

INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

ASSIGNMENT

Course Name	PROBABILITY AND STATISTICS
Course Code	A30008
Class	II B. Tech I Semester
Branch	Computer Science and Engineering
Year	2016 - 2017
Course Faculty	Mr. J Suresh Goud, Associate Professor, Freshman Engineering Ms. L Indira, Assistant Professor, Freshman Engineering Ms. P Srilatha, Assistant Professor, Freshman Engineering

OBJECTIVES:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

ASSIGNMENT – I

S.No	QUESTION	Blooms	Course
	-	Taxonomy Level	Outcome
	UNIT – I (SHORT QUESTIONS)	·	
1	Define Random Variable with suitable examples	Understand	2
2	Explain mathematical expectation	Analyze	3
3	If X & Y is a random variable then Prove $E[X+Y] = E[X]+E[Y]$	Understand	3
4	If X & Y is a random variable then Prove E[XY] = E[X].E[Y] if X & Y are	Understand	3
	independent		
5	If X is a random variable then Prove $E[X-\mu]=0$, where μ is the Mean of the	Understand	3
	variable X		
6	Define Binomial Distribution and give example	Evaluate	4
7	Derive mean of binomial distribution	Evaluate	4
8	Derive variance of binomial distribution	Evaluate	4
9	Define Poisson distribution and give example	Understand &	4
		Create	
10	Write the conditions of Poisson distribution	Analyze	4

UNIT - 1 (LONG QUESTIONS) 1 If a random variable has the probability density $f(x)=2e^x$ for $x>0$ and 0 for $x \le 0$ find probability that it will take on value i) between 1 and3 ii) greater than 0.5 3 2 A player toxses 3 fair coins. He wins Rs 800 if 3 tails occur, Rs 500 if 2 tails occur, Rs 300 if one tail occurs. On the other hand, he loses Rs 1000 if 3 heads occur. Find the Value of the game to the player. Is it favorable? 3 3 Determine the discrete probability distribution, expectation, variance, s.d. of a pARV X Which denotes the minimum of the two numbers that appear when a pair of fair dice is? Thrown once. 5 4 In a Normal distribution, 31% of the items are under 45 and 8% are over 64 find the Mean and variance of distribution 5 5 A manufacturer of cotter pins knows that 5% of his product is defective. Pins are soldln boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability data box will fail to meet the guarantee. 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 evaluate 4 an 8. Find $P(X \ge 1)$ and $P(X > 2)$ 8 Evaluate 4 7 Fit binomial distribution to the following data Evaluate 4 1 $\frac{1}{2}$ 14 20 34 22 8 9 Apply 3 9 $\frac{(0, j\bar{f} \le 1)}{ F X = \frac{1}{2}$ 14 20 34 22 8 Apply 3	S.No	QUESTION	Blooms	Course
1 If a random variable has the probability density $f(x)=2e^x$ for $x>0$ and 0 for x Apply 3 2 A player tosses 3 fair coins. He wins Rs 800 if 3 tails occur. Rs 500 if 2 tails occur. Rs 300 if on earlie occurs. On the other hand, ho loses Rs 1000 if 3 heads occur. Find the Value of the game to the player. Is it favorable? Apply 3 3 Determine the discrete probability distribution, expectation, variance, s.d. of a pair of fair dice is? Thrown once. Evaluate 5 4 In a Normal distribution, 31% of the items are under 45 and 8% are over 64 find the Mean and variance of distribution. Evaluate 5 5 A manufacturer of cotter pins knows that 5% of his product is defective. Pins are sold boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability dustabus will fail to meet the guarantee. 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Evaluate 4 8 Fit a Poisson distribution to the following data Evaluate 4 9 $If F[X] = \begin{cases} 0, if x \le 1 \\ 1, 30 & 12 & 3 & 4 & 5 \\ 0, if x \le 1 \\ 1, if x > 3 \end{cases}$ then determine (i) $f(x)$ (ii) k (iii) Mean $I_1 = x < 2 \\ 0, if x \le 1 \\ 1, if x > 3 \end{bmatrix}$ then determine (i) $f(x)$ (ii) k (iii) Mean $I_1 = x < 2 \\ 0, if x \le 1 \\ 1, if x > 3 \end{bmatrix}$ Apply 3 10 Obtain the moment generating function of the random variable having $I_1 = x < 2 \\ 0, if x \le$			Taxonomy Level	Outcome
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		UNIT – I (LONG QUESTIONS)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	If a random variable has the probability density $f(x)=2e^x$ for x>0 and 0 for x	Apply	3
0.5 0.5 2 A player tosses 3 fair coins. He wins Rs 800 if 3 tails occur, Rs 500 if 2 tails occur, Rs 300 if one tail occurs. On the other hand, he loses Rs 1000 if 3 heads occur. Find the Value of the player. Is if favorable? 3 3 Determine the discrete probability distribution, expectation, variance, s.d. of a pair of fair dice is? Thrown once. Evaluate 3 4 In a Normal distribution, 31% of the items are under 45 and 8% are over 64 find the Mean and variance of distribution Evaluate 5 5 A manufacturer of cotter pins knows that 5% of his product is defective. Pins are soldIn boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guarantee. 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 evaluate 4 4 and 8. Find $P(X \ge 1)$ and $P(X > 2)$ 7 Fit binomial distribution for the following data Evaluate 4 8 Fit a Poisson distribution to the following data Evaluate 4 9 $0, if \chi \le 1$ 1 2 3 4 5 10 Obtain the moment generating function of the random variable having $1, if X > 3$ then determine (i) f(x) (ii) k (iii) Mean $1, if X > 3$ Apply 3 10 Obtain the moment generatin			II J	_
