

INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad -500 043

FRESHMAN ENGINEERING

ASSIGNMENT

Course Name	MATHEMATICS-II
Course Code	A30006
Class	II B. Tech I Semester
Branch	Freshman Engineering
Year	2016 - 2017
Course Faculty	Dr. M. Anita, Professor Mr. Ch. Kumara Swamy, Asst Professor Ms. K Rama Jyothi, Asst Professor

OBJECTIVES:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

ASSIGNMENT – I & II

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
	ASSIGNMENT-I		
	(SHORT ANSWER TYPE QUESTIONS) UNIT – I		
1	Define divergence?	Remember	1
2	Define curl?	Remember	1
3	Evaluate the angle between the normal to the surface $xy=z^2$ at the points (4,1,2) and (3,3,-3)?	Understand	1
4	Find a unit normal vector to the given surface $x^2y+2xz=4$ at the point (2,-2,3)?	Apply	1
5	If \bar{a} is a vector then prove that grad $(\bar{a}, \bar{r}) = \bar{a}$?	Understand	1
6	Prove that F=yzi+zxj+xyk is irrotational?	Analyze	1
7	Show that $(x+3y)i+(y-2z)j+(x-2z)k$ is solenoidal?	Understand	1
8	Define line integral?	Remember	2
9	Define volume integral?	Remember	2
10	State Gauss divergence theorem?	Understand	3
	(LONG ANSWER QUESTIONS) UNIT-I		
1	Prove that $\nabla f(\mathbf{r}) = \frac{\overline{\mathbf{r}}}{\mathbf{r}} \cdot \mathbf{f}^{1}(\mathbf{r})$	Analyze	1

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
2	Prove that $\operatorname{div}(r^n, \overline{r}) = (n+3)r^n$. Hence Show that $\frac{\overline{r}}{r^3}$ is solenoidal Vector	Analyze	1
3	If $\overline{F} = (5xy - 6x^2)\overline{i} + (2y - 4x)\overline{j}$ evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ along the curve C in xy plane $y = x^3$ from (1,1) to (2,8).	Understand	2
4	Evaluate $\iint_{S} \overline{A}.\overline{n}ds$ where $\overline{A} = Z\overline{i} + x\overline{j} - 3y^2z\overline{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between Z=0 and Z=5	Understand	2
5	Evaluate $\iint_{s} \overline{F}.d\overline{s}$ if $f = yzi + 2y^{2}j + xz^{2}k$ and S is the Surface of the Cylinder $x^{2}+y^{2}=9$ contained in the first Octant between the planes z=0 and z=2.	Understand	2
6	Verify gauss divergence theorem for the vector point function $F=(x^3-yz)i-2yxj+2zk$ over the cube bounded by $x=y=z=0$ and $x=y=z=a$	Apply	3
7	Verify divergence theorem for $2x^2yi - y^2j + 4xz^2k$ taken over the region of first octant of the cylinder $y^2 + z^2 = 9$ and $x = 2$ Applying Green's theorem evaluate $\int (y - \sin x)dx + \cos x dy$ where C is the plane	Apply	3
8	Applying Green's theorem evaluate $\int (y - \sin x)dx + \cos x dy$ where C is the plane Δ^{le} enclosed by $y = 0$, $y = \frac{2x}{\pi}$, and $x = \frac{\pi}{2}$ Verify Green's Theorem in the plane for $\int (x^2 - xy^3)dx + (y^2 - 2xy)dy$ where C is a	Apply	3
9	Verify Green's Theorem in the plane for $\int_{c} (x^2 - xy^3) dx + (y^2 - 2xy) dy$ where C is a square with vertices (0,0),(2,0),(2,2),(0,2)	Apply	3
10	Verify Stokes theorem for $f = (x^2 - y^2)i + 2xyj$ over the box bounded by the planes x=0,x=a,y=0,y=b,z=c	Apply	3
	(SHORT ANSWER TYPE QUESTIONS) UNIT-II		
1	Define Euler's formulae	Remember	5
2	Write Dirichlet's conditions	Understand	4
3	If $f(x) = x^2 - 2$ in (-2,2) then find b_2	Apply	5
4	If $f(x) = x^2$ in (-2,2) then a_0	Apply	5
5	If $f(x) = \sin^3 x$ in $(-\pi, \pi)$ then find a_n	Apply	5
6	If $f(x) = x^4$ in (-1,1) then find b_n	Apply	5
7	Write about Fourier sine and cosine integral	Understand	6
8	Find the finite Fourier cosine transform of $f(x)=1$ in $0 < x < \pi$	Apply	6
9	Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - cosn\pi}{n^2 \pi^2}$	Apply	6
10	Write the properties of Fourier transform (LONG ANSWER QUESTIONS) UNIT-II	Understand	6
1	Obtain the Fourier series expansion of f(x) given that $f(x) = (\pi - x)^2$ in $0 < x < 2\pi$ and deduce the value of $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$.	Understand	5
2	Find the Fourier Series to represent the function $f(x) = \sin x $ in $-\pi < x < \pi$.	Apply	5

