INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

ASSIGNMENT QUESTIONS

Course Name	:	DYNAMICS OF MACHINERY
Course Code	:	A50317
Class	:	III-I Semester
Branch	:	Mechanical Engineering
Year	:	2017 - 2018
Course		
Faculty	:	Prof .V. V. S. H. Prasad, Professor, Ms D. Krishnaja, Assistant Professor

OBJECTIVES:

- I. To provide the students knowledge in determining the various forces acting on different components and analyse them for safe design.
- II. Students will be able to understand governors, dynamometers, brakes, clutches and flywheels and their application in industries.
- III. Able to understand the concept of vibrations and balancing.
- IV. To develop and learn the concepts of gyroscopic couples and friction.
- V. The subject influences the students in doing research.

ASSIGNMENT-I							
S No.	Question	Blooms Taxonomy Level	Course Outcomes				
1	The mass of turbine rotor of a ship is 8 tonnes and has a radius of gyration of 0.6 meters. It rotates at 1800 rpm clockwise when looking from the front. Determine the gyroscopic effect if The ship is travelling at 100 km/h and steers to the right in a curve of 70 meters radius. The ship is pitching and the bow descends with maximum velocity. The pitching is simple harmonic and the total angular movement between the extreme positions is 10 degrees. The ship is rolling and at a certain instant has an angular velocity of 0.03 radians/ second clockwise when looking from bow.	Concept Application	1				
2	Determine the required input torque on the crank of a slider crank mechanism for static equilibrium when the applied piston load is 1500N. The length of the crank and connecting rod are 40 mm and 100 mm respectively and the crank has turned through 45 ⁰ from the inner dead center.	Concept Application	1				
3	The mean diameter of Whitworth bolt having V-Threads is 25 mm. The pitch of the thread is 5 mm and the angle of V is 55^{0} . The bolt is tightened by a nut whose mean radius of bearing surface is 25 mm. If the coefficient of friction between nut and bolt is 0.1 and nut with bearing surface is 0.16, find the force required at the end of the spanner 0.5 m long when the load on the bolt is10kN	Application, Comprehension	1				
4	A band brake acts on 3/4 th of a circumference of a brake drum of 450	Application	1				

	mm diameter v braking torque pin of the leve fulcrum. If the and coefficien rotates in i. Cloch	which is keyed of 225 Nm. C or and the other operating for t of friction is k-wise directio	Comprehension n m	n			
5	Name differen	t types of dyna	Application Comprehension	1 n			
		1					
1	The effective t shaft is T= 800 crank to inner of gyration is ' power develop angular retarda	turning momer 00+ 1000sin20 dead center. T 750 mm. The e bed, the total po ation	Application, he Comprehension is	3, 4			
2	Each arm of a of rotation. Ea radius of rotati and 250 mm w minimum spee	a porter govern ach ball has a n ion of the ball when the speed ads and the ran	is Knowledge, he Comprehension t 1	a, 4			
3	A rotor has the	e following pro	Application Comprehension	a 3, 4			
	Mass	Magnitude	Radius	Angle	Axial distance from first mass		
	А	9kg	100mm	00	-		
	В	7kg	120mm	60 ⁰	160 mm		
	C	8kg	140mm	1350	325 mm		
	D If the shaft is and revolving planes C and corresponding	ıs r					
4	A cantilever sha kg at its free end Determine the f	aft of 50 mm dia d. The Young's	Comprehension	n 3, 4			
5	Explain a three	rotor vibratory	Analysis	3, 4			

Prepared by: D.Krishnaja, Assistant Professor

HOD, MECHANICAL ENGINEERING