

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech V Semester End Examinations (Supplementary) - January, 2019

Regulation: IARE – R16

DIGITAL COMMUNICATIONS

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit

All Questions Carry Equal Marks

All parts of the question must be answered in one place only

UNIT – I

1. (a) State and prove sampling theorem and explain various types of sampling techniques. [7M]
- (b) Determine the processing gain of a DPCM system with a first order predictor, if the message signal has a normalized auto-correlation function of 0.8 for a lag of one period, assuming that the predictor is designed to minimize the mean square value of the prediction error. [7M]
2. (a) Explain PCM modulation and demodulation system with neat sketches. Describe the quantization noise in PCM. [7M]
- (b) Find the maximum amplitude of a 1 KHz sinusoidal signal input to a delta modulator that will prevent slope overload, when the sampling rate is 10,000 samples/sec and the step size is $\Delta = 0.1$ [7M]

UNIT – II

3. (a) Explain binary PSK and QPSK with corresponding equations and constellation diagrams. [7M]
- (b) For the signals, the given bit rate is 10Kbps. Estimate the bandwidth for Amplitude Shift Keying and Frequency Shift Keying signals. [7M]
4. (a) Explain the Non-coherent detection of FSK modulation scheme. [7M]
- (b) The bit stream 11011100101 is to be transmitted using DPSK. Determine the encoded sequence and the transmitted phase sequence. [7M]

UNIT – III

5. (a) Describe the scrambling coding scheme HDB3 and Sketch the signal corresponding to the bit sequence “0110000000100001100” using rectangular pulses. [7M]
- (b) Define roll off factor and describe the Nyquist bandwidth requirement of raised cosine filter for distortion less transmission. [7M]
6. (a) What is pulse shaping? Why it is useful in baseband transmission? Explain in detail. [7M]
- (b) Draw and explain the block diagram of modified duo-binary signaling scheme consider the binary sequence $b_k = “01001101”$ applied to the input of a precoded modified duo-binary sequence. Determine the sequence a_k at the pre-coder output. [7M]

UNIT – IV

7. (a) Calculate the Conditional entropy, mutual information and channel capacity using channel matrix for a noise free channel. [7M]
- (b) Illustrate the principle of Frequency hopped spread spectrum. What is the minimum number of bits in a PN sequence if we use FHSS with a channel bandwidth of $B = 4$ KHz and $B_{ss}=100$ KHz? [7M]
8. (a) Describe Code Division Multiple Access(CDMA) in detail. [7M]
- (b) Apply Shannon fano coding for the 5 messages with probabilities 0.4, 0.15, 0.15, 0.15, 0.15 and find the coding efficiency. [7M]

UNIT – V

9. (a) Define the following terms [7M]
 - (i) Code word
 - (ii) Block length
 - (iii) Code rate
 - (iv) Channel data rate
 - (v) Code vector
 - (vi) Hamming distance
 - (vii) Minimum distance
- (b) Determine the generator polynomial $g(X)$ for A (7, 4) cyclic code and find the code vector for the following data vector 1010, 1111 and 1000. [7M]
10. (a) Explain how generator and parity matrices are obtained for cyclic codes with an example. [7M]
- (b) Decode the given sequence 11 01 01 10 01 of a convolutional code with a code rate of $r=1/2$ and constraint length $K=3$, using viterbi decoding algorithm. [7M]

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech V Semester End Examinations (Regular) - November, 2018

Regulation: IARE – R16

DIGITAL COMMUNICATIONS

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit

All Questions Carry Equal Marks

All parts of the question must be answered in one place only

UNIT – I

1. (a) Define Quantization. What is the need for Companding in PCM system and show that the mean square quantization error in PCM is $\Delta^2/12$. [7M]
- (b) Illustrate with waveforms, how PPM is generated using PWM. [7M]
2. (a) Explain the encoding scheme used in DPCM scheme with block diagram description and mathematical modeling. [7M]
- (b) What are the noise present in Delta Modulation. Explain the modulation scheme to avoid these noise effects [7M]

UNIT – II

3. (a) Explain the generation of QPSK modulation scheme using constellation diagram. [7M]
- (b) Determine the amount of probability of error in matched filter Receiver. [7M]
4. (a) How does the phase of the carrier vary for message $m(n)=\{1,0,1,1,0,1\dots\}$ in BPSK and DPSK. Draw the block diagram of QPSK receiver. [7M]
- (b) A binary data has to be transmitted over a telephone link that has a usable bandwidth of 3000Hz and a maximum achievable signal to noise power of 6dB at its output. [7M]
 - (i) Determine the maximum signaling rate and probability of error if a coherent ASK is used for transmitting binary data through this channel
 - (ii) if the data rate is maintained at 300 bits/sec. Find the error probability.

UNIT – III

5. (a) Write down the Unipolar, Polar and Bipolar Line Coding Schemes. [7M]
- (b) Explain Eye Diagram with neat diagram and how to draw eye diagram for ASK. [7M]
6. (a) What is pulse shaping? Why it is useful in baseband transmission? Explain in detail. [7M]
- (b) A line coding scheme uses Unipolar NRZ encoding with rectangular pulses. Sketch the signal corresponding to the bit sequence “101100”. Compute its Power spectral density. [7M]

UNIT – IV

7. (a) Define Mutual Information and Prove the relation $I(X:Y) = H(X) + H(Y) - H(X,Y)$. [7M]
(b) A Gaussian channel has 5MHz bandwidth. Calculate the channel capacity if the signal power to noise spectral density ratio is 10^6 Hz. Discuss the trade off between bandwidth and S/N ratio. [7M]

8. (a) Describe spread spectrum modulation techniques in detail. [7M]
(b) A source emits letters from an alphabet $A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$ with probabilities $P(a_1) = 0.1$, $P(a_2) = 0.4$, $P(a_3) = 0.06$, $P(a_4) = 0.1$, $P(a_5) = 0.04$ and $P(a_6) = 0.3$ [7M]
(i) Find a Huffman code for this source.
(ii) Find the average length of the code.

UNIT – V

9. (a) What is a convolutional code? How it is different from a block code? [7M]
(b) Show that if c_i and c_j are two code vectors in an (n,k) linear block code, then their sum is also a code vector. [7M]

10. (a) Explain how generator and parity matrices are obtained for cyclic codes with an example. [7M]
(b) Decode the Received code word $[10 \ 11 \ 10]$ using viterbi algorithm and find the correct transmitted code word using the given convolutional encoder. [7M]

Figure 1