

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

ASSIGNMENT QUESTIONS

Course Name	:	Principles of Programming Languages
Course Code	:	A40511
Class	:	II B. Tech II Semester
Branch	:	Information Technology
Year	:	2016 - 2017
Course Faculty	:	Mrs.B.Dhanalaxmi,Associate Professor,IT

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. No.	Question	Blooms Taxonomy Level	Course Outcome			
	UNIT - I					
1	Compute the weakest precondition for each of the following simple assignment statements and post conditions. a) a=2*(b-1)-1{a>0} b) b=(c+10)/3 {b>6} c) a=a+2*b-1 {a>1} d) X=2*y+x-1 {x>11}	Apply	1			
2	Give some reasons why computer scientist and professional software developers should study general concepts of language design and evaluation.	Understand	2			
3	Write reasons for the statement: "Exception handling is very important, but often neglected by programming languages".	Apply	2			
4	Write reasons for the statement: "A programming language can be compiled or interpreted". Give relative advantages and disadvantages of compilation and interpretation. Give examples of compiled and	Apply	1			

S. No.	Question	Blooms Taxonomy Level	Course Outcome
	interpreted languages.		
5	State the given grammar is ambiguous.	knowledge	1
	<assign> -><id>=<expr></expr></id></assign>		
	<id>->A B C</id>		
	<expr>-><expr>+<expr></expr></expr></expr>		
	<expr>*<expr></expr></expr>		
6	(<expr>). Write BNF notation for following:</expr>	Apply	2
0	a) For loop	Арргу	2
	b) If-else condition		
	c) Structure definition		
	UNIT - II	I	
1	List what advantages does java's break statement have over C's and	knowledge	3
	C++'s break statement.	0	
2	State whether static binding is more reliable or dynamic binding.	knowledge	3
	Explain why.	_	
3	Give an example of a language used for structural type equivalence	Understand	3
	and name type equivalence approach.		
4	Give suitable examples of Ada programming language for arithmetic	Understand	3
	expressions		
5	Write an Ada Code to swap two variable values.	Apply	4
6	Give an employee record details in COBOL language.	Understand	4
	UNIT - III		
1	Discuss generic subprograms in C++ and java.	Understand	4
2	Give an example Lua code which shows the importance of "Quasi Concurrency".	Understand	5
3	Compare the parameter passing mechanisms of ALGOL and ADA.	Evaluate	5
4	Give suitable examples to differentiate subprograms and coroutines.	Understand	4
5	Define shallow and deep binding for referencing environment of	knowledge	5
2	subprograms that have been passed as parameters.	C	
6	"The design considerations of parameter passing plays a major role in	Evaluate	5
	a sub program block", Support on the statement.		
	UNIT - IV		
1	Discuss how dining philosopher's problem and producer consumer	Understand	5
	problem are solved using concurrency in Ada.		
2	Describe the cooperation synchronization and competition	knowledge	6
	synchronization in message passing.		
3	Compare the parameter passing mechanisms of ALGOL and ADA.	Evaluate	5
4	Explain how Smalltalk messages are bound to methods. When does this take place?	Understand	6
5	Give a C# code to find the factorial of a number.	Understand	5
6	Discuss the different prepositions of PROLOG language.	Understand	6
	UNIT - V		
1	Explain the Procedural abstraction in PYTHON language	Understand	6
1			

S. No.	Question	Blooms Taxonomy Level	Course Outcome
3	Write features of Haskell that makes very different from schema	Apply	6
4	List the ways in which ML is significantly different from scheme.	knowledge	7
5	Elaborate on the phrase "Type Inference is supported in ML language".	Create	7
6	Describe the scoping rule in common LISP, ML and HASKELL	knowledge	7

Prepared by: Mrs. B.Dhanalaxmi, Associate Professor, IT

HOD, IT