(Autonomous)

Dundigal, Hyderabad -500 043
COMPUTER SCIENCE AND ENGINEERING

| ASSIGNMENT | |
| :--- | :--- | :--- |
| Course Name $:$
 FORMAL LANGUAGES AND AUTOMATA THEORY
 Course Code $:$
 A40509
 Class $:$
 II B. Tech II Semester
 Branch $:$
 Computer Science and Engineering
 Year $:$
 $2016-2017$
 Course Faculty $:$Dr. K Rajendra Prasad, Professor
 Ms.N Mamatha, Assistant Professor
 Ms.M Sandhya Rani, Assistant Professor
 Ms.K Rashmi, Assistant Professor | |

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. No.	Question	Blooms Taxonomy Level	Course Outcome
UNIT - I			
1	Construct NFA for (0+1)*0(0+1)0(0+1)* and convert to DFA.	Apply	2
2	Construct NFA for $(0+1) * 010(0+1)^{*}$ and Convert to DFA.	Apply	2
3	Construct NFA with \mathcal{E} for $0 * 1 * 2 *$ and Convert to NFA	Apply	2
4	Explain the steps for the minimization of given DFA with an example.	Understand	2
5	Construct Mealy Machine for Residue Modulo of 5 for the ternary number system and convert to Moore Machines.	Apply	2
6	Define language over an alphabet with examples. Write a DFA to accept set of all strings ending with 010 .	Remember	2
7	Give example for Minimize the DFA	Understand	2
8	Construct a Moore machine to accept the following language. $\mathrm{L}=\{\mathrm{w} \mid \mathrm{w} \bmod 3=0\}$ on $\sum=\{0,1,2\}$	Apply	3
9	Write any four differences between DFA and NFA	Apply	2
10	Convert NFA with \mathcal{E} to NFA with an example.	Understand	2
UNIT - II			
1	Explain Identity rules . Give an example using the identity rules for the simplification	Remember	7
2	Construct Regular grammar for the given Finite Automata	Apply	7
3	Convert given Finite Automat to Regular Expression using standard $\operatorname{method}\left(\mathrm{R}_{\mathrm{ij}}{ }^{\mathrm{K}}\right.$ method)	Understand	7
4	Convert Regular Expression ab * + b to Finite Automata.	Understand	7

S. No.	Question	$\begin{gathered} \hline \text { Blooms } \\ \text { Taxonomy } \\ \text { Level } \\ \hline \end{gathered}$	Course Outcome			
5	Convert given Finite Automat to Regular Expression using Arden's theorem.	Understand	7			
6	Use G be the grammar $\mathrm{S} \rightarrow \mathrm{aB} \mid \mathrm{bA}$ $\mathrm{A} \rightarrow \mathrm{a}\|\mathrm{aS}\| \mathrm{bAA} \quad \mathrm{B} \rightarrow \mathrm{b}\|\mathrm{bS}\| \mathrm{aBB}$ For the string aaabbabbba , Find a. Leftmost Derivation. b. Rightmost Derivation. c. Derivation Tree.	Apply	8			
7	Convert Regular Expression ($\mathrm{bb}+\mathrm{a}$)* $(\mathrm{aa}+\mathrm{b}) *$ to NFA with ε.	Understand	7			
8	Construct Regular Grammars for Finite Automata $\mathrm{a}^{*}(\mathrm{~b}(\mathrm{a}+\mathrm{b}))^{*}$	Apply	7			
9	$\begin{gathered} \text { Construct Finite Automata for } \\ \text { A } 0 \rightarrow \text { a A1 } \\ \text { A1 } \rightarrow \text { b A1 } \\ \text { A1 } \rightarrow \text { a } \\ \text { A1 } \rightarrow \text { bA0. } \end{gathered}$	Apply	7			
10	Convert Regular Expression $(\mathrm{a}+\mathrm{b})^{*}(\mathrm{aa}+\mathrm{bb})(\mathrm{a}+\mathrm{b})^{*}$ to DFA.	Understand	7			
UNIT - III						
1	Discuss the Pumping lemma for Context Free Languages concept with example.	Understand	9			
2	Show that the following grammar is ambiguous with respect to the string aaabbabbba. $\begin{aligned} & S \rightarrow a B \mid b A \\ & A \rightarrow a S\|b A A\| a \\ & B \rightarrow b S\|a B B\| b \end{aligned}$	Understand	8			
3	```Use the following grammar : \(\mathrm{S} \rightarrow \mathrm{ABC} \mid \mathrm{BbB}\), \(\mathrm{A} \rightarrow \mathrm{aA}\|\mathrm{BaC}	\mathrm{aaa}\) \(\mathrm{B} \rightarrow \mathrm{bBb}	\mathrm{a}	\mathrm{D}\) \(C \rightarrow C A \mid A C\) \(D \rightarrow \varepsilon\)``` Eliminate ε-productions. Eliminate any unit productions in the resulting grammar. Eliminate any useless symbols in the resulting grammar. Convert the resulting grammar into Chomsky Normal Form (CNF).	Apply	9
4	$\begin{aligned} & \text { Convert the following grammar to GNF } \\ & \text { A1 } \rightarrow \text { A2 A3 } \\ & \text { A2 } \rightarrow \mathrm{A} 3 \text { A1/b } \\ & \text { A3 } \rightarrow \mathrm{A} 1 \mathrm{~A} 2 / \mathrm{a} \\ & \hline \end{aligned}$	Understand	9			
5	Write the procedure to convert CFG to PDA and also convert the following CFG to PDA. PDA. $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{aABB} \mid \mathrm{aAA} \\ & \mathrm{~A} \rightarrow \mathrm{aBB} \mid \mathrm{a} \\ & \mathrm{~B} \rightarrow \mathrm{bBB} \mid \mathrm{A} \\ & \mathrm{C} \rightarrow \mathrm{a} \end{aligned}$	Apply	11			
6	Construct PDA for equal number of $\mathrm{x}^{\prime} \mathrm{s}$ and y 's	Apply	10			
7	$\begin{gathered} \text { Convert the following PDA to CFG } \\ \delta(\mathrm{q} 0,0, \mathrm{z} 0)=\{\mathrm{q} 0, \mathrm{xz0}) \\ \delta(\mathrm{q} 0,0, \mathrm{x})=(\mathrm{q} 0, \mathrm{xx}) \\ \delta(\mathrm{q} 0,1, \mathrm{x})=(\mathrm{q} 1, \epsilon) \\ \delta(\mathrm{q} 1,1, \mathrm{x})=(\mathrm{q} 1, \epsilon) \\ \delta(\mathrm{q} 1, \epsilon, \mathrm{x})=(\mathrm{q} 1, \epsilon) \\ \delta(\mathrm{q} 1, \epsilon, \mathrm{z} 0)=(\mathrm{q} 1, \varepsilon) \end{gathered}$	Understand	11			
8	Construct a PDA to accept the language $L=\left\{a^{n} b^{n} \mid n>=1\right\}$ by a final state. Draw the graphical representation of the PDA. Also show the	Apply	10			

