(Autonomous)

Four Year B.Tech V Semester End Examinations (Supplementary) - January, 2019
Regulation: IARE - R16
DIGITAL COMMUNICATIONS
Time: 3 Hours
(ECE)
Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

UNIT - I

1. (a) State and prove sampling theorem and explain various types of sampling techniques.
[7M]
(b) Determine the processing gain of a DPCM system with a first order predictor, if the message signal has a normalized auto-correlation function of 0.8 for a lag of one period, assuming that the predictor is designed to minimize the mean square value of the prediction error.
[7M]
2. (a) Explain PCM modulation and demodulation system with neat sketches. Describe the quantization noise in PCM.
[7M]
(b) Find the maximum amplitude of a 1 KHz sinusoidal signal input to a delta modulator that will prevent slope overload, when the sampling rate is 10,000 samples/sec and the step size is $\Delta=0.1$
[7M]

UNIT - II

3. (a) Explain binary PSK and QPSK with corresponding equations and constellation diagrams. [7M]
(b) For the signals, the given bit rate is 10Kbps. Estimate the bandwidth for Amplitude Shift Keying and Frequency Shift Keying signals.
[7M]
4. (a) Explain the Non-coherent detection of FSK modulation scheme.
[7M]
(b) The bit stream 11011100101 is to be transmitted using DPSK. Determine the encoded sequence and the transmitted phase sequence.
[7M]

UNIT - III

5. (a) Describe the scrambling coding scheme HDB3 and Sketch the signal corresponding to the bit sequence " 01100000000100001100 " using rectangular pulses.
[7M]
(b) Define roll off factor and describe the Nyquist bandwidth requirement of raised cosine filter for distortion less transmission.
6. (a) What is pulse shaping? Why it is useful in baseband transmission? Explain in detail.
(b) Draw and explain the block diagram of modified duo-binary signaling scheme consider the binary sequence $b_{k}=$ " 01001101 " applied to the input of a precoded modified duo-binary sequence. Determine the sequence a_{k} at the pre-coder output.

UNIT - IV

7. (a) Calculate the Conditional entropy, mutual information and channel capacity using channel matrix for a noise free channel.
[7M]
(b) Illustrate the principle of Frequency hopped spread spectrum. What is the minimum number of bits in a PN sequence if we use FHSS with a channel bandwidth of $\mathrm{B}=4 \mathrm{KHz}$ and $\mathrm{Bss}=100$ KHz ?
8. (a) Describe Code Division Multiple Access(CDMA) in detail.
[7M]
(b) Apply Shannon fano coding for the 5 messages with probabilities $0.4,0.15,0.15,0.15,0.15$ and find the coding efficiency.

UNIT - V
9. (a) Define the following terms
[7M]
(i) Code word
(ii) Block length
(iii) Code rate
(iv) Channel data rate
(v) Code vector
(vi) Hamming distance
(vii) Minimum distance
(b) Determine the generator polynomial $\mathrm{g}(\mathrm{X})$ for $\mathrm{A}(7,4)$ cyclic code and find the code vector for the following data vector 1010,1111 and 1000 .
[7M]
10. (a) Explain how generator and parity matrices are obtained for cyclic codes with an example. [7M]
(b) Decode the given sequence 1101011001 of a convolutional code with a code rate of $\mathrm{r}=1 / 2$ and constraint length $\mathrm{K}=3$, using viterbi decoding algorithm.
[7M]
\square

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech V Semester End Examinations (Regular) - November, 2018
Regulation: IARE - R16
DIGITAL COMMUNICATIONS
Time: 3 Hours
(ECE)
Max Marks:
70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

UNIT - I

1. (a) Define Quantization. What is the need for Companding in PCM system and show that the mean square quantization error in PCM is $\Delta^{2} / 12$.
(b) Illustrate with waveforms, how PPM is generated using PWM.
2. (a) Explain the encoding scheme used in DPCM scheme with block diagram description and mathematical modeling.
[7M]
(b) What are the noise present in Delta Modulation. Explain the modulation scheme to avoid these noise effects
[7M]

UNIT - II

3. (a) Explain the generation of QPSK modulation scheme using constellation diagram.
(b) Determine the amount of probability of error in matched filter Receiver.
4. (a) How does the phase of the carrier vary for message $m(n)=\{1,0,1,1,0,1 \ldots\}$ in BPSK and DPSK. Draw the block diagram of QPSK receiver.
(b) A binary data has to be transmitted over a telephone link that has a usable bandwidth of 3000 Hz and a maximum achievable signal to noise power of 6 dB at its output.
(i) Determine the maximum signaling rate and probability of error if a coherent ASK is used for transmitting binary data through this channel
(ii) if the data rate is maintained at $300 \mathrm{bits} / \mathrm{sec}$. Find the error probability.

> UNIT - III
5. (a) Write down the Unipolar, Polar and Bipolar Line Coding Schemes.
(b) Explain Eye Diagram with neat diagram and how to draw eye diagram for ASK.
6. (a) What is pulse shaping? Why it is useful in baseband transmission? Explain in detail.
(b) A line coding scheme uses Unipolar NRZ encoding with rectangular pulses. Sketch the signal corresponding to the bit sequence " 101100 ". Compute its Power spectral density.

UNIT - IV

7. (a) Define Mutual Information and Prove the relation $\mathrm{I}(\mathrm{X}: \mathrm{Y})=\mathrm{H}(\mathrm{X})+\mathrm{H}(\mathrm{Y})-\mathrm{H}(\mathrm{X}, \mathrm{Y})$.
[7M]
(b) A Guassian channel has 5 MHz bandwidth. Calculate the channel capacity if the signal power to noise spectral density ratio is $10^{6} \mathrm{~Hz}$. Discuss the trade off between bandwidth and S / N ratio.
8. (a) Describe spread spectrum modulation techniques in detail.
(b) A source emits letters from an alphabet $\mathrm{A}=\{\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4, \mathrm{a} 5, \mathrm{a} 6\}$ with probabilities $\mathrm{P}(\mathrm{a} 1)==0.1$, $\mathrm{P}(\mathrm{a} 2)=0.4, \mathrm{P}(\mathrm{a} 3)=0.06, \mathrm{P}(\mathrm{a} 4)=0.1, \mathrm{P}(\mathrm{a} 5)=0.04$ and $\mathrm{P}(\mathrm{a} 6)=0.3$
[7M]
(i) Find a Huffman code for this source.
(ii) Find the average length of the code.

UNIT - V

9. (a) What is a convolutional code? How it is different from a block code?
[7M]
(b) Show that if ci and cj are two code vectors in an (n, k) linear block code, then their sum is also a code vector.
10. (a) Explain how generator and parity matrices are obtained for cyclic codes with an example. [7M]
(b) Decode the Received code word [10 1110] using viterbi algorithm and find the correct transmitted code word using the given convolutional encoder.
[7M]

Figure 1

