Hall Ticket No				Question Pap	er Code: AHSB11					
INS -	STITUTE OF A	ERONAUT	ICAL ENG	INEERIN	IG					
TE LARE &		(Autonomo	us)							
ON FOR LID	B.Tech II Semester End Examinations (Regular) - May, 2019									
${\bf Regulation: \ IARE-R18}$										
	MATHEMATIC	AL TRANSFO	ORM TECH	NIQUES						
Гime: 3 Hours	(Common ⁻	to AE ECE 1	EEE ME C	$^{\mathrm{E}}$ E)	Max Marks: 70					
	Answer (ONE Question f	rom each Uni	t						
	All Qu	estions Carry I	Equal Marks							
A	ll parts of the ques	stion must be a	nswered in on	e place onl	y					

$\mathbf{UNIT} - \mathbf{I}$

- (a) Define the term interpolation. State Newton's forward interpolation formula and Newton's backward interpolation formula for equal length of intervals. Prove the relationship between forward and backward difference operator. [7M]
 - (b) Find Newton's forward difference interpolating polynomial for the following data given in Table 1: [7M]

Table	1
-------	---

x	0.1	0.2	0.3	0.4	0.5	
y=f(x)	1.4	1.56	1.76	2.0	2.28	

- 2. (a) If f(x) and g(x) are two functions then evaluate forward difference of product of f(x) and g(x). Prove the relationship between backward difference operator and shift operator. [7M]
 - (b) Obtain an approximate real root of the equation $x \tan x + 1 = 0$ by using Newton-Raphson method. [7M]

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) State the fourth order Runge-Kutta method and Modified Euler formula to find the numerical solution of ordinary differential equation. [7M]
 - (b) Apply the fourth order Runge-Kutta method to find y(0.1) and y(0.2), given that $\frac{dy}{dx} = xy + y^2$ and y(0) = 1. [7M]
- 4. (a) Prove the normal equations of a straight line y=a+bx. [7M]
 - (b) The data given in Table 2 on the drying time of a certain varnish and the amount of an additive that is intended to reduce the drying time (Amount of varnish additive (grams) x), (Drying time (hours) y).

Table 2

x	0	1	2	3	4	5	6	7	8
у	12.0	10.5	10.0	8.0	7.0	8.0	7.5	8.5	9.0

Fit a second degree polynomial by the method of least squares.

$\mathbf{UNIT} - \mathbf{III}$

5.	(a) Define Laplace transform and write the sufficient conditions for the existence of Laplace							
	transform. Find the Laplace transform of Dirac delta function							
	(b) Find the Laplace transform of the function $\left\{\frac{1-\cos 2t}{t}\right\}$.	[7M]						
6.	(a) State and prove convolution theorem to find the inverse of Laplace transform. of scale property and prove.	What is change $[7M]$						
	(b) Solve $L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right]$ by using Convolution theorem.	[7M]						
	$\mathbf{UNIT} - \mathbf{IV}$							

7.	(a)	Write the	properties	of Fourier	$\operatorname{transform}$	of $f(x)$.	State and	prove	linear	property	of Fourier
		transform.									[7M]

- (b) Find the Fourier cosine transform of $\frac{1}{1+x^2}$. [7M]
- (a) State Fourier integral theorem. Write the Fourier sine integral and cosine integral formulae. 8.

[7M]

[7M]

(b) Obtain the Fourier Cosine transform of
$$f(x) = \begin{cases} x, & 0 < x < 1\\ 2 - x, & 1 < x < 2\\ 0, & x > 2 \end{cases}$$
 [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Define order and degree with reference to partial differential equation. State Charpits formulae with reference to partial differential equation. [7M]
 - (b) Solve the P.D.E $x^2 (y-z) p + y^2 (z-x) q = z^2 (x-y)$ by Lagrange's multiplier method. [7M]
- 10. (a) Explain complete integral and general integral with reference to non-linear partial differential equation. Write the one dimensional heat and wave equations. [7M]
 - (b) If a string of length l is initially at rest in equilibrium position and each of its points is given the velocity $V_0 \sin^3\left(\frac{\pi x}{l}\right)$, find the displacement $\mathbf{y}(\mathbf{x},t)$. [7M]

$$-\circ\circ\bigcirc\circ\circ-$$