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
3	Find the Fourier series to represent $f(x) = x^2$ in $(0, 2\pi)$.	Apply	5
4	Expand the function $f(x) = x^2$ as a Fourier series in $(-\pi, \pi)$.	Understand	5
5	Find the Fourier series to represent the function $f(x)$ given by:	Apply	5
	$f(x) = \begin{cases} 0 for - \pi \le x \le 0\\ x^2 for 0 \le x < \pi \end{cases}$		
6	Expand f(x)=cosx for $0 < x < \pi$ in half range sine series	Understand	5
7	Using Fourier integral show that $e^{-x}cosx = \frac{2}{\pi} \int_0^\infty \frac{\lambda^2 + 2}{\lambda^4 + 4} cos\lambda x dx$	Understand	6
0		A	6
8	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Hence show that $\int_{0}^{\infty} \frac{\sin x - \cos x}{x^3} dx = \frac{\pi}{4}$	Apply	6
9	Find the Fourier sine transform for the function f(x) given by $f(x) = \begin{cases} \sin x, & 0 < x < a \\ 0 & x \ge a \end{cases}$	Apply	6
10	Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$	Apply	6
	(SHORT ANSWER TYPE QUESTIONS)	I	
1	UNIT-III Define Interpolation and extrapolation	Remember	7
2	Explain forward difference interpolation	Understand	7
3	Construct a forward difference table for $f(x)=x^3+5x-7$ if	Analyze	9
	x=-1,0,1,2,3,4,5		
4	Evaluate $\Delta \log f(x)$	Understand	9
5	Find the missing term in the following table X 01234Y13981	Apply	8
	(LONG ANSWER QUESTIONS)		
	UNIT-III Find f(22) from the following data	A	0
1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Apply	8
2	Given sin 45=0.7071,sin 50=0.7660,sin 55=0.8192 and sin 60=0.8660 find sin 52 using newton's formula	Apply	8
3	The population of a town in the decimal census was given below. Estimate thepopulation for the year 1895Year (x)18911901191119211931Population (y)46668193101	Understand	8
4	Find by Gauss's backward interpolating formula the value of y at $x = 1936$ using the	Apply	8
	following table		
	X 1901 1911 1921 1931 1941 1951 Y 12 15 20 27 39 52		

