INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS)

Dundigal, Hyderabad -500 043
COMPUTER SCIENCE AND ENGINEERING
ASSIGNMENT

Course Name	PROBABILITY AND STATISTICS
Course Code	A30008
Class	II B. Tech I Semester
Branch	Computer Science and Engineering
Year	$2016-2017$
Course Faculty	Mr. J Suresh Goud, Associate Professor, Freshman Engineering Ms. L Indira, Assistant Professor, Freshman Engineering Ms. P Srilatha, Assistant Professor, Freshman Engineering

OBJECTIVES:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

ASSIGNMENT - I

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
UNIT - I (SHORT QUESTIONS)			
1	Define Random Variable with suitable examples	Understand	2
2	Explain mathematical expectation	Analyze	3
3	If $\mathrm{X} \& \mathrm{Y}$ is a random variable then Prove $\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]$	Understand	3
4	If $\mathrm{X} \& \mathrm{Y}$ is a random variable then Prove $\mathrm{E}[\mathrm{XY}]=\mathrm{E}[\mathrm{X}] . \mathrm{E}[\mathrm{Y}]$ if $\mathrm{X} \& \mathrm{Y}$ are independent	Understand	3
5	If X is a random variable then Prove $E[X-\mu]=0$, where μ is the Mean of the variable X	Understand	3
6	Define Binomial Distribution and give example	Evaluate	4
7	Derive mean of binomial distribution	Evaluate	4
8	Derive variance of binomial distribution	Evaluate	4
9	Define Poisson distribution and give example	Understand \& Create	4
10	Write the conditions of Poisson distribution	Analyze	4

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
	there difference between the mean life times of the two brands at a significance level of 0.05		
2	In a random sample of 60 workers, the average time taken by them to get to work is 33.8 minutes with a standard deviation of 6.1 minutes. Can we reject the null hypothesis $\quad \mu=32.6$ minutes in favor of alternative null hypothesis $\mu>32.6$ at $\alpha=0.025$ level of significance	Apply	10
3	On the basis of their total scores, 200 candidates of a civil service examination are divided into two groups, the upper 30% and the remaining 70%. Consider the first question of the examination. Among the first group, 40 had the correct answer, whereas among the second group, 80 had the correct answer. On the basis of these results, can one conclude that the first question is not good at discriminating ability of the type being examined here	Apply	10
4	A cigarette manufacturing firm claims that brand A line of cigarettes outsells its brand B by 8%.if it is found that 42 out of a sample of 200 smokers prefer brand A and 18 out of another sample of 100 smokers prefer brand B. Test whether 8% difference is a valid claim.	Apply	10
5	If 48 out of 400 persons in rural area possessed 'cell' phones while 120 out of 500 in urban Area. Can it be accepted that the proportion of 'cell' phones in the rural area and Urban area is same or not. Use 5\% of 1 .o .s	Apply	9

ASSIGNMENT - II
UNIT - III (SHORT QUESTIONS)

1	Explain about two tailed and single tailed tests	Remember	$\mathbf{1 0}$
2	Explain about t-Distribution	Remember	$\mathbf{1 0}$
3	Explain about F-Statistic	Remember	$\mathbf{1 0}$
4	Write Properties of F-Statistic distribution	Analyze	$\mathbf{1 0}$
5	Write Properties of Chi- Square distribution	Analyze	$\mathbf{1 0}$

UNIT - III (LONG QUESTIONS)

1	In an investigation on machine performance the following results are obtained			Apply	10
		No. of units inspected	No. of defectives		
	Machine I	375	17		
	Machine II	450	22		
	Test whether there is any significance performance of two machines at $\alpha=$ 0.05 .				
2	Producer of 'gutkha' claims that the nicotine content in his 'gutkha' on the average is 83 mg . can this claim be accepted if a random sample of 8 'gutkhas' of this typehave the nicotine contents of 2.0,1.7,2.1,1.9,2.2,2.1,2.0,1.6 mg.			Apply	10
3	A sample of 26 bulbs gives a mean life of 990 hrs with S.D of 20hrs. The manufacturer claims that the mean life of bulbs 1000 hrs . Is the sample not upto the standard?			Apply	10
4	A random of 10 boys had the following I.Q's $70,120,110,101,88,83,95,98,107,100$. Do the data support the assumption of population means I.Q of 100 . Test at 5% level of significance?			Apply	10
5	In one sample of 8 observations the sum of squares of deviations of the sample			Apply	10