2 A player tosses 3 fair coins. He wins Rs 800 if 3 tails occur, Rs 500 if 2 tails occur. Rs 300 if one tail occurs. On the other hand, he loses Rs 1000 if 3 heads occur. Find the Value of the game to the player. Is it favorable? Apply 3 3 Determine the discrete probability distribution, variance, s.d. of a D.R.V X Which denotes the minimum of the two numbers that appear when a pair of fair dice is? Thrown once. Evaluate 5 4 In a Normal distribution, 31% of the items are under 45 and 8% are over 64 find the Mean and variance of distribution Sole over 64 find the Mean and variance of distribution Apply 4 5 A manufacturer of cotter pins knows that 5% of his product is defective. Pins are soldin boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guarantee. 4 Apply 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Evaluate 4 8 Fit a Poisson distribution to the following data Evaluate 4 1 $\frac{X}{1}$ 0 1 2 3 4 5 9 If $F[X] = \begin{cases} 0, if X \le 1 \\ F & 2 & 14 & 20 & 34 & 4 & 5 \\ F & 2 & 14 & 20 & 34 & 52 & 8 \end{cases}$ Apply 3 10 Obtain the moment generating function of the random variable having robability density funct				
occur, Rs 300 if one tail occurs. On the other hand, he loses Rs 1000 if 3 heads if i				
occur. Find the Value of the game to the player. Is if favorable? Image: Construct and the probability distribution, expectation, variance, s.d. of a DR.V X Which denotes the minimum of the two numbers that appear when a pair of fair dice is? Thrown once. Evaluate 3 4 In a Normal distribution, 31% of the items are under 45 and 8% are over 64 find the Mean and variance of distribution Evaluate 5 5 A manufacturer of cotter pins knows that 5% of his product is defective. Pins are soldln boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guarantee. Apply 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Evaluate 4 7 Fit binomial distribution to the following data Evaluate 4 \overline{Y} 0 1 2 3 4 \overline{Y} 0 1 2 3 4 \overline{Y} 0 1 2 3 4 5 7 Fit a Poisson distribution to the following data Evaluate 4 4 \overline{Y} 0 1 2 3 4 5 9 If $F[X] = \begin{cases} 0, ifx \le 1 \\ 1, ifx > 3 \end{cases}$ then determine (i) f	2		Apply	3
3 Determine the discrete probability distribution, expectation, variance, s.d. of a pair of fair dice is? Thrown once. Fvaluate 3 4 In a Normal distribution, 31% of the items are under 45 and 8% are over 64 find the Mean and variance of distribution Evaluate 5 5 A manufacturer of cotter pins knows that 5% of his product is defective. Pins are soldIn boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guarantee. Apply 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Evaluate 4 7 Fit binomial distribution for the following data Evaluate 4 \overline{X} 0 1 2 3 4 8 Fit a Poisson distribution to the following data Evaluate 4 \overline{Y} 1 2 3 4 5 9 0 1 2 3 4 5 11 2 3 4 5 6 9 1 1 2 3 4 5 11 $k(x - 1)^4, if 1 \le x \le 3$ $k(x - 1)^4, ig 1 \le$				
D.R.V X Which denotes the minimum of the two numbers that appear when a pair of fair dice is? Thrown once. In a Normal distribution, 31% of the items are under 45 and 8% are over 64 find the Mean and variance of distribution Evaluate 5 A manufacturer of cotter pins knows that 5% of his product is defective. Pins are soldh boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guarantee. Apply 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Evaluate 4 7 Fit binomial distribution for the following data Evaluate 4 \underline{X} 0 1 2 3 4 8 Fit a Poisson distribution to the following data Evaluate 4 \underline{X} 0 1 2 3 4 9 $\begin{cases} 0, j f x \le 1 \\ F & 2 & 14 & 20 & 34 & 22 & 8 \end{cases}$ Apply 3 10 Obtain the moment generating function of the random variable having right density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 0, elsewhere \end{cases}$ Evaluate 6 10 Obtain the moment generating function function Analyze 6 6 2 Define joint density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 0, elsewhere \end{cases}$ 0 2				2
