INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNIACTION ENGINEERING

ASSIGNMENT

Course Name	:	LINEAR AND DIGITAL INTEGRATED CIRCUITS APPLICATIONS
Course Code	:	A50425
Class	:	III - B. Tech
Branch	:	ECE
Year	:	2017-18
Course Coordinator	:	Mr. D. Khalandar Basha
Course Faculty	:	Mr.B. Naresh, Ms.G.Manisha, Ms.P.Saritha

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

ASSIGNMENT-I

	QUESTION	Blooms	Course				
S.No		taxonomy	Outcome				
		level					
UNIT-I							
OPERATIONAL AMPLIFIER							
1	Explain the operation of a Schmitt trigger circuit using IC 741.	Understand	1				
2	Explain practical integrator circuit using IC 741.	Analyze	1				
3	Explain the internal structure of voltage regulator IC 723. Also draw a low	Amalama	2				
	voltage Regulator circuit using IC 723andexplain its operation.	Allalyze					
4	Explain the following terms in an OP-AMP.	Damanthan	2				
4	1. Input Bias current 2. Input offset voltage 3. Input offset current	Kennennber					
5	Explain non inverting comparator using op-amp.	Understand	3				
6	Derive the gain for non inverting op-amp.	Remember	2				
7	An op-amp with a slew rate = $0.5V/\mu S$ is used as an inverting amplifier to		2				
	obtain a gain of 100. The voltage gain Vs frequency characteristic of the						
	amplifier is flat up to 10 KHz. Determine						
	i. The maximum peak-to-peak input signal that can be applied without any	Analyze					
	distortion to the output						
	ii. The maximum frequency of the input signal to obtain a sine wave output						
	of 2V peak.						
8	Design a Schmitt trigger for UTP =0.5v and LTP = -0.5V.assume necessary	ssume necessary					
	data.	Evaluate					
9	Design a differentiator to differentiate an input signal that varies in		2				
	frequency from 10 Hz to about 1 KHz. If a sine wave of 1V peak at 1000 Hz	Evaluate					
	is applied to this differentiator draw the output waveforms.						

10	Determine the output voltage of the differential amplifier having input		2				
10	voltages $V1-1mV$ and $V2-2mV$. The amplifier has a differential gain of	Remember	2				
	5000 and CMRR 1000	Remember					
11	Draw the output waveform for a sine wave of 1 wave at 100Hzapplied to the		2				
11	differentiator	Evaluate	2				
10	Unterentiator.		2				
12	Design an op-amp differentiator that will differentiate an input signal with	Remember	2				
	tmax = 100Hz						
	UNIT-2						
	OP-AMP, IC -555 & IC 565 APPLICATIONS						
1	Design a second order low pass filter.	Evaluate	4				
2	Draw the circuit of a 1st order low pass filter and derive its transfer function.	Analyze	4				
3	Derive the expression for i) capture range in PLL ii) Lock in range in PLL.	Analyze	6				
4	Draw the circuit of a 1st order band pass filter and derive its transfer	Analyze	4				
4	function.	-					
5	Draw the circuit of a all pass filter and derive its transfer function.	Analyze	4				
6	Derive the voltage to frequency converter factor for VCO	Analyze	6				
7	Explain any two applications of Astable multivibrator using 555IC	Analyze	5				
8	Explain VCO operation in PLI	Understand	6				
0	Decign on Astable Multivibrator using 555 Timer to produce 1Kbz square	Evaluato	5				
9	Design an Astable Multiviolator using 555 Timer to produce TKitz square	Evaluate	5				
10	Wave form for duty cycle=0.50	England	5				
10	Design and draw the wave forms of IKHZ square waveform generator	Evaluate	5				
11	using 555 Timer for duty cycle D=25%.		4				
11	Design a LPF at a cutoff frequency of 1 KHz and a pass band gain of 2.	Analyze	4				
12	Design a 2 nd order HPF at a cutoff frequency of 2 KHz.	Analyze	4				
13	Calculate output frequency f_0 , lock range and capture range of a 565	Analyze	6				
	PLL if $RT = 10K$ ohms, $CT = 0.01 \mu F$ and $C = 10 \mu F$.	Anaryze					
14	Design a square wave generator of frequency 100Hz and duty cycle of 75%.	Evaluate	5				
	UNIT-3						
	DATA CONVERTERS						
1	Explain the working of a Weighted resistor D/A converter.	Evaluate	8				
	With neat diagram, explain the working principle of inverter R-2R ladder	Understand	8				
2	DAC.		Ū.				
	Find the voltage at all nodes 0, 1, 2. And at the output of a 5-bit R-	Remember	8				
3	2R ladder DAC. The least Significant bit is 1 and all other bits are equal to	1101110111001	Ū.				
5	0 Assume VR = $-10V$ and R= $10KO$						
4	With neat diagram explain the working principle of R-2R ladder type DAC	Analyze	8				
	Calculate basic step of Q bit DAC is 10.3 mV. If 00000000 represents 0V	Apply	8				
5	what output produced if the input is 101101111	при	0				
1	ASSIGNMENT-2	Un donatan d	0				
1	Explain successive approximation A/D converter.	Diderstand	8				
2	Explain the working of a dual slope A/D converter.	Remember	8				
3	Explain the operation of parallel comparator type ADC.	Analyze	8				
4	Explain the working of a counter type A/D converter and state it's important	Understand	8				
-	feature.						
5	A dual slope ADC uses a16-bit counter and a 4MHz clock rate. The	Apply	8				
	maximum input voltage is+10v. The maximum integrator output voltage						
	should be-8v when the counter has cycled through 2n counts. The capacitor						
	used in the integrator is 0.1 μ F Find the value of the resistor R of the						
	integrator.						
6	An ADC converter has a binary input of 0010 and an analog output of 20my.	Apply	7.8				
-	What is the resolution?	11 5	- , -				
	UNIT-IV						
DIGITAL INTERAGETED CIRCUITS							
<u> </u>	Explain the following terms with reference to CMOS logic	Apply	10				
1	i Logic Levels	, Phi	10				
1	ii Noise margin						
1							

