INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

ASSIGNMENT QUESTIONS

Course Name	$:$	OPERATIONS RESEARCH
Course Code	$:$	A70352 - JNTUH - R15
Class	$:$	IV B. Tech I Semester
Branch	$:$	Mechanical Engineering
Year	$:$	2018 - 2019
Course Faculty	$:$	Mr. A. Somaiah, Assistant Professor, Dept of Mechanical Engineering. Mrs. T. Vanaja, Assistant Professor, Dept of Mechanical Engineering.

OBJECTIVES:

Operation Research is also called OR for short and it is a scientific approach to decision making which seeks to determine how best to design and operate a system under conditions requiring allocation of scarce resources. Operations research as a field, primarily has a set or collection of algorithms which act as tools for problems solving in chosen application areas. OR has extensive applications in engineering, business and public systems and is also used by manufacturing and service industries to solve their day to day problems. This course is titled in Fundamentals of Operations Research. This course facilitates to learn various models to optimize a problem.

S. No	Question						$\begin{gathered} \hline \text { Blooms } \\ \text { Taxonomy } \\ \text { Level } \end{gathered}$	Course Outcome
ASSIGNMENT-I								
1	Use big-M method to solve the following Maximize $Z=8 \times 1+5 \times 2$ Subjected to $2 \times 1+4 \times 2 \leq 453 \times 1+2 \times 2 \leq 40$ $\mathrm{x} 1+\mathrm{x} 2 \geq 30$ $\mathrm{x} 1, \mathrm{x} 2 \geq$						Understand	1
2	Solve the following LP problem graphically.$\begin{aligned} & \text { Maximize } z=2 x_{1}+x_{2} \\ & \mathrm{~S} . \mathrm{T} x_{1}+2 x_{2} \leq 10, x_{1}+x_{2} \leq 6, x_{1}-x_{2} \leq 2, x_{1}-2 x_{2} \leq 1 \\ & x_{1}, x_{2} \geq 0 \end{aligned}$						Remember	1
3	The assignment cost of as Solve by using Hungarian Machine	Met A B C D	any od. I 10 3 10 5	ope O II 5 9 7 11	or to III 13 18 3 9	y one IV 15 3 2 7	Understand	1

S. No	QUESTION	Blooms Taxonomy Level	Course Outcome
4	At a railway station only one train is handled at a time. The railway track is sufficient only for two trains to wait while others are given signal to leave the station. Trains arrive at the station at an average rate of 6 per/hours and the railway station can handle them on an average of 12 per/hours. Assuming posission arrivals and exponential service distribution find the steady state probability of the various numbers of trains in the system. Also find the average number of trains in the system.	Understand	4
5	Use Bell man's principle of optimality to find the optimum solution to the following problem Minimize $\mathrm{z}=\mathrm{y}_{1}{ }^{2}+\mathrm{y}_{2}{ }^{2}+\mathrm{y}_{3}{ }^{2}$, S.T $\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3} \leq 15, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3} \geq 0$.	Remember	7

Prepared by: Mr. A. Somaiah, Assistant Professor
Mrs. T. Vanaja, Assistant Professor

