

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING

Assignment Questions

Course name	GEOTECHNICAL ENGINEERING				
Course code	A50120				
Class	III – B. Tech I- Semester				
Branch	Civil Engineering				
Academic year	2017 – 2018				
Course coordinator	Ms.J.Hymavathi, Ms. B. Navya, Assistant Professor, Civil Engineering Dept.				
Course faculty	Ms.J.Hymavathi, Ms. B. Navya, Assistant Professor, Civil Engineering Dept.				

OBJECTIVES

The objective of the teacher is to impart knowledge and abilities to the students to:

- I. Introduce the students to the basic concept of soils
- II. Learn the formation and structure of soil
- III. Understand the index and engineering properties and standard classifications of soils
- IV. Know the permeability of soil and laboratory determination of coefficient of permeability
- V. Understand seepage through soils

S. No	Question	Blooms	Program
		Taxonomy	Outcome
			Outcome
	0	Level	
	UNIT – I Introduction & Index Properties of S	oil	e
1	Explain the process of formation of soil	Understand	1
2	With the help of three phase diagram, define the following:	Remember	2
	(i) Voids ratio (ii) Porosity (iii) Degree of saturation (iv) Water	10 m	
	content (v) Absolute/true specific gravity (vi) Apparent specific	A	
	gravity (vii) Air content (viii) Percentage of air voids and (ix)	Sec. 1	
	Relative density.	1.	
3	A sample weighing 20 kn/m ³ and has water content of 20% . The	Understand	2
3		Understand	2
	specific gravity of soil particles is 2.68. Determine void ratio		
	and porosity and differentiate between the two methods of sieve		
	analysis.		
4	Discuss the importance of Atterberg's limits of soil. What are	Remember	2
	the main index properties of fine grained soils? How are these		
	determined in laboratory?		
5	What are the uses of consistency limits? What are their	Remember	2
2	limitations?	1	_
6	What is the use of classification of soils? Discuss the Indian	Understand	2
0		Understand	۷
	standard classification system?		
7	An undisturbed sample of soil has a volume 100cm3 and mass	Understand	2