pair of fair dice is? Thrown once. Image: second stribution of the items are under 45 and 8% are over 64 find the Mean and variance of distribution Evaluate 5 4 In a Normal distribution, 31% of the items are under 45 and 8% are over 64 find the Mean and variance of distribution Evaluate 5 5 A manufacturer of cotter pins knows that 5% of his product is defective. Pins are soldIn boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guarantee. Apply 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find $P(X \ge 2)$ Evaluate 4 7 Fit binomial distribution for the following data Evaluate 4 $\frac{X}{1}$ 0 1 2 3 4 8 Fit a Poisson distribution to the following data Evaluate 4 $\frac{X}{1}$ 0 1 2 3 4 5 9 If $F[X] = \begin{cases} 0, if x \le 1 \\ k(x-1)^4, if 1 \le x \le 3 \\ 0, elsewhere \end{cases}$ Apply 3 3 10 Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 0, elsewhere \end{cases}$ Evaluate 6 1 what is meant by joint probability distribution function of two random v	3		Evaluate	3
4 In a Normal distribution, 31% of the items are under 45 and 8% are over 64 Evaluate 5 5 A manufacturer of cotter pins knows that 5% of his product is defective. Pins are soldIn boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guarantee. Apply 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Evaluate 4 7 Fit binomial distribution for the following data Evaluate 4 \overline{X} 0 1 2 3 4 8 Fit a Poisson distribution to the following data Evaluate 4 \overline{X} 0 1 2 3 4 5 9 If $F[X] = \begin{cases} 0, if X \le 1 \\ k(x-1)^4, if 1 \le x \le 3 \\ 1, if X > 3 \end{cases}$ then determine (i) $f(x)$ (ii) k (iii) Mean Apply 3 10 Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 0, elsewhere \end{cases}$ Evaluate 6 2 Image: Ima				
find the Mean and variance of distribution A manufacturer of cotter pins knows that 5% of his product is defective. Pins are soldIn boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guarantee. Apply 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Evaluate 4 7 Fit binomial distribution for the following data Evaluate 4 X 0 1 2 3 4 8 Fit a Poisson distribution to the following data Evaluate 4 X 0 1 2 3 4 9 If $F[X] = \begin{cases} 0, ifx \le 1\\ k(x-1)^4, if 1 \le x \le 3 \\ 1, ifx > 3 \end{cases}$ then determine (i) f(x) (ii) k (iii) Mean Apply 3 10 Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} 2, x, 0 \le x < 1\\ 0, elsewhere \end{cases}$ Evaluate 6 2 Define joint density function Malyze 6 6 3 State the properties of joint distribution function Analyze 6 4 State the properties of joint distribution function Analyze 6 6 What are marginal density function <		pair of fair dice is: Thrown once.		
find the Mean and variance of distribution A manufacturer of cotter pins knows that 5% of his product is defective. Pins are soldIn boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guarantee. Apply 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Evaluate 4 7 Fit binomial distribution for the following data Evaluate 4 X 0 1 2 3 4 8 Fit a Poisson distribution to the following data Evaluate 4 X 0 1 2 3 4 9 If $F[X] = \begin{cases} 0, ifx \le 1\\ k(x-1)^4, if 1 \le x \le 3 \\ 1, ifx > 3 \end{cases}$ then determine (i) f(x) (ii) k (iii) Mean Apply 3 10 Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} 2, x, 0 \le x < 1\\ 0, elsewhere \end{cases}$ Evaluate 6 2 Define joint density function Malyze 6 6 3 State the properties of joint distribution function Analyze 6 4 State the properties of joint distribution function Analyze 6 6 What are marginal density function <	4	In a Normal distribution, 31% of the items are under 45 and 8% are over 64	Evaluate	5
are soldIn boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guarantee. and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Fit binomial distribution for the following data Evaluate X 0 1 2 3 4 5 F 2 4 5 F 2 4 5 6 7 7<!--</td--><td></td><td></td><td></td><td></td>				
are soldIn boxes of 100. He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guarantee. and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Fit binomial distribution for the following data Evaluate X 0 1 2 3 4 5 F 2 4 5 F 2 4 5 6 7 7<!--</td--><td></td><td></td><td></td><td></td>				
defective. Determine the probability that a box will fail to meet the guarantee. 4 6 The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find $P(X \ge 1)$ and $P(X > 2)$ 4 7 Fit binomial distribution for the following data Evaluate 4 X 0 1 2 3 4 \overline{K} 0 1 2 3 4 8 Fit a Poisson distribution to the following data Evaluate 4 \overline{X} 0 1 2 3 4 9 I I I I I I I 9 I	5		Apply	4