		Blooms Taxonomy Level	Course Outcome							
		X		1.2	2.0		2.5	3.0		
		f(x)		1.36	0.58	3	0.34	0.20		
	I		(;	SHORT		NMENT - CR TYPE		DNS)		1
						NIT-III				
1	What is the pri		method of	least squ	are				Understand Remember	9
2 3	Define curve f Derive the nor	0	one for st	raight lin	<u>a</u>				Understand	8 8
4	Derive the nor					ola			Understand	8
5	Write the norm	nal equation	ons to fit t	he curve	$y = ae^{-x}$		0		Understand	8
				(LON		VER QUI NIT-III	STIONS)		
1	A curve passe	s through	the points	(0, 18),(6,90). Fin	the slope	Apply	7
	of the curve at	-		(-) -//(· · / · (- ·		- , , -			
2	By the method	l of least so	quare, find	l the strai	ght line	that best fi	ts the follo	owing data:	Apply	7
					2	2			-	
		X	1		2	3	4	5	_	
		У	14		27	40	55	68		
3	Fit a curve y=a			-					Understand	7
	X 1 Y 6		2	3	4					
	- °		11	18	27			hr cr. 1		
4	Using the mether following data		st squares	find the c	constants	a and b su	ch that y=	ae ^{ox} fits the	Apply	7
	10110 wing data		0	0.5	1	1.5	2	2.5	-	
		X			_				_	
		У	0.10	0.45	2.15					
5	Obtain a relation squares.	on of the f	Obtain a relation of the form $y=ab^x$ for the following data by the method of least squares.					Understand	7	
										,
			Х	2	3	4	5	6		
		-	x y	2 8.3	3 15.4	4 33.1		6	-	
			у	8.3	15.4 ANSWE	33.1 CR TYPE	5 65.2	6 127.4		
1	Define algebra	ic and trai	у (8.3 SHORT	15.4 ANSWE U	33.1 CR TYPE NIT-IV	5 65.2 QUESTIC	6 127.4		10
	Define algebra		y (;	8.3 SHORT	15.4 ANSWE U	33.1 CR TYPE NIT-IV	5 65.2 QUESTIC	6 127.4	Remember	10
1 2	Define algebra Write about bi		y (;	8.3 SHORT	15.4 ANSWE U	33.1 CR TYPE NIT-IV	5 65.2 QUESTIC	6 127.4		
_	C C	section me	y (; nscendent ethod	8.3 SHORT	15.4 ANSWE U	33.1 CR TYPE NIT-IV	5 65.2 QUESTIC	6 127.4	Remember	10
2	Write about bi Write about fa	section me lse positio	y (f nscendent ethod n method	8.3 SHORT al equatic	15.4 ANSWE U on and gi	33.1 CR TYPE NIT-IV ve exampl	5 65.2 QUESTIC e	6 127.4	Remember Understand	10
2	Write about bi	section me lse positio	y (f nscendent ethod n method	8.3 SHORT al equatic	15.4 ANSWE U on and gi	33.1 CR TYPE NIT-IV ve exampl	5 65.2 QUESTIC e	6 127.4	Remember Understand Understand	10 10 10
2	Write about bi Write about fa	section me lse positio ition for co	y (f nscendent ethod n method onvergenc	8.3 SHORT al equation e of the r	15.4 ANSWE Upn and gi	33.1 CR TYPE NIT-IV ve exampl	5 65.2 QUESTIC e	6 127.4	Remember Understand Understand Understand	10 10 10
2 3 4	Write about bi Write about fa State the condi	section me lse positio ition for co	y (f nscendent ethod n method onvergenc	8.3 SHORT al equation e of the r	15.4 ANSWE Upn and gi	33.1 CR TYPE NIT-IV ve exampl	5 65.2 QUESTIC e	6 127.4	Remember Understand Understand	10 10 10 10
2 3 4 5	Write about bi Write about fa State the condi	section me lse positio ition for co e root of a	y (f nscendent ethod n method onvergenc number 1	8.3 SHORT al equation e of the r 6 by usin	15.4 ANSWE Upn and gi	33.1 CR TYPE NIT-IV ve exampl	5 65.2 QUESTIC e	6 127.4	Remember Understand Understand Understand Apply	10 10 10 10 10
2 3 4 5 6	Write about bi Write about fa State the condi Find the squar Explain LU de	section me lse positio ition for co e root of a ecompositi	y (f ethod n method onvergenc number 1 on method	8.3 SHORT al equation e of the r 6 by usin	15.4 ANSWE Upn and gi	33.1 CR TYPE NIT-IV ve exampl	5 65.2 QUESTIC e	6 127.4	Remember Understand Understand Understand Apply Apply	10 10 10 10 10 10
2 3 4 5	Write about bi Write about fa State the condi	section me lse positio ition for co e root of a ecompositi	y (f ethod n method onvergenc number 1 on method	8.3 SHORT al equation e of the r 6 by usin	15.4 ANSWE Upn and gi	33.1 CR TYPE NIT-IV ve exampl	5 65.2 QUESTIC e	6 127.4	Remember Understand Understand Understand Apply	10 10 10 10 10
2 3 4 5 6	Write about bi Write about fa State the condi Find the square Explain LU de Define Crout's	section me lse positio ition for co e root of a ecompositi s and Dool	y (f inscendent ethod n method onvergenc number 1 on method ittle's me	8.3 SHORT al equation e of the r 6 by usin d thod	15.4 ANSWE Upn and gi	33.1 CR TYPE NIT-IV ve exampl	5 65.2 QUESTIC e	6 127.4	Remember Understand Understand Understand Apply Apply	10 10 10 10 10 10 11
2 3 4 5 6 7	Write about bi Write about fa State the condi Find the squar Explain LU de	section me lse positio ition for co e root of a compositi s and Dool $A = \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$	y (f) (f) (f) (f) (f) (f) (f) (f) (f) (f)	8.3 SHORT al equation e of the r 6 by usin d thod L	15.4 ANSWE U on and gi	33.1 CR TYPE NIT-IV ve example erative me n's Raphs	5 65.2 QUESTIC e thod	6 127.4 DNS)	Remember Understand Understand Understand Apply Apply Remember	10 10 10 10 10 10 11 11

