(Autonomous)
Dundigal, Hyderabad - 500043

AERONAUTICAL ENGINEERING

ASSIGNMENT QUESTIONS

Course Name	$:$	FINITE ELEMENT METHODS
Course Code	$:$	A60330
Class	$:$	III - II
Branch	$:$	AERONAUTICAL ENGINEERING
Year	$:$	2017- 2018
Team of Instructors	$:$Mr G.S.D Madhav, Asst. Professor Dept of AE Ms Y.Shwetha, Asst. Professor, Dept of AE	

OBJECTIVES:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. No.	Question ASSIGNMENT-1 UNIT-1			Blooms Taxonomy Level		
Course Outcome						
1	Consider the following fig. An axial load P=200 KN is applied as shown. Using penalty approach for handling boundary condtions, do the following a) Determine the nodal displacements. b) Determine the stress in each material. c) Determine the reaction forces.					

	a) Determine the nodal displacements. b) Determine the stress in each material.		
3	In the fig. given below, a load $\mathrm{P}=60 \mathrm{KN}$ is applied as shown. Determine the displacement field, stress and support reactions in the body. Take E as 20 GPa . (a) (b)	Understand	1,2
4	Consider the rod (a robot arm), which is rotating at constant angular velocity of $30 \mathrm{rad} / \mathrm{s}$. Determine the axial stress distribution in the rod, using two quadratic elements. Consider only the centrifugal force. Ignore bending of the rod.	Understand	1,2
5	The structure consists of two bars. An axial load P=200 KN is loaded as shown in fig., determine the following: a) Element stiffness matrices b) Global stiffness matrix	Understand	1

	c) Nodal displacements. d) Stress in each bar. Steel $\begin{aligned} & A_{1}=1000 \mathrm{~mm}^{2} \\ & E_{1}=200 \mathrm{GPa} \end{aligned}$ Bronze $\begin{aligned} & A_{1}=2000 \mathrm{~mm}^{2} \\ & E_{1}=83 \mathrm{GPa} \end{aligned}$		
	UNIT - II		
S. No.	Question	Blooms Taxonomy Level	Course Outcomes
1	Determine the deflection and slope under the point load for the beam shown in fig given. $\mathrm{E}=200 \mathrm{GP}_{\mathrm{a}}, \mathrm{I}=4 \times 10^{-6} \mathrm{~m}^{4}, \mathrm{I}_{2}=2 \times 10^{-6} \mathrm{~m}^{4} .$	Understand	1,2
2	A beam fixed at one end and supported by a roller at the end, has a 20KN concentrated load applied at the centre of the span, as shown in fig. calculate the deflection under the load and construct shear force and bending moment diagram for the beam. Take E $=20 \times 10^{6} \mathrm{~N} / \mathrm{c}^{2,}{ }^{2} \mathrm{I}=2500 \mathrm{~cm}^{4}$.	Understand	1,3
3	Determine the nodal displacements and slopes for the beam shown in fig. find the moment at the mid point of element. Take $\mathrm{E}=200 \mathrm{GP}_{\mathrm{a}, \mathrm{I}} \mathrm{I}=5 \times 10^{4} \mathrm{~mm}^{4}, \mathrm{M}=6 \mathrm{KNM}$.	Understand	2,3
4	Determine the nodal displacements and slopes at the position of onefourth distance from the support of shaft: Take $\mathrm{E}=200 \mathrm{GP}_{\mathrm{a}, \mathrm{l}} \mathrm{I}=6 \times 10^{4} \mathrm{~mm}^{4}$. The shaft is simply supported at A and B.	Understand	1
5	Apply the beam shown in Figure below by finite element method and determine the end reactions. Also determine the deflections at mid spans given $\mathrm{E}=2 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, and $\mathrm{I}=5 \mathrm{X} 10^{6} \mathrm{~mm}^{4}$.	Apply	3,1