6 The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find $P(X \ge 1)$ and $P(X > 2)$ 6 Evaluate 4 7 Fit binomial distribution for the following data Evaluate 4 X 0 1 2 3 4 I 0 1 2 3 4 8 Fit a Poisson distribution to the following data Evaluate 4 X 0 1 2 3 4 9 $If = 2$ 14 20 34 22 8 9 $If F[X] = \begin{cases} 0, ifx \le 1 \\ k(x-1)^4, if = x \le 3 \\ 1, ifx > 3 \end{cases}$ then determine (i) f(x) (ii) k (iii) Mean Apply 3 10 Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 2 - x, 1 \le x < 2 \\ 0, elsewhere \end{cases}$ Evaluate 6 10 What is meant by joint probability distribution function Analyze 6 2 befine joint density function function of two random variable Remember 6 2 befine joint density function Remember 6 3 State the properties of joint distribution function of two random variable Understand <td></td> <td></td> <td></td> <td></td>				
and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Fit binomial distribution for the following data Evaluate 4 X 0 1 2 3 4 4 X 0 1 2 3 4 4 X 0 1 2 3 4 5 8 Fit a Poisson distribution to the following data Evaluate 4 X 0 1 2 3 4 5 9 $O, ifx \le 1$ $O, ifx \le 3$ then determine (i) f(x) (ii) k (iii) Mean Apply 3 10 Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} 2, x, 0 \le x < 1 \\ 0, elsewhere \end{cases}$ Evaluate 6 UNIT - II (SHORT QUESTIONS) 1 what is meant by joint probability distribution function Analyze 6 2 Define joint density function Remember 6 3 State the properties of joint distribution function Analyze 6 4 What are marginal distribution function Analyze 6 5 What are marginal distribution function Analyze 6<		defective. Determine the probability that a box will fail to meet the guarantee.		
and 8. Find $P(X \ge 1)$ and $P(X > 2)$ Fit binomial distribution for the following data Evaluate 4 X 0 1 2 3 4 4 X 0 1 2 3 4 4 X 0 1 2 3 4 5 8 Fit a Poisson distribution to the following data Evaluate 4 X 0 1 2 3 4 5 9 $O, ifx \le 1$ $O, ifx \le 3$ then determine (i) f(x) (ii) k (iii) Mean Apply 3 10 Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} 2, x, 0 \le x < 1 \\ 0, elsewhere \end{cases}$ Evaluate 6 UNIT - II (SHORT QUESTIONS) 1 what is meant by joint probability distribution function Analyze 6 2 Define joint density function Remember 6 3 State the properties of joint distribution function Analyze 6 4 What are marginal distribution function Analyze 6 5 What are marginal distribution function Analyze 6<	6	The mean and variance of a binomial variable X with parameters n and n are 16	Evaluate	4
7 Fit binomial distribution for the following data Evaluate 4 X 0 1 2 3 4 8 Fit a Poisson distribution to the following data Evaluate 4 X 0 1 2 3 4 9 I I I I I I I 9 I $If F[X] = \begin{cases} 0, if x \le 1 \\ k(x-1)^4, if 1 \le x \le 3 \\ 1, if x > 3 \end{cases}$ then determine (i) $f(x)$ (ii) k (iii) Mean Apply 3 10 Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 2 - x, 1 \le x < 2 \\ 0, elsewhere \end{cases}$ Evaluate 6 UNIT - II (SHORT QUESTIONS) 1 what is meant by joint probability distribution function Analyze 6 3 State the properties of joint distribution function of two random variable Understand 6 3 State the properties of joint distribution function Analyze 6 4 What are marginal distribution function Analyze 6 5 What are the necessary properties to test a valid joint density function Analyze 6 6 Wh	0	· ·	Lvaluate	-
X01234Image: transformation of the transformation of	-			4
f3062461028Fit a Poisson distribution to the following dataEvaluate4 X 012345 F 21420342289If $F[X] = \begin{cases} 0, ifx \leq 1 \\ k(x-1)^4, if 1 \leq x \leq 3 \\ 1, ifx > 3 \end{cases}$ then determine (i) f(x) (ii) k (iii) MeanApply310Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, 0 \leq x < 1 \\ 2-x, 1 \leq x < 2 \\ 0, elsewhere \end{cases}$ Evaluate61what is meant by joint probability distribution function of two random variableUNIT - II (SHORT QUESTIONS)61what is meant by joint probability distribution function of two random variableAnalyze63State the properties of joint distribution functionAnalyze64What are marginal density functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationOnderstand78Write the different methods of studying correlationCreate7	1	Fit binomial distribution for the following data	Evaluate	4
8 Fit a Poisson distribution to the following data Evaluate 4 X 0 1 2 3 4 5 9 If $F[X] = \begin{cases} 0, ifx \le 1\\ k(x-1)^4, if 1 \le x \le 3\\ 1, ifx > 3 \end{cases}$ then determine (i) $f(x)$ (ii) k (iii) Mean Apply 3 10 Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, 0 \le x < 1\\ 2 - x, 1 \le x < 2\\ 0, elsewhere \end{cases}$ Evaluate 6 UNIT - II (SHORT QUESTIONS) 1 what is meant by joint probability distribution function of two random variable Analyze 6 2 Define joint density function Remember 6 6 3 State the properties of joint distribution function of two random variable Understand 6 4 What are marginal density function Analyze 6 5 What are marginal density function Analyze 6 6 What are the necessary properties to test a valid joint density function Analyze 6 6 What are the necessary properties to test a valid joint density function Analyze 6 7 Define correlation Understand 7 8 Write the different method				
