INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

ASSIGNMENT QUESTION BANK

Course Name	:	DIGITAL DESIGN USING VERILOG HDL
Course Code	:	A40410
Class	:	II - B. Tech II Semester
Branch	:	Electronics and Communication Engineering
Year	:	2016 – 2017
Course Faculty	:	Mr. Khalandhar Basha, Mr. K. Arun Sai, Mr. K Sudhakar Reddy, Mr. N Nagaraju

OBJECTIVES

Designing digital circuits at behavioral and RTL modeling of digital circuits using Verilog HDL. Verifying these models, and synthesizing RTL models to standard cell libraries and FPGAs.

Students gain practical experience by designing, modeling, implementing and verifying several digital circuits. This course aims provide students with the Understand of different technologies related to HDLs, constructs, compile and execute verilog HDL programs using provided software tools. Design digital components and circuits that are testable, reusable and synthesizable.

S.No	Question	Blooms Taxonomy Level	Course Outcome				
	ASSIGNMENT-I UNIT-I INTRODUCTION TO VERILOG HDL						
1.	Discuss Level of design description.	Understand	1				
2	Discuss Level of design description.	Understand	1				
3	Write short notes on, (a) Concurrency (b) Functional verification	Evaluate	1				
4	Define the following terms relevant to Verilog HDL, (a). Simulation versus synthesis. (b). PLI (c). System tasks.	Remember	1				
5	Explain about, (a). Display tasks (b). Strobe tasks (c). Monitor tasks with examples.	Understand	1				
6	Write a syntax functions and tasks with one example.	Apply	1				
7	Explain about number system used in Verilog.	Understand	1				
8	Write about \$readmemb with example.	Apply	1				
9	Explain the components of a Verilog module with block diagram.	Understand	1				
10	Write about and differences scalars vectors in Verilog module with	Apply	1				

S.No	Question	Blooms Taxonomy	Course Outcome					
	1	Level						
	examples.							
	ASSIGNMENT – II							
UNIT-II CATE I EVEL MODELINC AND MODELINC AT DATAELOW LEVEL								
1	Explain clocked RS flin-flon Verilog module and test bench	Understand	2					
2	Design a D-Flip-flop with gate primitives and write its Verilog code	Synthesis	2					
2	Design a D-1 np-nop with gate primitives and write its verifing code.	Synthesis	2					
	Write a Verilog code for D flin flon using NAND gates	Apply	2					
+ 5	Classify delays and explain	Creating	2					
5	Explain inortial and intra assignment delays in Varilog	Understand	2					
7	Design a IK flip flop using NAND gates	Synthesis	2					
/	Write a Varilog code for IK flip flop using NAND gates.	Apply	2					
0	Evaluation the design engagesh of a master gloveflin flop with gate primitives	Apply	2					
9	(OR) Design a master slave IV flip flop using NAND gates	Арріу	2					
10	(OK)Design a master slave JK hip-hop using NAND gates.	Annly	2					
10	A SELENTER THE ACCOUNTER AND GALES.	Арргу	2					
	ASSIGNMENT - III							
1	Write short notes on the following with exemples	Apply	2					
1	(a) Intra assignment deleva	Арргу	5					
	(a). Intra-assignment delays							
	(b). Detay assignments							
2	(c). Zelo delay.	romomboring	2					
2	Write a Varilog module for a rudimentary social transmitter module	Apply	3					
3	Fundain multiple always blocks	Apply	3					
4	Explain multiple always blocks.		3					
3	of a IK flip flop using an always statement	Арргу	5					
6	(a) Design Verilog module to identify the highest priority interrupts	synthesis	3					
0	(a). Design verified inolute to identify the ingrest priority interrupts.	synthesis	5					
7	(a) Design module to convert angels in radians to one in degrees	synthesis	3					
,	(a). Design module to convert angels in Tadians to one in degrees. (b) Write Verilog code above question with explanation	synthesis	5					
8	Explain blocking and non blocking statement with examples	Understand	3					
0	Varilog HDL code for n bit shift register, with an anable input using	Apply	3					
7	blocking assignments	Арргу	5					
10	Draw the flowebart for the simulation flow	Understand	3					
10	OR	Understand	5					
	Explain flowchart for the simulation flow							
	ASSIGNVENT - IV UNIT_IV							
S	WITCH I EVEL MODELING SYSTEM TASKS FUNCTIONS AND CON	IPH FRDIRFC'	TIVES					
1	Define and explain the following terms relevant to Verilog HDI	Remember	4					
1	(a) Module parameters	Remember	-					
	(h) File-based tasks and functions							
	(c) Compiler directives							
2	Explain parameter declaration and assignments	Understand	4					
2	Explain parameter declaration for parameters	Understand	<u>т</u> Д					
<u> </u>	Explain automatic(recursive) function	Understand	<u>т</u> Д					
+ 5	Explain automatic(recursive) function.	Understand	т Л					
5	Define and explain the following terms relevant to Varilog HDI	Remember	+ /					
0	(a) Hierarchical access	Kemennoer	+					
	(h) Path delays							
7	Explain \$ finish task with example	Understand	Λ					
, 8	Explain \$ random function with example	Understand	т 4					
0	Explain & fundom fundation with example.	Understand						

S.No	Question	Blooms	Course				
		Taxonomy	Outcome				
		Level					
9	Explain asymmetric sequence generator with example.	Understand	4				
10	Explain automatic(re-entrant) tasks with example.	Understand	4				
	ASSIGNMENT – V						
	UNIT-V						
	SEQUENTIAL CIRCUIT DESCRIPTION, COMPONENT TEST VERIFICATION						
1	Define hold time. Design a Verilog module for D flip-flop with hold time.	Remember	5				
2	Discuss about setuphold, width and period checks used in Verilog. Write a	Remember	5				
	Verilog module for D flip-flop using setuphold, width and period checks.						
3	Design a Verilog module for the following,	synthesis	5				
	(i) 8-bit transparent D-Latch						
	(ii) 8-bit register with tri-state output.						
4	How does the memory initialization is carried out in Verilog? Explain with	synthesis	5				
	the help of an example.	-					
5	What are the rules to be followed to declare and to use the bidirectional	Evaluate	5				
	lines?						
6	Write a Verilog module for PLA.	Understand	5				
7	What is functional register? Write and explain the Verilog module for basic	Evaluate	5				
	shift register?						
8	Design and explain the Verilog module for universal shift register.	synthesis	5				
9	Explain about shift register that uses separates combinational and sequential	Understand	5				
	blocks. Also write a Verilog code for the same.						
10	Write a Verilog code for 4-binary up-down counter.	Understand	5				

Prepared By: Mr. Khalandhar Basha, Mr. K Arun Sai, Mr. K Sudhakar Reddy, Mr. N Nagaraju.

BEP

ć.

OCCAPION F

HOD, ECE