				s reduced to 170g.		
				water content and		
8	-	saturation of soi		am dia and 20am	Understand	2
8				cm dia and 20cm ght is 2.25 kg and	Understand	2
	• • •	is 15%. Deterr				
				f saturation of the		
	sample.	0-2.7 determin	le the degree of	saturation of the		
9	<u>^</u>	content of a	n undisturbed	sample of clay	Understand	2
		volcanic region	Onderstand	2		
				dry unit weight is		
				t weight, (ii) the		
		it weight, and (ii				
10				The masses of soil	Understand	3
		ch sieve is giver				-
	IS sieve	Mass in g	IS sieve	Mass in g		
	2.0mm	10	250 μ	145		
	1.4mm	18	125 μ	56		
	1.0mm	60	75µ	45		
	500µ	135				
		stribution curve	and compute th	e following the %		
				e and silt as per		
	-			nt, and coefficient		
	of curvatur <mark>e</mark> .					
			UNIT 2			
	Pe	rmeability & E	Effective stress	& seepage through	h soils	
1	Explain the fac	ctors affecting th	ne permeability	of soil.	Understand	3
2	-		olications of flov	w nets and explain	Understand	5
	quick sand phe	enomenon.			0	
2 3	quick sand phe Describe pum	enomenon. ping-out metho	od for the dete	w nets and explain ermination of the	Understand Understand	5
3	quick sand phe Describe pum coefficient of p	enomenon. ping-out metho permeability in t	od for the detention of the field?	ermination of the	Understand	3
	quick sand phe Describe pum coefficient of p What is seepa	enomenon. ping-out metho permeability in t	od for the detention of the field?		0	
3	quick sand phe Describe pum coefficient of j What is seepa sand.	enomenon. ping-out metho permeability in t ge velocity, coe	od for the deta the field? efficient of perc	ermination of the colation and quick	Understand Understand	3
3	quick sand pheDescribe pumcoefficient of jWhat is seepasand.What is a flow	enomenon. ping-out metho permeability in to ge velocity, coo w net? Describ	od for the deta the field? efficient of perc e its properties	ermination of the colation and quick and applications.	Understand Understand	3
3 4 5	quick sand pheDescribe pumcoefficient of pWhat is seepasand.What is a flooDescribe different	enomenon. ping-out metho permeability in t ge velocity, coo w net? Describ rent methods us	od for the deta the field? efficient of perc e its properties ed to construct	ermination of the colation and quick and applications. the flow net.	Understand Understand Remember	3 4 5
3	 quick sand phe Describe pum coefficient of j What is seepa sand. What is a flow Describe differ Define the total 	enomenon. pping-out metho permeability in t ge velocity, coe w net? Describ rent methods us al stress, neutral	od for the deta the field? efficient of perc e its properties ed to construct to l stress and effe	ermination of the colation and quick and applications.	Understand Understand	3
3 4 5 6	 quick sand phe Describe pum coefficient of j What is seepa sand. What is a flow Describe differ Define the tota is the important 	enomenon. ping-out metho permeability in the ge velocity, cost w net? Describ rent methods us al stress, neutral nee of the effect	od for the deta the field? efficient of perce e its properties ed to construct of l stress and effe ive stress?	ermination of the colation and quick and applications. the flow net. extive stress. What	Understand Understand Remember Remember	3 4 5 6
3 4 5	 quick sand phe Describe pum coefficient of j What is seepa sand. What is a flor Describe differ Define the tota is the importar In a falling he 	enomenon. ping-out metho permeability in the ge velocity, coe w net? Describ- rent methods us al stress, neutral nee of the effective ad permeamete	od for the deta the field? efficient of perce e its properties ed to construct to l stress and effe ive stress? r, the sample u	ermination of the colation and quick and applications. the flow net. ective stress. What sed is 20 cm long	Understand Understand Remember	3 4 5
3 4 5 6	 quick sand phe Describe pum coefficient of p What is seepa sand. What is a flow Describe differ Define the tota is the important In a falling he having a cross 	enomenon. ping-out metho permeability in t ge velocity, coo w net? Describ rent methods us al stress, neutral nce of the effect read permeamete s-sectional area	od for the deta the field? efficient of perce e its properties ed to construct to l stress and effective stress? r, the sample u a of 24 cm ² .	ermination of the colation and quick and applications. the flow net. ective stress. What sed is 20 cm long Calculate the time	Understand Understand Remember Remember	3 4 5 6
3 4 5 6	 quick sand phe Describe pum coefficient of p What is seepa sand. What is a flow Describe differ Define the tota is the importar In a falling he having a cross required for a 	enomenon. ping-out metho permeability in t ge velocity, coe w net? Describ rent methods us al stress, neutral nee of the effect ead permeamete s-sectional area a drop of head	od for the deta the field? efficient of perce e its properties ed to construct to l stress and effect ive stress? r, the sample u a of 24 cm ² . C from 25 to 12	ermination of the colation and quick and applications. the flow net. ective stress. What sed is 20 cm long Calculate the time 2 cm if the cross	Understand Understand Remember Remember	3 4 5 6
3 4 5 6	 quick sand phe Describe pum coefficient of p What is seepa sand. What is a flow Describe differ Define the tota is the importar In a falling he having a cross required for a sectional area 	enomenon. ping-out metho permeability in t ge velocity, coe w net? Describ rent methods us al stress, neutral nee of the effective ad permeameter s-sectional area a drop of head of the stand pip	od for the deta the field? efficient of perce e its properties ed to construct of l stress and effective stress? r, the sample u a of 24 cm ² . C from 25 to 12 be is 2 cm ² . The	ermination of the colation and quick and applications. the flow net. ective stress. What sed is 20 cm long Calculate the time 2 cm if the cross e sample of soil is	Understand Understand Remember Remember	3 4 5 6
3 4 5 6	 quick sand phe Describe pum coefficient of j What is seepa sand. What is a flor Describe differ Define the tota is the importar In a falling he having a cross required for a sectional area made of three 	enomenon. ping-out methor permeability in the ge velocity, coefficient w net? Describer rent methods us al stress, neutral ince of the effect ad permeameter s-sectional area a drop of head of the stand pip layers. The this	od for the deta the field? efficient of perce e its properties ed to construct to l stress and effec- ive stress? r, the sample u a of 24 cm ² . Co from 25 to 12 be is 2 cm ² . The ckness of the field	ermination of the colation and quick and applications. the flow net. ective stress. What sed is 20 cm long Calculate the time 2 cm if the cross e sample of soil is irst layer from the	Understand Understand Remember Remember	3 4 5 6