X012345F21420342289If $F[X] = \begin{cases} 0, ifx \le 1 \\ k(x-1)^4, if 1 \le x \le 3 \\ 1, ifx > 3 \end{cases}$ then determine (i) f(x) (ii) k (iii) MeanApply310Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 2 - x, 1 \le x < 2 \\ 0, elsewhere \end{cases}$ Evaluate61what is meant by joint probability distribution functionAnalyze62Define joint density functionfunction of two random variableUnderstand63State the properties of joint distribution functionAnalyze64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationAnalyze67Write the different methods of studying correlationCreate7				
PII <th< td=""><td>8</td><td></td><td>Evaluate</td><td>4</td></th<>	8		Evaluate	4
9If $F[X] = \begin{cases} 0, ifx \le 1 \\ k(x-1)^4, if \ 1 \le x \le 3 \\ 1, ifx > 3 \end{cases}$ then determine (i) $f(x)$ (ii) k (iii) MeanApply310Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, \ 0 \le x < 1 \\ 2 - x, \ 1 \le x < 2 \\ 0, \ elsewhere \end{cases}$ Evaluate61what is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution functionRemember64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are marginal density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7				
If $F[X] = \begin{cases} 0, ijx \le 1 \\ k(x-1)^4, if 1 \le x \le 3 \\ 1, ifx > 3 \end{cases}$ then determine (i) $f(x)$ (ii) k (iii) MeanIf Y 10Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 2 - x, 1 \le x < 2 \\ 0, elsewhere \end{cases}$ Evaluate6UNIT - II (SHORT QUESTIONS)1what is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution functionMalyze64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are marginal density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7		F 2 14 20 34 22 8		
10Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 2 - x, 1 \le x < 2 \\ 0, elsewhere \end{cases}$ Evaluate6UNIT - II (SHORT QUESTIONS)1what is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7	9	$(0, ifx \leq 1)$	Apply	3
10Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 2 - x, 1 \le x < 2 \\ 0, elsewhere \end{cases}$ Evaluate6UNIT - II (SHORT QUESTIONS)1what is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7		If $\mathbf{E}[\mathbf{V}] = \int k(\mathbf{r} \cdot 1)^4 if 1 \le \mathbf{r} \le 3$ then determine (i) $\mathbf{f}(\mathbf{r})$ (ii) \mathbf{k} (iii) Mean		
10Obtain the moment generating function of the random variable having probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 2 - x, 1 \le x < 2 \\ 0, elsewhere \end{cases}$ Evaluate6UNIT - II (SHORT QUESTIONS)1what is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7		If $F[X] = \begin{cases} k(x-1), y \le x \le 5 \end{cases}$ then determine (1) $I(x)$ (ii) k (iii) Mean		
$x, 0 \le x < 1$ probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 2-x, 1 \le x < 2 \\ 0, elsewhere \end{cases}$ UNIT - II (SHORT QUESTIONS)1what is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7		1, if x > 3		
$x, 0 \le x < 1$ probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 2-x, 1 \le x < 2 \\ 0, elsewhere \end{cases}$ UNIT - II (SHORT QUESTIONS)1what is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7				
$x, 0 \le x < 1$ probability density function $f(x) = \begin{cases} x, 0 \le x < 1 \\ 2-x, 1 \le x < 2 \\ 0, elsewhere \end{cases}$ UNIT - II (SHORT QUESTIONS)1what is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7	10		Evaluate	6
Image: Control of the control of th		$(x, 0 \le x \le 1)$		
Iwhat is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7		probability density function $f(x) = \begin{cases} 2 - x, 1 \le x < 2 \end{cases}$		
1what is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7		(0,elsewhere		
1what is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7				
1what is meant by joint probability distribution functionAnalyze62Define joint density functionRemember63State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7		UNIT – II (SHORT QUESTIONS)		
2Define joint density functionRemember63State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7				
3State the properties of joint distribution function of two random variableUnderstand64What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7				6
4What are marginal distribution functionAnalyze65What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7		· ·		1
5What are marginal density functionAnalyze66What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7				
6What are the necessary properties to test a valid joint density functionAnalyze67Define correlationUnderstand78Write the different methods of studying correlationCreate7			*	
7Define correlationUnderstand78Write the different methods of studying correlationCreate7				1
