

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

ASSIGNMENT

Course Name	:	Digital Logic Design and Computer Organization
Course Code	:	A30402
Class	:	I IB. Tech I Semester
Branch	:	Information Technology
Year	:	2015 - 2016
Course Coordinator	:	Mr. E. Sunil Reddy, Assistant Professor, IT
Course Faculty	:	Mr. E. Sunil Reddy, Assistant Professor, IT

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. No	Question	Blooms Taxonomy Level	Course Outcome
	ASSIGNMENT-I UNIT-I		
	Basic Structure of Computers and Data Representation		
1	Explain the various types of computers and their applications.	Understand	1
2	Explain the basic functional units of a computer and explain each unit in detail.	Understand	1
3	Discuss the operational concepts of a digital computer.	Understand	1
4	(a). Define by system software?		
	(b.)Explain various functions of system software.	Understand	
	(c) . Define a text editor?		1
5	Explain Various types of Buses.	Understand	1
	Explain various performance measures used to represent computer performance.	Understand	
6			1
7	Differentiate between RISC and CISC	Analyze	1
8	Describe the introduction of each generation of computer system	Understand	2
9	Solve the number $(+465.5)_{10}$ as a floating point binary number with 24 bits the		
	Normalized fraction mantissa has 16 bits and the exponent has 8 bits.	Apply	1
10	Solve the single precision representation for 42.75 and 16.125.	Apply	1
11	Solve 32.75 and 18.125 in single precision IEEE 754 representation.	Apply	1
12	Solve the 1's and 2's complement of the following binary numbers,		
	1010101,0111000,0000001,10000,00000		
	Also obtain 9's and 10's complement of the following decimal		
	Numbers, 09900, 10000, 00000.	Apply	1
13	Show decimal number 8620 in		
	(i) BCD		
	(ii) Excess-3 code		
	(iii) 2421 code		
	(iv) As a binary number	Apply	1
14	Explain the classification of binary codes.	Understand	1
15	Discuss in detail about binary signed number.	Understand	1
16	Calculate the following to binary and then to gray code,		
	(a) 1001 ₁₆	Apply	1

S. No	Question	Blooms Taxonomy Level	Course Outcome
	(b) ABEF ₁₆		
	(c) 7623 ₈		
	(d) 1234 ₈		
	(e) 1257_{10}		
	(f) 2239 ₁₀		
	ASSIGNMENT – II UNIT-II Digital Logic Circuits-I and Digital Logic Circuits-II		
1	Explain the basic logic functions along with their truth tables.	Understand	3
	Describe the truth tables, Boolean equations and symbols of the basic logic gates.	Understand	2
3	Explain A NOR gate is also referred to as negative AND gate.	Understand	2
4	Solve the expression $Y=AB^{1} + A^{1}B$ using only 2 input NAND gates.	Apply	2
5	Solve and Simplify the Boolean equation $Y=AB^{T}C^{T}+A^{T}BC^{T}+ABC^{T}and$	Арргу	
5	realize the logic circuit.	Apply	5
6	Solve and Simplify the following Boolean functions, using three-variable maps,		
	$F(x, y, z) = \sum (0, 2, 6, 7)$	Apply	5
	$F(a, b, c) = \sum (0, 1, 2, 3, 7).$		_
7	Solve and Simplify the following Boolean function using K map,		_
	$F(A,B,C,D) = \sum (3,7,11,13,14,15).$	Apply	5
8	Solve the following operation Minimize F (A,B,C,D)= $\sum (3, 6, 8, 11, 13, 14)$ and don't		
-	cares $\sum (4,10,15)$.	Apply	5
9	Solve and Simplify the following Boolean function $F(W,X,Y,Z) = \sum (1,3,7,11,15)$ and		~
	the don't care conditions $d(W,X,Y,Z) = \sum (0,2,5)$	Apply	5
	Define a latch and a flip-flop. Mention the similarities and differences between them.	Knowledge	5
	Sketch a neat circuit diagram of positive triggered D flip-flop and explain its	Apply	6
	operation.	11 5	
12	Explain the operation of a JK flip flop using its block diagram and truth table. What	Understand	6
	are its limitations?		
13	Describe the working of a shift right register.	Understand	12
14	Sketch and explain a 4-bit synchronous binary counter based on JK flip flops.	Apply	6
15	Explain the operation of 3-to-8 decoder with circuit diagram.	Understand	7
	Sketch the logic diagram of a 2-to-4 line decoder using NOR gates and explain its		
	functioning.	Apply	2
	Construct a 5-to-32 line decoder with four 3-to-8 line decoders with enable and one 2-		
	to-4 line decoder.	Apply	2
	Describe a combinational logic circuit is defined by the following Boolean functions.	FF	
	$F_1 = \overline{A}\overline{B}\overline{C} + AC$		
	$F_2 = A\overline{B}\overline{C} + \overline{A}B$		
	$\vec{F_3} = A\vec{B}C + AB$		
	Construct a circuit with a decoder and external gates.	Understand	12
19	Explain combinational PLD? List and describe the major types of combinational		
	PLDs.	Knowledge	9
20	Define PAL? Explain the internal structure of PAL.	Understand	9
	Solve and Simplify the following Boolean functions with a PAL.		
	$F_1(A,B,C) = \sum_{i=1}^{n} (0,1,2,4)$	Apply	5
	$F_2(A,B,C) = \sum (0,5,6,7)$	11 5	
22	Design a PAL for the following equation, $F = a^{I}b c + b^{I}c + ab$	Create	6
23			-
	UNIT-III		1
	Computer Arithmetic and Instruction set & Addressing		T
	Explain addition subtraction algorithm. With diagram.	Understand	8
		Understand Understand	8 8
	Explain addition subtraction algorithm. With diagram.		
2	Explain addition subtraction algorithm. With diagram. Explain multiplication algorithm. With diagram.	Understand	8
2 3	Explain addition subtraction algorithm. With diagram. Explain multiplication algorithm. With diagram. Sketch and Explain booth multiplication algorithm. With numerical example.	Understand Knowledge	8 8
2 3 4 5	 Explain addition subtraction algorithm. With diagram. Explain multiplication algorithm. With diagram. Sketch and Explain booth multiplication algorithm. With numerical example. Sketch and Explain division algorithm. With numerical example. 	Understand Knowledge Knowledge	8 8 8
2 3 4 5	 Explain addition subtraction algorithm. With diagram. Explain multiplication algorithm. With diagram. Sketch and Explain booth multiplication algorithm. With numerical example. Sketch and Explain division algorithm. With numerical example. Explain floating point addition subtraction algorithm. With diagram. 	Understand Knowledge Knowledge Understand	8 8 8 8
2 3 4 5 6	 Explain addition subtraction algorithm. With diagram. Explain multiplication algorithm. With diagram. Sketch and Explain booth multiplication algorithm. With numerical example. Sketch and Explain division algorithm. With numerical example. Explain floating point addition subtraction algorithm. With diagram. Explain floating point multiplication algorithm. With diagram. 	Understand Knowledge Knowledge Understand Understand	8 8 8 8 8