S.No	QUESTION	$\begin{gathered} \text { Blooms } \\ \text { Taxonomy Level } \\ \hline \end{gathered}$	Course Outcome
	is 84.4 and other sample of 10 observations was 102.6 test the difference is significant at 5\% level		
UNIT - IV (SHORT QUESTIONS)			
1	What is queuing problem	Analyse	11
2	Explain representation of queuing models	Remember	11
3	Give examples of different types of queuing models	Create	11
4	Derive expected number of queue	Evaluate	11
5	Derive average waiting time in system	Evaluate	12
6	Define service discipline	Understand	12
7	Define idle and busy time	Understand	12
8	Explain M/M/1 model	Analyse	12
9	Explain M/M/1 with infinite population	Analyse	12
10	Derive probability of having n customers P_{n} in a queue $M / M / 1$, having poisson arrival	Evaluate	12
UNIT-IV (LONG QUESTIONS)			
1	Telephone users arrive at a booth following a Poisson distribution with average time of 5 minute between two successive arrivals. The time taken for a telephone call is on an average 3 min . what probability that the booth is busy is. It is proposed to reduce the average waiting time to less than or half the present waiting time for completion of the call by establishing a new booth. What has to be arrival rate so as to warrant the establishment of new booth.	Apply	12
2	Assume that the both arrival rate service rate following Poisson distribution .the arrival rate and service rate are 25 and 35 customers/hour respectively then find the following $\mathrm{L}_{\mathrm{s}}, \mathrm{L}_{\mathrm{q}}, \mathrm{w}_{\mathrm{s}}, \mathrm{w}_{\mathrm{q}}$	Evaluate	12
3	Consider a self service store with one cashier. Assume Poisson arrivals and exponential service time. Suppose that a customer's arrive on average of every 5 minutes and the cashier can serve in 5 minutes. Find The average number of customers queuing for service, The probability of having more than 10 customers in the system, The probability that the customer has to queue for more than 2 minutes	Apply	12
4	At a one man barber shop, customers arrive according to Poisson distribution with a mean arrival rate of 5 per hour and the hair cutting time is exponentially distributed, with an average hair cut taking 10 minutes. It is assumed that because of his excellent reputation, customers are always willing to wait. Calculate Average number of customers in the shop, Average number of customers waiting for hair cut, The percent of time on arrival can walk right in without waiting. The percent of customers who have to wait prior to getting into the barber's chair	Apply	12
5	A TV repair man finds that the time spent on his jobs has an exponential distribution with mean 30 minutes. He repairs sets in the order in which they arrive. The arrival of the sets is approximately Poisson with an average of 10 per eight hour day. Find the repairman's idle time each day. How many jobs are ahead of the average set just brought in?	Apply	12
6	Workers come to a tool store room to enquiry about the special tools (required by	Evaluate	12