	iii. Power supply rails		
	iv. Propagation delay		
2	Draw the circuit diagram of two-input 10K ECL OR gate and explain its operation.	Analyze	11
3	Design CMOS transistor circuit for 2-input AND gate. Explain the circuit with the help of function table?	Remember	11
4	Draw the resistive model of a CMOS inverter circuit and explain its behavior for LOW and HIGH outputs.	Remember	11
5	Design a three input NAND gate using diode logic and a transistor inverter? Analyze the circuit with the help of transfer characteristics.	Evaluate	11
6	Realize the logic function performed by 74×381 with ROM.	Evaluate	11
7	Analyze the fall time of CMOS inverter output with $RL = 100$, $VL = 2.5V$ and $CL=10PF$. Assume VL as stable state voltage.	Analyze	11
8	Design a CMOS transistor circuit with the functional behavior $f(X) = ((A+B')(B+D')(A+D'))'$	Analyze	11
9	Design BCD to gray code converter.	Understand	11
10	Implement the following function with 8 : 1 MUX. $F(W,X,Y,Z) = \sum m (2,4,6,7,10,11,12,13,14)$	Analyze	11
11	Implement the following multi output combinational logic circuit using 4:16 decoder IC, AND external gates. $F1 = \Sigma m (1.5.8.11)$ $F2 = \Sigma m (1.6.8.9.12)$ $F3 = \Sigma m (7.10.15)$	Analyze	11
12	A single pull-up resistor to +5V is used to provide a constant-1 logic source to 15 different 74LS00 inputs. What is the maximum value of this resistor? How much high state DC noise margin can be provided in this case?	Analyze	11
	UNIT-V SEQUNTIAL LOGIC ICS AND MEMORIES		
1	Draw the logic diagram of 74×163 binary counter and explain its operation.	Understand	13
2	Design a modulo-100 counter using two 74×163 binary counters?	Apply	13
3	Design a Modulo-12 ripple counter using 74×74?	Apply	13
4	Discuss how PROM, EPROM, EEPROM technologies differ from each other?	Analyze	13
5	Differentiate between ripple counter and synchronous counter? Design a 4- bit counter in both modes and estimate the propagation delay.	Remember	13
6	Design a modulo-88 counter using 74X163 Ics.	Understand	13
7	Draw the logic diagram of 74×163 binary counter and explain its operation.	Remember	11
8	Determine the ROM size needed to realize the logic function performed by 74×153 and 74×139 .	Apply	13
9	Realize the logic function performed by 74×381 with ROM.	Evaluate	13
10	Explain the internal structure of 64K×1 DRAM with the help of timing diagrams.	Apply	13
11	Explain the necessity of two-dimensional decoding mechanism in memories. Draw MOS transistor memory cell in ROM and explain the operation.	Apply	13
12	Design excess-3 decimal counter using 74X163.	Apply	12
13	How many flip-flops are required to build a binary counter that counts from	Apply	12
	0 to 256. And design the binary counter.		
14	Design negative edge triggered D flip-flop.	Understand	12

Prepared By: Mr. D. Khalandar Basha, Associate Professor, Department of ECE

Mr. B. Naresh, Associate Professor, Department of ECE

Ms. G. Manisha, Associate Professor, Department of ECE

Ms. P. Saritha, Associate Professor, Department of ECE

Date: 12th July, 2017

HOD, ECE