S. No	Question	Blooms Taxonomy Level	Course Outcome
10	Discuss about the following.		
	(i) Condition codes		
	(ii) Straight line sequencing.	Understand	8
11	Explain various addressing modes of computer with examples.	Understand	11
12	Explain in detail the basic instruction types with examples.	Understand	11
13	Explain about the Addressing modes present in IA-32 Pentium processor.	Understand	11
14	Explain the format of an IA-32 instruction.	Understand	11
15	Describe the format of status register of IA-32 and explain each of the flag.	Understand	8
16	Describe how many address bits are needed to create an address space of 4G.	Understand	11
	ASSIGNMENT – III UNIT-IV		
	Processor Organization and Memory Organization		
1	Explain single-bus organization of the data path inside a Processor.	Understand	16
2	Explain about multiple bus organization.	Understand	16
3	Define the following		
	(i) Micro operation		
	(ii) Micro program		
	(iii) Micro instruction	Knowledge	16
4	Define memory? Briefly explain micro computer memories.	Understand	17
5	Discuss the purpose of main memory and secondary memory in a computer.		
	What is a non-volatile memory? Give examples of volatile and non-volatile memory.	Understand	17
6	Discuss in detail memory interleaving.	Understand	17
	Explain in detail various cache memory organizations.	Understand	18
	Define cache memory? Why has it become an integrated part of modern CPUs?		
	What is a hit and miss? What is meant by hit ratio?	Knowledge	18
9	Describe a brief note on page replacement algorithms.	Knowledge	18
	Explain each of the following		-
	(i) Page fault		
	(ii) Page table		
	(iii) Page replacement		
	(iv) Translation look-aside buffer.	Understand	18
11	Compare the characteristics of a floppy disk and a hard disk.	Understand	17
	Describe the limitations of a semiconductor memory? Explain in detail various		
	secondary storage devices.	Knowledge	18
13	Explain the memory management requirements.	Understand	18
	UNIT-V Input / Output Organization	Childerbland	10
1	Explain the different kinds of I/O communication techniques? What are the relative		
1	advantages and disadvantages? Compare and contrast all techniques	Knowledge	14
2	Discuss with suitable example the concept of programmed I/O.	Understand	14
3	Differentiate between a subroutine and an interrupt service routine?	Knowledge	14
	Sketch block diagram of typical daisy-chain priority interrupt scheme and explain its	Kliowleuge	14
	operation.	Apply	14
	1	Apply	
5	Write short notes on DMA controller.	Knowledge	14
6	Write short notes on DMA Transfer.	Knowledge	14
7	Explain the need for bus arbitration? Explain the two approaches to bus arbitration.	Understand	15
	Explain PCI with a neat sketch.	Understand	15
9	Explain Brief notes on the following standard I/O Interfaces.		
	(a) SCSI	** *	
	(b) PCI	Understand	15
10	Discuss about USB Protocols.	Understand	14
	Explain the disadvantage of the strobe method? Explain how handshake method solves the problem?	Understand	15

Prepared By: Mr.E. Sunil Reddy, Assistant Professor, IT