3 4 5 6	 quick sand phe Describe pum coefficient of p What is seepa sand. What is a flow Describe differ Define the tota is the important In a falling he having a cross required for a sectional area made of three top is 8 cm and 	enomenon. ping-out methor permeability in the ge velocity, coefficient w net? Describe rent methods us al stress, neutral nee of the effect ad permeameter s-sectional area a drop of head of the stand pin layers. The third has a value of	od for the deta the field? efficient of perce e its properties ed to construct the stress and effective stress? r, the sample un a of 24 cm ² . Conform 25 to 12 be is 2 cm ² . The ckness of the find $k_1 = 2 \times 10^{-4}$ cm	ermination of the colation and quick and applications. the flow net. ective stress. What sed is 20 cm long Calculate the time 2 cm if the cross e sample of soil is irst layer from the n/sec, the	Understand Understand Remember Remember	3 4 5 6
3 4 5 6	 quick sand phe Describe pum coefficient of p What is seepa sand. What is a flow Describe differ Define the tota is the importar In a falling he having a cross required for a sectional area made of three top is 8 cm and second layer of 	enomenon. ping-out methor permeability in the ge velocity, coor- w net? Describ- rent methods us al stress, neutral- nce of the effect s-sectional area a drop of head of the stand pip- layers. The thi- d has a value of f thickness 8 cm	od for the deta the field? efficient of perce e its properties ed to construct the stress and effective stress? r, the sample u a of 24 cm ² . Conform 25 to 12 be is 2 cm ² . The ckness of the fit $k_1 = 2 \times 10^{-4}$ cm n has $k_2 = 5 \times 1$	ermination of the colation and quick and applications. the flow net. ective stress. What sed is 20 cm long Calculate the time 2 cm if the cross e sample of soil is irst layer from the n/sec, the 0 ⁻⁴ cm/sec and the	Understand Understand Remember Remember	3 4 5 6
3 4 5 6	 quick sand phe Describe pum coefficient of p What is seepa sand. What is a flow Describe differ Define the tota is the importar In a falling he having a cross required for a sectional area made of three top is 8 cm and second layer o bottom layer o 	enomenon. ping-out methor permeability in the ge velocity, coefficient w net? Describe rent methods us al stress, neutral nee of the effective ad permeameter s-sectional area and drop of head of the stand ping layers. The third has a value of f thickness 8 cm of thickness 4 cm	od for the deta the field? efficient of percent e its properties ed to construct of stress and effec- ive stress? r, the sample u a of 24 cm ² . Con- from 25 to 12 be is 2 cm ² . The ckness of the fi- $k_1 = 2 \times 10^{-4}$ cm n has $k_2 = 5 \times 1$ cm has & $k_3 =$	ermination of the colation and quick and applications. the flow net. ective stress. What sed is 20 cm long Calculate the time 2 cm if the cross e sample of soil is irst layer from the n/sec, the 0^{-4} cm/sec and the = 7 x 10^{-4} cm/sec.	Understand Understand Remember Remember	3 4 5 6
3 4 5 6 7	 quick sand phe Describe pum coefficient of p What is seepa sand. What is a flor Describe differ Define the tota is the importar In a falling he having a cross required for a sectional area made of three top is 8 cm and second layer o bottom layer o Assume that the 	enomenon. ping-out methor permeability in the ge velocity, coefficient w net? Describe rent methods us al stress, neutral nee of the effect ad permeamete s-sectional area a drop of head of the stand pin layers. The this d has a value of f thickness 8 cm of thickness 4 cm e flow is taking	od for the deta the field? efficient of perce e its properties ed to construct the stress and effec- ive stress? r, the sample up a of 24 cm ² . Confrom 25 to 12 be is 2 cm ² . The ckness of the fift $k_1 = 2 \times 10^{-4}$ cm n has $k_2 = 5 \times 1$ cm has $\& k_3 =$ g place perpendi	ermination of the colation and quick and applications. the flow net. ective stress. What sed is 20 cm long Calculate the time 2 cm if the cross e sample of soil is irst layer from the n/sec, the 0^{-4} cm/sec and the = 7 x 10^{-4} cm/sec. cular to the layers	Understand Understand Remember Remember Understand	3 4 5 6 4
3 4 5 6	quick sand pheDescribe pumcoefficient of pWhat is seepasand.What is a flowDescribe differDefine the totais the importarIn a falling hehaving a crossrequired for asectional areamade of threetop is 8 cm andsecond layer obottom layer obottom layer following	enomenon. ping-out methor permeability in the ge velocity, coor- w net? Describ- rent methods us al stress, neutral- nce of the effect ad permeamete s-sectional area a drop of head of the stand pip layers. The thi- d has a value of f thickness 8 cm of thickness 4 cm e flow is taking g details refer	od for the deta the field? efficient of perce e its properties ed to construct of stress and effec- ive stress? r, the sample u a of 24 cm ² . Co- from 25 to 12 be is 2 cm ² . The ckness of the fi- $k_1 = 2 \times 10^{-4}$ cm n has $k_2 = 5 \times 1$ cm has & $k_3 =$ g place perpendi r to a test to	ermination of the colation and quick and applications. the flow net. ective stress. What sed is 20 cm long Calculate the time 2 cm if the cross e sample of soil is irst layer from the n/sec, the 0^{-4} cm/sec and the $= 7 \times 10^{-4}$ cm/sec. cular to the layers to determine the	Understand Understand Remember Remember	3 4 5 6
3 4 5 6 7	quick sand pheDescribe pumcoefficient of pWhat is seepasand.What is a flowDescribe differDefine the totais the importarIn a falling hehaving a crossrequired for asectional areamade of threetop is 8 cm andsecond layer obottom layer obottom layer following	enomenon. ping-out methor permeability in the ge velocity, coor- w net? Describ- rent methods us al stress, neutral- nce of the effect ad permeamete s-sectional area a drop of head of the stand pip layers. The thi- d has a value of f thickness 8 cm of thickness 4 cm e flow is taking g details refer	od for the deta the field? efficient of perce e its properties ed to construct of stress and effec- ive stress? r, the sample u a of 24 cm ² . Co- from 25 to 12 be is 2 cm ² . The ckness of the fi- $k_1 = 2 \times 10^{-4}$ cm n has $k_2 = 5 \times 1$ cm has & $k_3 =$ g place perpendi r to a test to	ermination of the colation and quick and applications. the flow net. ective stress. What sed is 20 cm long Calculate the time 2 cm if the cross e sample of soil is irst layer from the n/sec, the 0^{-4} cm/sec and the = 7 x 10^{-4} cm/sec. cular to the layers	Understand Understand Remember Remember Understand	$ \frac{3}{4} \frac{5}{6} 4 $