8 Write the different methods of studying correlation Create 7				1
A TEAM AND A DELATED AND A	9	Show that correlation coefficient lies between -1 and1	Understand	7

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
10	Explain Rank correlation coefficient	Analyse	7
	UNIT – II (LONG QUESTIONS)		
1	If x=2y+3 and y=kx+6are the regression lines of x and y on x respectively show that i)show that $0 \le k \le 1/2$ ii)k=1/8 find r and (\bar{x}, \bar{y})	Understand	7
2	If θ is angle between two regression lines of y on x and x on y then prove that $\tan \theta = \frac{1 - r^2}{r} \left[\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \right]$	Understand	7
3	The joint probability density function is $f(x,y) = \begin{cases} Ae^{-x-y}, & o < x < y, o < y < \infty \\ 0, & otherwise \end{cases}$ Determine A.	Apply	6
4	Let X and Y random variables have the joint density function $f(x,y)=2,0 then find marginal density function$	Evaluate	6
5	X 68 64 75 50 64 80 75 40 55 64 Y 62 58 68 45 81 60 68 48 50 70	Evaluate	7
6	Find the Multiple regression line to the following data X 35681214 Y 16107432 Z 907254423012	Evaluate	7
7	X 65 66 67 67 68 69 70 72 Y 67 68 65 68 72 72 69 71	Apply	7
8	Find the coefficient of correlation for the following data X 6566676768697072 Y 6768656872726971	Apply	7
9	Derive the rank correlation coefficient formula	Evaluate	7
10	Two independent variable X and Y have means 5 and 10 and variances 4 and 9 respectively. Find the coefficient of correlation between U and V where $U=3x+4y$, $V=3x-y$	Evaluate	7
	UNIT – III (SHORT QUESTIONS)		
1	Write a short note on Sampling	Understand	8
2	Explain about Level of Significance, critical region.	Analyze	9
3	Explain about Estimation, Prove that sample Mean is Unbiased Estimation of Population Mean	Analyze Understand	9
5	Write the working procedure for the testing of Hypothesis	Evaluate	10
	UNIT – III (LONG QUESTIONS)		<u>.</u>
1	A sample of 100 electric bulbs produced by manufacturer 'A' showed a mean life timeOf 1190 hrs and an s .d. of 90 hrs A sample of 75 bulbs produced by manufacturer 'B' Showed a mean life time of 1230 hrs with s.d. of 120 hrs. Is	Apply	10

S.No	QUESTION	Blooms	Course
		Taxonomy Level	Outcome
	there difference between the mean life times of the two brands at a significant level of 0.05		
2	In a random sample of 60 workers, the average time taken by them to get to work is 33.8 minutes with a standard deviation of 6.1 minutes .Can we reject the null	k Apply	10
	hypothesis $\mu = 32.6$ minutes in favor of alternative null hypothesis		
	$\mu > 32.6$ at $\alpha = 0.025$ level of significance		
3	On the basis of their total scores, 200 candidates of a civil service examination	Apply	10
-	are divided into two groups, the upper 30% and the remaining 70%. Consider the		10
	first question of the examination. Among the first group, 40 had the correct		
	answer, whereas among the second group, 80 had the correct answer. On the		
	basis of these results, can one conclude that the first question is not good at		
	discriminating ability of the type being examined here		
4	A cigarette manufacturing firm claims that brand A line of cigarettes outsells	Apply	10
	its brand B by 8% .if it is found that 42 out of a sample of 200 smokers prefer		
	brand A and 18 out of another sample of 100 smokers prefer brand B. Test whether 8% difference is a valid claim.		
5	If 48 out of 400 persons in rural area possessed 'cell' phones while 120 out of	Apply	9
	500 in urban Area. Can it be accepted that the proportion of 'cell' phones in the	Apply	9
	rural area and Urban area is same or not. Use 5% of 1 .o .s		
	ASSIGNMENT – II UNIT – III (SHORT QUESTIONS)		
			1
1	Explain about two tailed and single tailed tests	Remember	10
2	Explain about t-Distribution	Remember	10
3	Explain about F-Statistic Write Properties of F-Statistic distribution	Remember	10 10
5	Write Properties of Chi- Square distribution	Analyze Analyze	10
5	when ropenes of emilioquale distribution	T that yze	10
	UNIT – III (LONG QUESTIONS)		
1	In an investigation on machine performance the following results are obtained	Apply	10
	No. of No. of		
	units defectives		
	inspected		
	Machine I 375 17		
	Machine II 450 22		
	Test whether there is any significance performance of two machines at $\alpha = 0.05$		
2	0.05. Producer of 'gutkha' claims that the nicotine content in his 'gutkha' on the	a Apply	10
2	average is83 mg. can this claim be accepted if a random sample of 8 'gutkhas		10
	of this typehave the nicotine contents of 2.0,1.7,2.1,1.9,2.2,2.1,2.0,1.6 mg.	,	
3	A sample of 26 bulbs gives a mean life of 990 hrs with S.D of 20hrs. The	Apply	10
	manufacturer claims that the mean life of bulbs 1000 hrs. Is the sample not		
	upto the standard?		
