INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500043

ELECTRONICS AND COMMUNIACTION ENGINEERING

ASSIGNMENT

Course Name	$:$	Electromagnetic Theory and Transmission Lines (EMTL)
Course Code	$:$	A40411
Class	$:$	II - B. Tech
Branch	$:$	ECE
Year	$:$	$2016-17$
Course Coordinator	$:$	Ms. A. Usha Rani, Associate Professor.
Course Faculty	$:$	Ms. A. Usha Rani, Associate Professor. Mr.G.Nagendra Prasad, Associate Professor.

OBJECTIVES

This course has the basics of electric and magnetic fields such as different charge densities, flux (electric and magnetic), scalar and vector potentials, emf, mmf, and capacitance induced and propagation of EM waves through

- To introduce the concept of co-ordinate systems and types to analyze the motion of object and their applications in free space to student.
- To impart the knowledge of electric and magnetic fields in real time applications.
- To introduce the fundamental theory of electromagnetic waves in transmission lines and their practical applications.
- To study the propagation characteristics of electromagnetic wave in bounded and unbounded media.
- To calculate various line parameters by conventional and graphical methods

S.No	QUESTIONS	Blooms taxonomy level	Course Outcom e
UNIT-I ELECTROSTATICS			
DESCRIPTIVE QUESTIONS			
1	State Gauss's law. Using divergence theorem and Gauss's law, relate the displacement density D to the volume charge density ρ_{v}.		
2	State and Prove Gauss's law. List the limitations of Gauss's law.		
3	Explain the following terms: i. Homogeneous and isotropic medium and ii. Line, surface and volume charge distributions.		
4	Derive the boundary conditions for the tangential and normal components of Electrostatic fields at the boundary between two perfect dielectrics..		
5	Using Gauss's law derive expressions for electric field intensity and electric flux density due to an infinite sheet of conductor of charge density ρ_{s} C/cm		
6	State coulomb's law and write the equation for F that exist between two unlike charges?		
7	Derive the expression for potential difference between two points in an electric field.		

Prepared By: Mrs.A.Usharani,Associate Professor, Department of ECE
Mr. G.Nagendra Prasad, Associate Professor, Department of ECE
Date: $30^{\text {th }}$ November, 2016