		1 .	10	00	. 1	1 0	21 20		
	mm; initial l								
	minutes= 80					•			
	voids ratio of		-		t is the po	ermeabil	ity of the		
	same soil at a								
9	If a falling he							Understand	3
	head drops by 5cm in 10 minutes. Calculate the time required								
	to run the tes								
	cm in height	and 50	cm^2 in	cross se	ctional a	rea, calc	ulate the		
	coefficient of	f permea	bility tal	king area	a of stand	l pipe = 0	0.5 cm^2 .		
10	Compute the	e critica	al hydra	ulic gra	dients fo	or the f	following	Understand	3
	materials: a)	coarse g	gravel, k=	=10cm/s,	G=2.67	, e=0.65	b) Sandy		
	silt, k=10 ⁻⁶ cn	n/s, G=2	2.67, e=0	.80					
		-			UNIT 3				
		St	tress Dis	tributio	n in Soil	s & Con	npaction		
1	Derive as per							Remember	6
	at any point i								
2	Explain the N					neir uses		Understand	7
3	Describe star							Understand	8
4	What are the	<u> </u>						Understand	8
4	field? How v					-		Onderstand	0
	field?	vouid ye	u select	the type	or roner				
5	What are the	mathod	a adopta	d for mo	ocurina	the dans	ity of the	Remember	8
5			-		-		-	Kemeniber	0
	compacted s		leffy des	scribe in	e on wi	nen wit	i suit all		
6	types of soils		(1 1			9 11		II. de nata a d	6
6	What do you	i unders	tand by	geostatio	c stresses	s? How	are these	Understand	6
-	determined?		D .	1	· .	x 1.	6 1	XX 1 1	-
7	Two column			-	-			Understand	6
	through them								1000
	load of 400								
	pressure due		7 C						
	ground surface	-						· · · · ·	
8	A bed of con	•	•		-			Understand	6
	top and impe								
	on an undis		1.00						
	settlement w		0						
	thick. Estim		•			ing four	ided over		
	this deposit to								
9	Following ar	e the ob	servatior	ns of a co	ompactio	n test		Understand	6
			- 14	100	0	× \			
	Water	7.7	11.5	14.6	17.5	19.25	2.1		
	content			101.1	_				
	(%)								
	Weight of	16.67	18.54	19.92	19.52	19.23	18.83		
	wet soil								
	(N)								
			•						
	If the volum	e of the	e compa	ction mo	ould is 9	950 cc. a	assuming		
	G=2.65.		Pw			, .	8		
				<i>(</i> ··) ·	_		_	1	1
	(i) Draw the	compa	ction cu	rve (11)	Report fl	ne maxii	mum drv		