4	A random of 10 boys had the following I.Q's	Apply	10
	70,120,110,101,88,83,95,98,107,100. Do the data support the assumption of		
	population means I.Q of 100. Test at 5% level of significance?		
5	In one sample of 8 observations the sum of squares of deviations of the sample	a Annl	10
5	In one sample of a coservations the sum of squares of deviations of the sample	e Apply	10

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
	is 84.4 and other sample of 10 observations was 102.6 .test the difference is significant at 5% level		outcome
	UNIT – IV (SHORT QUESTIONS)		
1	What is queuing problem	Analyse	11
2	Explain representation of queuing models	Remember	11
3	Give examples of different types of queuing models	Create	11
4	Derive expected number of queue	Evaluate	11
5	Derive average waiting time in system	Evaluate	12
6	Define service discipline	Understand	12
7	Define idle and busy time	Understand	12
8	Explain M/M/1 model	Analyse	12
9	Explain M/M/1 with infinite population	Analyse	12
10	Derive probability of having n customers P_n in a queue M/M/1, having poisson arrival	Evaluate	12
	UNIT-IV (LONG QUESTIONS)		
1	Telephone users arrive at a booth following a Poisson distribution with average time of 5 minute between two successive arrivals. The time taken for a telephone call is on an average 3 min. what probability that the booth is busy is. It is proposed to reduce the average waiting time to less than or half the present waiting time for completion of the call by establishing a new booth. What has to be arrival rate so as to warrant the establishment of new booth.	Apply	12
2	Assume that the both arrival rate service rate following Poisson distribution the arrival rate and service rate are 25 and 35 customers/hour respectively then find the following L_s , L_q , w_s , w_q	Evaluate	12
3	Consider a self service store with one cashier. Assume Poisson arrivals and exponential service time. Suppose that a customer's arrive on average of every 5 minutes and the cashier can serve in 5 minutes. Find The average number of customers queuing for service, The probability of having more than 10 customers in the system, The probability that the customer has to queue for more than 2 minutes	Apply	12
4	At a one man barber shop, customers arrive according to Poisson distribution with a mean arrival rate of 5 per hour and the hair cutting time is exponentially distributed, with an average hair cut taking 10 minutes. It is assumed that because of his excellent reputation, customers are always willing to wait. Calculate Average number of customers in the shop, Average number of customers waiting for hair cut, The percent of time on arrival can walk right in without waiting. The percent of customers who have to wait prior to getting into the barber's chair	Apply	12
5	A TV repair man finds that the time spent on his jobs has an exponential distribution with mean 30 minutes. He repairs sets in the order in which they arrive. The arrival of the sets is approximately Poisson with an average of 10 per eight hour day. Find the repairman's idle time each day. How many jobs are ahead of the average set just brought in?	Apply	12
6	Workers come to a tool store room to enquiry about the special tools (required by	Evaluate	12

S.No	QUESTION	Blooms	Course
		Taxonomy Level	Outcome
	them) for a particular job. The average time between the arrivals is 60 seconds		
	and the arrivals are assumed to be in Poisson distribution. The average service		
	time is 40 seconds. Find Average queue length Average length of non-empty		
7	queue Arrival rate of telephone calls at a telephone booth are according to Poisson	Apply	12
,	distribution With an average time of 12 minutes between two consecutive call	rippiy	12
	arrivals. The Length of telephone calls is assumed to be exponentially		
	distributed with mean 4 minutes. Find the probability that a caller arriving at		
	the booth will have to wait Find the average queue length that forms from time		
	to time Find the fraction of a day that the phone will be in use When convinced		
	that an arrival would expect to have to wait at least five minutes for making the		
	call.		