S.No	QUESTION	Blooms Taxonomy	Course
	(LONG ANSWER QUESTIONS)	Level	Outcome
	UNIT-IV	1	
1	Find the square root of 25 up to 2 decimal place s by using bisection method	Apply	10
2	Find a real root of the equation $e^x \sin x = 1$, using Regulafalsi method	Apply	10
3	Solve $2x=\cos x+3$ by iterative method	Understand	10
4	Find a real root of the equation, $\log x = \cos x$ using Regulafalsi method	Apply	10
5	Find a real root of 3x-cosx-1=0 using Newton Raphson method	Apply	10
6	Evaluate x tanx+1=0 by Newton Raphson method.	Understand	10
7	Solve x+3y+8z=4, x+4y+3z=-2, x+3y+4z=1 using LU decomposition	Understand	11
8	Solve 5x-y+3z=10,3x+6y=18,x+y+5z=-10 with initial approximations (3,0,-2) by Jacobi's iteration method	Understand	11
9	Using Jacobi's iteration method solve the system of equation $10x+4y-2z=12$, x-10y- z=-10,5x+2y-10z=-3	Understand	11
10	Using Gauss-seidel iterative method solve the system of equations $5x+2y+z=12$, $x+4y+2z=15$, $x+2y+5z=20$	Understand	11
	(SHORT ANSWER TYPE QUESTIONS) UNIT-V		
1	Explain Trapezoidal rule	Understand	12
2	Explain Simpson's 1/3 and 3/8 rule	Understand	12
3	Estimate $\int_{0}^{\Pi/2} e^{\sin x} dx$ taking h= $\Pi/6$ correct o four decimal places	Understand	12
4	Explain two point and three point Gaussian quadrature	Understand	12
5	Compute using Gauss integral $\int \sqrt{1-x^2} dx, n = 3$	Apply	12
6	Explain Taylor's series method and limitations	Understand	13
7	Explain Picard's method of successive approximation Write the second approximation for $y^1 = x^2 + y^2$, $y(0) = 1$	Understand	13
8	Give the difference between Euler's method and Euler's modified method	Analyze	13
9	Find y(0.1) given $y^1 = x^2 - y, y(0) = 1$ by Euler's method	Apply	13
10	Explain Runge-Kutta second and classical fourth order	Understand	13
	(LONG ANSWER QUESTIONS) UNIT-V		
1	Evaluate $\int_{0}^{\pi} \left(\frac{\sin x}{x}\right) dx$ by using i) Trapezoidal rule	Understand	12
	ii) Simpson's $\frac{1}{3}$ rule taking n=6		

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
2	Using Taylor's series method, find an approximate value of y at x=0.2 for the differential equation $y'-2y = 3e^x$ for y(0)=0.	Apply	13
3	Given $y^1 = 1 + xy$, $y(0) = 1$ compute y (0.1), y (0.2) using Picard's method	Understand	13
4	Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2).	Understand	13
5	Find y(0.1) and y(0.2) using Euler's modified formula given that $\frac{dy}{dx} = x^2 - y$ and y(0)=1	Apply	13
6	Find y(0.1) and y(0.2) using Runge Kutta fourth order formula given that $\frac{dy}{dx} = x + x^2 y \text{ and } y(0)=1.$	Apply	13
7	using Runge Kutta method of order 4 find y(0.2) for the equation $\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1, h = 0.2$	Apply	13
8	Use power method find numerically largest Eigen value $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and corresponding Eigen vector and other Eigen value	Apply	14
9	Use power method find numerically largest Eigen value $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	Apply	14
10	Write the largest Eigen value of the matrix $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$	Understand	14

Prepared By : Mr. Ch. Kumara Swamy, Asst Professor : Ms. K. Rama Jyothi, Asst Professor

Date : 10 June, 2016

HOD, FRESHMAN ENGINEERING