INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043
ELECTRICAL AND ELECTRONICS ENGINEERING

ASSIGNMENT QUESTIONS

| Course Name | $:$ | FLUID MECHANICS AND HYDRAULIC MACHINERY |
| :--- | :---: | :--- |
| Course Code | $:$ | A30102 |
| Class | $:$ | II-I |
| Branch | $:$ | ELECTRICAL AND ELECTRONICS ENGINEERING |
| Year | $:$ | $2016-2017$ |
| Course Coordinator | $:$ | Mr. G Sarat Raju, Assistant Professor |
| Course Faculty | $:$ | Mr. G Sarat Raju, Assistant Professor |

## OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

| S. No | Question | Blooms <br> Taxonomy <br> Level | Course <br> Outcome |
| :---: | :--- | :---: | :---: |
| ASSIGNMENT-I |  |  | Understand |
| 1 | Explain in detail mass density, write its units and explain the effect of temperature <br> and pressure on mass density | 1 |  |
| 2 | Explain in detail weight density, write its units and explain the effect of temperature <br> and pressure on weight density | Apply | 1 |
| 3 | Explain with a neat sketch the viscosity, newton's law of viscosity, and the effect of <br> temperature and pressure on viscosity | Apply | 1 |
| 4 | Derive Euler's equation for a fluid flow | Understand | 2 |
| 5 | State the principle and Derive Bernoulli's equation for a fluid flow | Analyze | 2 |
| 6 | State the assumptions of Bernoulli's equation and list the applications of Bernoulli's <br> equation | Apply | 2 |
| 7 | State and explain the momentum equation. | understand | 2 |
| 8 | A jet of water having a velocity of $35 m / s$ impinges on a series of vanes moving with <br> a velocity of $20 \mathrm{~m} / \mathrm{s}$ the jet makes an angle of $30^{\circ}$ to the director of motion of vanes. <br> When entering and leaves at angle of $120^{\circ}$ draw the inlet and outlet velocity triangles <br> and find | Apply | 3 |


| S. No | Question | $\qquad$ | Course Outcome |
| :---: | :---: | :---: | :---: |
|  | i. The angles of vane tip so that water enters and leaves without shock. <br> ii. The work done per unit weight of water <br> iii. Efficiency |  |  |
| 9 | A jet of water of diameter 50 mm , having a vel of $20 \mathrm{~m} / \mathrm{s}$. strikes a curved vane which moving a velocity of $10 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. The jet leaves the vane at an angle of $60^{\circ}$ to the direction of motion of vane at outlet. Determine. <br> i. The force exerted by the jet on the vane in the dirn of motion <br> ii. WD/sec by the jet. | Apply | 3 |
| 10 | A jet of water 75 mm in diameter having velocity of $20 \mathrm{~m} / \mathrm{s}$ strikes a series of the flat plates arranged around the periphery of a wheel such that each plate appears successively before the jet. If the plates are moving at a velocity of $5 \mathrm{~m} / \mathrm{s}$, calculate the force exerted by the jet on the plate, the work done per second on the plate and the efficiency of the jet. | Apply | 3 |
| ASSIGNMENT - II |  |  |  |
| 1 | Derive an expression for work done/sec and efficiency when the jet of water striking tangentially at the tip of the vane of an un symmetrical curved vane. | Understand | 3 |
| 2 | Derive work done and efficiency when the jet of water striking tangentially of a radial curved vanes. | Understand | 3 |
| 3 | Explain the concept of pumped storage plants. | Understand | 3 |
| 4 | Two turbo-generators each of capacity 25000 kW have been installed at a hydel power station. During a certain period the load on the hydel plant varies from 15000 kW to 4000 kW . Calculate <br> i. The total installed capacity, <br> ii. The load factor, <br> iii. The plant factor and <br> iv. The utilization factor | Understand | 4 |
| 5 | Explain the working principles of Francis turbine and derive expression for efficiency | Understand | 4 |
| 6 | A turbine develops 9000 KW when running at 100 rpm . The head on the turbine is 30 m . if the head on the turbine reduced to 18 m , determine the speed and power developed by the turbine. | Understand Analyze | 4 |
| 7 | What is the necessity of a surge tank in turbines? Explain different types of surges with the aid of neat diagrams. | Understand | 4 |
| 8 | A centrifugal pump is to discharge $0.118 \mathrm{~m}^{3} / \mathrm{s}$ at a speed of 1450 rpm against a head of 25 m . The impeller diameter is 250 mm , its width at outlet is 50 mm and manometric efficiency is $75 \%$. Determine the vane angle at the outer periphery of the impeller. | Understand | 5 |
| 9 | The diameter of an impeller of a centrifugal pump at inlet and outlet are 30 cm and 60 cm respectively. Determine the minimum starting speed of the pump, if it works against a head of 30 m . | understand | 5 |
| 10 | A centrifugal pump having an overall efficiency of $80 \%$ delivers 1850 liters of water per minute to a height of 20 meters through a pipe of 100 mm diameter and 95 meters length. Taking $f=0.0075$, find the power required to drive the pump. | Apply \& analyze | 5 |

Prepared By: Mr. G Sarat Raju, Assistant Professor