8	Consider a self-service store with one cashier. Assume Poisson arrivals and	Apply	12
-	exponential service time. Suppose that a customer's arrive on average of every 5		
	minutes and the cashier can serve in 5 minutes. Find :(a) The average number of		
	customers queuing for service.(b) The probability of having more than 10		
	customers in the system.(c) The probability that the customer has to queue for		
0	more than 2 minutes	A 1	10
9	A computer shop has a laser printer. The jobs for laser printing are randomly distributed approximately a Poisson distribution with mean service rate of 10	Apply	12
	jobs per hour, since pages vary in length (pages to be printed). The jobs arrive		
	at a rate of 6 per hour during the entire 8 hours work day. If the laser printer is		
	valued Rs 30/- per hour, determine (a) the percent time an arriving jobs has to		
	wait (b) Average system time (c) Average dle time cost of the printer per		
	day		
10	Customers arrive at a sales counter manned by a single person according to a	Apply	12
	poisson process with a mean rate of 20 per hour. The time required to serve a customer has an exponential distribution with a mean of 100 seconds. Find the		
	average waiting time of the customer.		
		I	1
	UNIT – V (SHORT QUESTIONS)		
1	Define ergodic chain	Understand	13
2	Define regular chain	Understand	13
3	Define transient state	Understand	13
4	Define return state	Understand	13
5		II. 1	
5	Define absorbing state	Understand	13
6	Define periodic and aperiodic states	Understand	13 13
6 7	Define periodic and aperiodic states Explain about reducable and irreducible matrices	Understand Understand	13 13 13
6	Define periodic and aperiodic states Explain about reducable and irreducible matrices Define persistent state	Understand	13 13
6 7 8	Define periodic and aperiodic states Explain about reducable and irreducible matrices Define persistent state Find the transition diagram for the transition probability $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	Understand Understand Understand	13 13 13 13
6 7 8	Define periodic and aperiodic states Explain about reducable and irreducible matrices Define persistent state Find the transition diagram for the transition probability $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1/2 & 1/2 \end{bmatrix}$	Understand Understand Understand	13 13 13 13
6 7 8 9	Define periodic and aperiodic states Explain about reducable and irreducible matrices Define persistent state Find the transition diagram for the transition probability	Understand Understand Understand Evaluate	13 13 13 13 13 13
6 7 8	Define periodic and aperiodic states Explain about reducable and irreducible matrices Define persistent state Find the transition diagram for the transition probability $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1/2 & 1/2 \end{bmatrix}$	Understand Understand Understand	13 13 13 13
6 7 8 9	Define periodic and aperiodic states Explain about reducable and irreducible matrices Define persistent state Find the transition diagram for the transition probability	Understand Understand Understand Evaluate	13 13 13 13 13
6 7 8 9	Define periodic and aperiodic states Explain about reducable and irreducible matrices Define persistent state Find the transition diagram for the transition probability $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1/2 & 1/2 \\ 1/3 & 0 & 2/3 \end{bmatrix}$ Define stochastic process UNIT-V (LONG QUESTIONS)	Understand Understand Evaluate Understand	13 13 13 13 13 13 13
6 7 8 9	Define periodic and aperiodic states Explain about reducable and irreducible matrices Define persistent state Find the transition diagram for the transition probability matrix $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1/2 & 1/2 \\ 1/3 & 0 & 2/3 \end{bmatrix}$ Define stochastic process	Understand Understand Understand Evaluate	13 13 13 13 13 13

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
	game. b) If $p = \frac{1}{2}$, $q = \frac{1}{2}$, $z = 1$, $a = 1000$ Then find the expected duration of		
	the game		
4	Is the Matrix $\begin{bmatrix} 0.4 & 0.6 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 \\ 0.2 & 0.4 & 0.1 & 0.3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ irreducible?	Analyse	13
5	Is the Matrix $p = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 1/6 & 1/3 \\ 1/3 & 2/3 & 0 \end{bmatrix}$ Stochastic?	Analyse	13
6	Which of the following Matrices are Regular i) $\begin{bmatrix} 1/2 & 1/2 \\ 0 & 1 \end{bmatrix}$ ii) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ iii) $\begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 0 & 1 & 0 \\ 1/2 & 1/2 & 0 \end{bmatrix}$	Evaluate	13
7	Find periodic and aperiodic states in each of the following transition probability matrices. i) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ ii) $\begin{bmatrix} 1/4 & 3/4 \\ 1/2 & 1/2 \end{bmatrix}$	Evaluate	13
8	Consider a two state Markov chain with the transition probability matrix $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}, \text{ find } P^n \text{ when } n \rightarrow \infty$	Evaluate	13
9	Consider a two state Markov chain with the transition probability matrix $P = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix}, 0 < a < 1, 0 < b < 1 \text{ find } P^n \text{ when } n \rightarrow \infty$	Evaluate	13
10	A fair die is tossed repeatedly if X_n denotes the maximum of the numbers occurring in the first n tosses. Find the transition probability matrix P of the markov chain	Apply	13

Prepared By : Mr. J Suresh Goud, Associate Professor

HOD, COMPUTER SCIENCE AND ENGINEERING