INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal- 500 043, Hyderabad.

DEPARTMENT OF AERONAUTICAL ENGINEERING

ASSIGNMENT

Course Name	INTRODUCTION TO SPACE TECHNOLOGY
Course Code	A42106
Class	II B.Tech II semester
Branch	Aeronautical engineering
Year	2016-2017
Course Faculty	C.Satya Sandeep

OBJECTIVE

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process

S.NO	QUESTION	BLOOMS	COURSE
		TAXANOMY LEVEL	OUTCOME
	ASSIGNMENT 1		
	UNIT I		
1	A rocket of total mass 100 tonnes carrying a	Apply	1
	spacecraft of 5 tonne and engine develop a		
	Constant exhaust velocity of 3500m/s. The		
	Structural mass is assumed to be 15% of the total mass.		
	Calculate final velocity of rocket.		
2	Explain Injection process and types of injectors used in	Apply	2
	Liquid propellant rocket system.		
3	Explain about space environment and also describe Van	Apply	3
	Allen belt with neat sketch		
4	Sketch and explain a solid rocket motor	Analyze	4
5	Explain about sounding rockets and gravity turned	Apply	3
	trajectories		
	UNIT 2		
1	Derive an expression for Double-dip Re-entry.	Apply	3
2	Derive an expression for Skip Re-entry.	Apply	4
3	Derive an expression for Steep re-entry.	Apply	5
4	Write a short notes on Aero-braking and Aero-capture.	Apply	3
5	What are the trade-off of reentry vehicle design?	Apply	3
	ASSIGNMENT 2		
	UNIT 3		
1	Calculate the velocity of the space shuttle in a	Apply	3
	250-nmile circular orbit? (For earth R0=6378.14km,		
	μ =398,600km3/s ²).		
2	Design a Hohman transfer from a circular mars orbit of	Apply	4
	radius 8000km to a circular mars orbit of a radius		

	15000 km (for mars μ =42,828.3 km3/sec ² and calculate		
	the period of transfer.		
3	Derive the expressions related to circular and Elliptical	Apply	3
	orbits.		
4	Derive the expressions related to parabolic and	Apply	4
	hyperbolic orbits.		
5	Explain about Bi Elliptical Transfer and Propulsion For	Knowledge	3
	Maneuvers.		
	UNIT 4		
1	Demonstrate about attitude control for gravity gradient	Apply	4
	stabilization and spin stabilization of a spacecraft of a		
	spacecraft.		
2	Classify how spacecraft attitude sensors used in attitude	Apply	4
	determination.		
3	Explain Yo-Yo Mechanism	Apply	5
4	Explain about the torque free axis symmetric rigid body	Knowledge	5
5	Explain about the Attitude control for Non-Spinning	Apply	6
	and spinning spacecraft's		
	UNIT 5		
1	Demonstrate the Operational engineering support in	Apply	7
	ground system		
2	Explain about Operational engineering support	Apply	6
3	Explain mission Diversity	Apply	7
4	Examine high level space mission operations	Knowledge	7
	Architecture using a neat sketch.		
5	Classify space mission types and objectives in	Apply	9
	Mission diversity.		
		·	

Prepared by

C.Satya Sandeep, Assistant Professor

HOD AE