT – IV		
2	Sketch the state space tree degenerated by 4 queens problem Understand the backtracking algorithm to solve the following instance of	Understand Understand	10
3	the sum of subsets problem S={5,10,12,13,15,18} and d=30 Sketch the state space tree generated all possible 3-color,4-node graph	Understand	10

S. NO.	QUESTION	BLOOMS TAXONOMY LEVEL	PROGRAM OUTCOME
	3 — 4		
4	Identify Hamiltonian cycle from the following graph	Understand	10
	V_3 V_1 V_2		
5	Solve the following instance of travelling sales person problem using Least Cost Branch Bound	Understand	10
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	10 3 2 ∞		
6	Draw the portion of state space tree generated by LCBB by the following knapsack problem for n=5 (p1,p2,p3,p4,p5) =(10,15,6,8,4) (w1,w2,w3,w4,w5)=(4,6,3,4,2) and m=12	Understand	11
7	Draw the portion of state space tree generated by FIFO knapsack instance : $N=4$, $(P1, P2, P3, P4)=(10, 10, 12, 18)$, $(W1, W2, W3, W4)=(2, 4, 6, 9)$, $M=15$	Understand	11
8	Solve the following instance of travelling sales person problem using Least Cost Branch Bound 5 5 5 8 3 4 5 8	Understand	11
9	Identify Hamiltonian cycle from the following graph	Understand	10

S. NO.	QUESTION	BLOOMS TAXONOMY LEVEL	PROGRAM OUTCOME
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
10	Understand the backtracking algorithm to color the following graph A B C F	Understand	10
	UNIT - V		
1	State and prove cook's theorem	Remember	12
2	Explain deterministic and non-deterministic algorithms	Remember	12
3	Write non deterministic algorithm for sorting and searching	Understand	12
4	Write a non-deterministic knapsack algorithm	Understand	12
5	Explain P and NP problems are related	Remember	12
6	Distinguish NP-hard and NP-complete problems	Understand	12
7	Explain decision problem with an example	Remember	12
8	Explain chromatic number decision problem and clique decision problem	Remember	12
9	Explain the strategy to prove that a problem is NP-hard	Remember	12
10	Explain intractable problems with examples	Remember	12

HOD, INFORMATION TECHNOLOGY