	saturation line		
10	There is a line load of 120kN/m acting on the ground surface	Understand	7
	along y-axis. Determine the vertical stress at a point P which		
	has x and z co-ordinates as 2m and 3.5m respectively.		
	UNIT 4	· · ·	
	Consolidation		
1	Discuss Terzaghi's theory of consolidation, stating the various	Remember	9
	assumptions and their validity	D	
2	Explain the different e-log p curves for the consolidation.	Remember	9
3	How do you determine the pre-consolidation pressure and its	Remember	9
	determination in soil engineering practice		
4	Write a brief procedure of consolidation test and to determine	Understand	9
	the coefficient of consolidation by both logarithmic time fitting		
	method and square root of time method.		
5	What is over consolidation soil? Explain briefly with an	Remember	9
	example.		
6	Explain the square root of time fitting method of determining	Understand	9
	the coefficient of consolidation of a clay sample.		
7	Define the following terms:	Remember	9
	(i) Coefficient of compressibility (ii) Coefficient of volume		
	change (iii) Compression index (iv) Expansion index (v)		
	Recompression index		
8	Saturated soil of 5 m thick lies above an impervious stratum	Understand	9
Ũ	and below a pervious stratum. It has a compression index of	Chiaristanta	-
	0.25 with k = 3.2×10^{-10} m/sec. Its void ratio at a stress of 147		
	kN/m^2 is 1.9. Compute (i) The change in voids ratio due to		
	increase of stress to 196 kN/m (ii) Coefficient of volume		
	compressibility (iii) Coefficient of consolidation (iv) Time		
	required for 50% consolidation.		
9	A layer of submerged soil 8m thick is drained at its upper	Understand	9
	surface but is underlain by impermeable shale. The sol is		
	subjected to a uniform vertical stress which is produced by the	1.00	
	construction of an extensive embankment on the ground	0	
	surface. If the coefficient of consolidation for the soil is 2×10^{-3}		
	cm ² /sec calculate the times when 50% and 90% respectively of	C-	
	the final settlement will take place. Consider $T_{50} = 0.197$		
10	A recently completed fill was 10m thick and its initial average	Understand	9
10	A recently completed fill was 10m thick and its initial average void ratio was 1.0. The fill was loaded on the surface by	Understand	9
10	A recently completed fill was 10m thick and its initial average void ratio was 1.0. The fill was loaded on the surface by constructing an embankment covering a large area of the fill.	Understand	9
10	A recently completed fill was 10m thick and its initial average void ratio was 1.0. The fill was loaded on the surface by constructing an embankment covering a large area of the fill. Some months after the embankment was constructed,	Understand	9
10	A recently completed fill was 10m thick and its initial average void ratio was 1.0. The fill was loaded on the surface by constructing an embankment covering a large area of the fill. Some months after the embankment was constructed, measurements of the fill indicated an average void ratio of 0.8.	Understand	9
10	A recently completed fill was 10m thick and its initial average void ratio was 1.0. The fill was loaded on the surface by constructing an embankment covering a large area of the fill. Some months after the embankment was constructed, measurements of the fill indicated an average void ratio of 0.8. Estimate the compaction of the fill.	Understand	9
10	A recently completed fill was 10m thick and its initial average void ratio was 1.0. The fill was loaded on the surface by constructing an embankment covering a large area of the fill. Some months after the embankment was constructed, measurements of the fill indicated an average void ratio of 0.8. Estimate the compaction of the fill. UNIT 5	Understand	9
	A recently completed fill was 10m thick and its initial average void ratio was 1.0. The fill was loaded on the surface by constructing an embankment covering a large area of the fill. Some months after the embankment was constructed, measurements of the fill indicated an average void ratio of 0.8. Estimate the compaction of the fill. UNIT 5 Shear Strength of Soils		
10	A recently completed fill was 10m thick and its initial average void ratio was 1.0. The fill was loaded on the surface by constructing an embankment covering a large area of the fill. Some months after the embankment was constructed, measurements of the fill indicated an average void ratio of 0.8. Estimate the compaction of the fill. UNIT 5 Shear Strength of Soils Explain Mohr-Coulomb theory of shear strength. Sketch typical	Understand	9
	A recently completed fill was 10m thick and its initial average void ratio was 1.0. The fill was loaded on the surface by constructing an embankment covering a large area of the fill. Some months after the embankment was constructed, measurements of the fill indicated an average void ratio of 0.8. Estimate the compaction of the fill. UNIT 5 Shear Strength of Soils		