	$\begin{gathered} \text { ASSIGNMENT-2 } \\ \text { UNIT - III } \end{gathered}$		
1	Determine the jacobian for the $(x, y)-(\xi, \eta)$ transformation for the element shown in fig, also find the area of the triangle.	Understand	2
2	For the point P located inside the triangle, the shape functions N_{1} and N_{2} are 0.15 and 0.25 , respectively. Determine the x and y coordinate of P.	Understand	2
3	For the triangular element shown in fig, obtain straindisplacement relation matrix B and determine the strains $\varepsilon_{\mathrm{x}}, \varepsilon_{\mathrm{y}}$ and γ_{xy}.	Understand	2, 3
4	Formulate the element equations for axisymetric element shown in fig $\mathrm{E}=100 \mathrm{Gpa}, v=0.3 \dot{\alpha} 5 \times 10-6$ per deg C $\Delta T=60 \mathrm{deg} \quad \mathrm{p}=8 \mathrm{~N} / \mathrm{mm} 2$ acting perpendicular to $j k$ side	Understand	2, 3

4	A metallic fin with thermal conductivity $\mathrm{K}=360 \mathrm{~W} / \mathrm{m}^{0} \mathrm{c}, 1 \mathrm{~mm}$ thick and 100 mm long extends from a plane wall whose temperature is $235^{\circ} \mathrm{c}$. Determine the distribution and amount of heat transferred from the fin to air at $20^{\circ} \mathrm{c}$ with $\mathrm{h}=9 \mathrm{~W} / \mathrm{m}^{20} \mathrm{c}$ take width of the fin is 1000 mm . Assume tip is insulted.	Understand	3, 4
5	Determine the temperature distribution in a fin of circular cross section shown in fig1.5.considering two elements,base of the fin is maintained at 100 deg c and tip of the fin is insulated. Thermal conductivity $\mathrm{k}=2 \mathrm{w} / \mathrm{cm}$ deg c . Convective heat transfer co-efficient is $\mathrm{h}=0.2 \mathrm{w} / \mathrm{cm}^{2} \mathrm{deg} \mathrm{c}$. Fluid temperature $\mathrm{T}_{\infty} 20$ DEG C,DIAMETRE OF THE $\mathrm{FIN}=1 \mathrm{~cm}$. length $=8 \mathrm{~cm}$	Understand	3, 4
	UNIT - V		
1	Consider axial vibration of the steel bar shown in Figure below develop the global stiffness and mass matrix and determine the natural frequencies and mode shapes using the characteristic polynomial technique	Understand	2, 3
2	Determine the Eigenvalues and Eigenvectors for the stepped bar shown in Figure below. $E=30 \times 10^{6} \mathrm{psi}$ Specific weight $f=0.283 \mathrm{lb} / \mathrm{in}^{3}$?	Understand	2, 3
3	Evaluate the lowest Eigenvalue and the corresponding Eigenmode for the beam shown in Figure below $\begin{aligned} E & =200 \mathrm{GPa} \\ \rho & =7840 \mathrm{~kg} \mathrm{~m}^{3} \\ I & =2000 \mathrm{~mm}^{4} \\ A & =240 \mathrm{~mm}^{2} \end{aligned}$	Understand	2, 3

4	Evaluate the lowest Eigenvalue and the corresponding Eigenmode for the beam shown in Figure below. $\begin{aligned} E & =200 \mathrm{GPa} \\ \rho & =7840 \mathrm{~kg} / \mathrm{m}^{3} \\ I & =2000 \mathrm{~mm}^{4} \\ A & =240 \mathrm{~mm}^{2} \end{aligned}$	Understand	2, 3
5	Determine the Eigenvalues and Eigenvectors for the stepped bar shown in Figure below. $E=30 \times 10^{6} \mathrm{psi}$ Specific weight $f=0.283 \mathrm{lb} / \mathrm{in}^{3}$.	Understand	2, 3

Prepared by:

Mr G.S.D Madhav, Asst. Professor Dept of AE Ms Y.Shwetha, Asst. Professor, Dept of AE