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
	them) for a particular job. The average time between the arrivals is 60 seconds and the arrivals are assumed to be in Poisson distribution. The average service time is 40 seconds. Find Average queue length Average length of non-empty queue		Apply
7	Arrival rate of telephone calls at a telephone booth are according to Poisson distribution With an average time of 12 minutes between two consecutive call arrivals. The Length of telephone calls is assumed to be exponentially distributed with mean 4 minutes. Find the probability that a caller arriving at the booth will have to wait Find the average queue length that forms from time to time Find the fraction of a day that the phone will be in use When convinced that an arrival would expect to have to wait at least five minutes for making the call.	Apply	
8	Consider a self-service store with one cashier. Assume Poisson arrivals and exponential service time. Suppose that a customer's arrive on average of every 5 minutes and the cashier can serve in 5 minutes. Find :(a) The average number of customers queuing for service.(b) The probability of having more than 10 customers in the system.(c) The probability that the customer has to queue for more than 2 minutes	12	
9	A computer shop has a laser printer. The jobs for laser printing are randomly distributed approximately a Poisson distribution with mean service rate of 10 jobs per hour, since pages vary in length (pages to be printed). The jobs arrive at a rate of 6 per hour during the entire 8 hours work day. If the laser printer is valued Rs 30/- per hour, determine (a) the percent time an arriving jobs has to wait (b) Average system time (c) Average dle time cost of the printer per day	Apply	12
10	Customers arrive at a sales counter manned by a single person according to a poisson process with a mean rate of 20 per hour. The time required to serve a customer has an exponential distribution with a mean of 100 seconds. Find the average waiting time of the customer.	Apply	12

UNIT - V (SHORT QUESTIONS)

1	Define ergodic chain	Understand	13
2	Define regular chain	Understand	13
3	Define transient state	Understand	13
4	Define return state	Understand	13
5	Define absorbing state	Understand	13
6	Define periodic and aperiodic states	Understand	13
7	Explain about reducable and irreducible matrices	Understand	13
8	Define persistent state	Understand	13
9	Find the transition diagram for the transition probability	Evaluate	13
	matrix $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 1 / 2 & 1 / 2 \\ 1 / 3 & 0 & 2 / 3\end{array}\right]$		
10	Define stochastic process	Understand	13

UNIT-V (LONG QUESTIONS)

1	Show that the probability that the game never ends is zero.	Understand	14
2	Find the probabilities of gambler ruin.	Evaluate	14
3	a) If $p=\frac{1}{2}, q=\frac{1}{2}, z=1, a=500$ Then find the expected duration of the	Apply	14

S.No	QUESTION	$\begin{array}{\|c\|} \hline \text { Blooms } \\ \text { Taxonomy Level } \\ \hline \end{array}$	Course Outcome
	game. b) If $p=\frac{1}{2}, q=\frac{1}{2}, z=1, a=1000$ Then find the expected duration of the game		
4	Is the Matrix $\left[\begin{array}{cccc}0.4 & 0.6 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 \\ 0.2 & 0.4 & 0.1 & 0.3 \\ 0 & 0 & 0 & 1\end{array}\right]$ irreducible?	Analyse	13
5	Is the Matrix $\mathrm{p}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 / 2 & 1 / 6 & 1 / 3 \\ 1 / 3 & 2 / 3 & 0\end{array}\right]$ Stochastic?	Analyse	13
6	Which of the following Matrices are Regular i) $\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ 0 & 1\end{array}\right]$ $\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right] \quad \text { iii) }\left[\begin{array}{ccc} 1 / 2 & 1 / 4 & 1 / 4 \\ 0 & 1 & 0 \\ 1 / 2 & 1 / 2 & 0 \end{array}\right]$	Evaluate	13
7	Find periodic and aperiodic states in each of the following transition probability matrices. i) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad$ ii) $\left[\begin{array}{ll}1 / 4 & 3 / 4 \\ 1 / 2 & 1 / 2\end{array}\right]$	Evaluate	13
8	Consider a two state Markov chain with the transition probability matrix $\mathrm{P}=\left[\begin{array}{ll}3 / 4 & 1 / 4 \\ 1 / 2 & 1 / 2\end{array}\right]$, find P^{n} when $\mathrm{n} \rightarrow \infty$	Evaluate	13
9	Consider a two state Markov chain with the transition probability matrix $\mathrm{P}=\left[\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right], 0<\mathrm{a}<1,0<\mathrm{b}<1$ find P^{n} when $\mathrm{n} \rightarrow \infty$	Evaluate	13
10	A fair die is tossed repeatedly if X_{n} denotes the maximum of the numbers occurring in the first n tosses. Find the transition probability matrix P of the markov chain	Apply	13

Prepared By : Mr. J Suresh Goud, Associate Professor
HOD, COMPUTER SCIENCE AND ENGINEERING