3	Explain about triaxial compression test	Understand	10
4	Discuss modified failure envelope. What are its advantages and disadvantages over the standard failure envelope?	Remember	10
5	Explain liquefaction of soils.	Understand	10
6	A remoulded specimen of soil prepared by compaction to standard proctor maximum dry unit weight at optimum moisture content is used for consolidated-undrained triaxial test with pore pressure measurements. The test results are given below:	Understand	10
	Test NoCell pressure (kN/m²)Deviator stress at (kN/m²)Pore (kN/m²)		
	14030005210044310316561512Determine the values of effective shear stress parameters by(i) Drawing Mohr envelope (ii) Drawing modified envelope		
7	A direct shear test was conducted on a soil, whose results are given below: Normal stress, kN/m^2 150 250 Shear stress at failure kN/m^2 110 120 Plot the graph and determine the shear strength of parameters of the soil. If a triaxial test is conducted on the same soil, what would be the deviator stress at failure when the cell pressure is 150 kN/m^2	Understand	10
8	A direct shear test was performed on a 6cm x 6cm sample of dry sand the normal load was 360N. The failure occurred at a shear load of 180N.Plot the Mohr strength envelope and determine ∞ . Assume c=0 also determine principal stress at failure.	Understand	10
9	A drained triaxial test on sand with $\sigma_3' = 150 \text{ kN/m}^2$ gave $(\sigma_1'/\sigma_3') = 3.7$. Compute (a) σ_{1f}' (b) $(\sigma_1 - \sigma_3)_f$ and ϕ' .	Understand	10
10	At a depth of 6m below the ground surface at a site, a vane shear tests gave a torque value of 6040N-cm. The vane was 10cm high and 7cm across the blades. Estimate the shear strength of the soil.	Understand	10

Prepared by: Ms. J. Hymavathi, Ms. B. Navya, Assistant Professor, CE