S. No.	Question	Blooms Taxonomy Level	Course Outcome
	moves made by the PDA for the string aaabbb		
9	$\begin{aligned} & \text { Construct NPDA for } L=\left\{W W^{R} / W \in(X+Y)^{*}\right\} \\ & M=(\{q 1, q 2\},\{0,1\} .\{R, B, G\}, \delta, q 1, R, \varepsilon\} \end{aligned}$	Apply	10
10	Show that the following CFG ambiguous. $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{iCtS}\|\mathrm{iCtSeS}\| \mathrm{a} \\ & \mathrm{C} \rightarrow \mathrm{~b} \end{aligned}$	Understand	8
UNIT - IV			
1	Construct a Turing Machine to accept the language $\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}} \mid \mathrm{w} €(0+1)^{*}\right\}$	Apply	12
2	$\begin{aligned} & \text { Construct a Turing Machine that accepts the language } \\ & \mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}} \quad \mid \mathrm{n} \geq 1\right\} \text {. Give the transition diagram for the Turing } \\ & \text { Machine obtained } \end{aligned}$	Apply	12
3	Construct a Turing Machine which shift non block symbols 2 cells to the right.	Apply	12
4	Construct a Turing Machine that accepts the language $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$. Give the transition diagram for the Turing Machine obtained and also show the moves made by the Turing machine for the string 000111.	Apply	12
5	Define a Turing Machine. With a neat diagram explain the working of a Turing Machine.	Remember	12
6	Define Recursive and Recursively Enumerable languages? Write the properties of recursive and recursively enumerable languages.	Remember	12
7	Construct a Turing Machine that gives two's compliment for the given binary representation.	Apply	12
8	Construct a Turing Machine that accepts the language $\mathrm{L}=\left\{0^{2 \mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$. Give the transition diagram for the Turing Machine obtained.	Apply	12
9	Construct a Turing Machine that accepts the language $L=\left\{1^{n} 2^{n} 3^{n} \mid n \geq 1\right\}$. Give the transition diagram for the Turing Machine obtained and also show the moves made by the Turing machine for the string 111222333.	Apply	12
10	Construct a Turing Machine to implement Subtraction (m-n).	Apply	12
UNIT - V			
1	Explain the concept of undecidability problems about Turing Machine	Remember	13
2	Write a short notes on Context sensitive language and linear bounded automata	Apply	4
3	Explain individually classes P and NP	Remember	13
4	Write a shot notes on post's correspondence problem	Apply	13
5	Explain the Halting problem with an example. Write a short notes on universal Turing machine.	Apply	13
6	$\begin{gathered} \text { Construct LR(0) for } \\ A \rightarrow a \mathrm{Aa} / \mathrm{B} \\ \mathrm{~B} \rightarrow \mathrm{~b} \end{gathered}$	Apply	5
7	Write a short notes on Chomsky hierarchy	Apply	4
8	Write a note on Modified PCP and Multi stack Turing machine.	Apply	13
9	Write a short notes on NP complete, NP hard problems	Apply	13
10	$\begin{gathered} \text { Construct } \mathrm{LR}(0) \text { for } \\ S \rightarrow E \\ E \rightarrow E * B \\ E \rightarrow E+B \end{gathered}$	Apply	5

