(Autonomous)

Dundigal, Hyderabad - 500043

CIVIL ENGINEERING

ASSIGNMENT QUESTIONS

Course Name	$:$	REINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING
Course Code	$:$	A50121
Class	$:$	III-I - B. Tech
Branch	$:$	CIVIL ENGINEERING
Year	$:$	2017 - 2018
Course Faculty	$:$Ms. S.Bhagyalaxmi, Assistant Professor Ms. PraveenaRao, Assistant Professor	

OBJECTIVES

Civil Engineers are required to learn the fundamentals of design, analysis, and proportioning of reinforced concrete members and structures. Learn design concepts and modes of failure. Methods for analysis and design of these elements under flexure, shear, and axial loads will be examined. Learn how to make design decisions considering realistic constraints such as safety, economy and serviceability. Learn how to use the latest technology in solving structural analysis and design problems. To impart adequate knowledge on how to analyze and design reinforced concrete members and connection. To understand the mechanical properties of structural concrete. To understand the behavior of reinforced concrete elements under normal force, shear, moment and torsion. Concept of ultimate design of reinforced concrete beams, floor systems and columns are to understood. To develop an understanding of and appreciation for basic concepts in the behavior and design of reinforced concrete systems and elements. To help the student develop an intuitive feeling about structural and material wise behavior and design of reinforced concrete systems andelements.

S. No.	Question	Blooms Taxonomy Level	Course Outcomes
UNIT-1 DESIGN CONCEPTS, DESIGN OF BEAMS			
1	What are the main objectives of structural design?	Understand	2
2	Explain the assumptions made in the Limit state of Flexure.	Remember	1
3	What is meant by limit state? Discuss the different ‘limit states' to be considered in reinforced concretedesign.	 remember	1
4	Show that deflection control in normal flexural members can be achieved by limiting span/effective depthratios.	 remember	2

S. No.	Question	Blooms Taxonomy Level	Course Outcomes
5	With the help of neat sketch derive the stress block parameters for limit state of flexure.	Understand\& remember	2
6	A reinforced concrete beam of rectangular section has the cross-sectional dimensions shown in Fig. Assuming M 20 grade concrete and Fe 415 grade steel, compute (i) the cracking moment and (ii) the stresses due to an applied moment of 50 kNm . beam section	Understand	3
7	Explain characteristic strength of materials and characteristic loads.	Understand	3
8	A rectangular reinforced concrete beam, located inside a building in a coastal town, is simply supported on two masonry walls 230 mm thick and 6 m apart (centre-to-centre). The beam has to carry, in addition to its own weight, a distributed live load of $10 \mathrm{kN} / \mathrm{m}$ and a dead load of $5 \mathrm{kN} / \mathrm{m}$. Design the beam section for maximum moment at mid-span. Assume Fe 415 steel.	Understand	3
9	A singly reinforced concrete beam is $300 \times 450 \mathrm{~mm}$ deep to the centre of tension reinforcement which consists of 4 bars of 16 mm diameter. If the safe stresses on concrete and steel are 7 $\mathrm{N} / \mathrm{mm} 2$ and $230 \mathrm{~N} / \mathrm{mm} 2$ respectively, find the moment of resistance of the section. Take $\mathrm{M}=13.33$.	Understand	3
10	Design an L beam for an office floor given the following data: Clear span: 6m Thickness of flange $=150 \mathrm{~mm}$ Service load: $4 \mathrm{kN} / \mathrm{m} 2$ Spacing of beam :3m fck $=25 \mathrm{~N} / \mathrm{mm} 2$, fy $=415 \mathrm{~N} / \mathrm{mm} 2$ L beams are monolithic with columns. Width of column $=$ 300 mm . Sketch the reinforcement details.	Understand	3
UNIT - IISHEAR, BOND \& TORSION			
1	What is the expression for spacing of vertical stirrups in R.C. beams for shear?	Understand	4
2	Explain, with examples, the difference between equilibrium torsion and compatibility torsion.	Understand \& remember	4
3	Define 'development length'. What is its significance?	Understand	4

S. No.	Question	$\begin{gathered} \text { Blooms } \\ \text { Taxonomy } \end{gathered}$ Level	Course Outcomes
4	Under what situations do the following modes of cracking occur in reinforced concrete beams: (a) flexural cracks, (b) diagonal tension cracks, (c) flexural-shear cracks and (d) splittingcracks?	Understand \& remember	5
5	What are the various remedial measures for control of cracking ?	Understand \& remember	5
6	A simply supported beam of 6 m span (c/c), (shown in Fig.), is to carry a uniform dead load of $20 \mathrm{kN} / \mathrm{m}$ (including beam weight) and a uniform live load of 30 kNm . The width of the supporting wall is 230 mm . Assume M 25 concrete and Fe 415 steel. (a)Determine the adequacy of the 10 mmpU -stirrups as shear reinforcement. (b) If the shear reinforcement is to be provided in the form of 10φ stirrups inclined at 60 o to the beam axis, determine the requiredspacing. (c) If two of the tension reinforcement bars are terminated at 300 mm from the centre of the support, check the adequacy of shear strength at the bar cut-offpoint.	Understand \& remember	4
7	Design a T - beam for the following data. Span $=9 \mathrm{~m}$, Ends are simply supported. Spacing of the beams $=3 \mathrm{~m}$ Super imposed load $=4 \mathrm{kN} / \mathrm{m} 2$ Floor finish $=0.75 \mathrm{kN} / \mathrm{m} 2$ Thickness of the slab $=125 \mathrm{~mm}$ Weight of the wall on the beam $=15 \mathrm{kN} / \mathrm{m}$ Width of the web $=230 \mathrm{~mm}$ Total depth $=680 \mathrm{~mm}$ Use M 25 grade concrete and Fe 500 grade steel. Design the beam for shear reinforcement also. Check the design for all necessary conditions. Draw to a suitable scale: a) The longitudinal section showing the reinforcementdetails b) The cross section of the beam at salient points, showing the reinforcement	Understand \& remember	4
8	A rectangular beam 230 mm wide is subjected to the following at a section 1. Sagging bending moment of 25 kNm . 2. Shear force of 20 kN . 3. Torsional moment of 30 kNm . Use M25 and Fe-415 steel. Design a suitable section and find the reinforcement required in the section.	Understand \& remember	4

S. No.	Question	$\begin{gathered} \text { Blooms } \\ \text { Taxonomy } \end{gathered}$ Level	Course Outcomes
9	A rectangular beam of span 7 m (centre-to-centre of supports), resting on 300 mm wide simple supports, is to carry a uniformly distributed dead load (excluding self-weight) of 15 kN / m and a live load of $20 \mathrm{kN} / \mathrm{m}$. Using Fe 415 steel, design the beam section at mid-span, based on first principles. Check the adequacy of the section for strength, using design aids. Also perform a check for deflection control. Assume that the beam is subjected to moderate exposureconditions.	Understand \& remember	4,5
10	A doubly reinforced beam of rectangular section 300 mm wide $x 500 \mathrm{~mm}$ overall depth is reinforced with 4 bars of 20 mm diameter on the tension face and 2 bars of 16 mm diameter on the compression face. Assume moderate exposure condition. The beam spans over 9 m . Check the deflection control if Fe 415 steel is used. Use M25 concrete.	Understand \& remember	4,5
UNIT - III DESIGN OF SLABS			
1	Explain clearly the difference between one way and two way slabs.	understand	6
2	The main Reinforcement of a R.C. slab consists of 10 mm bars at spacing of 10 cm . if it is desired to replace 10 mm bars by 12 mm bars, then what is the spacing of 12 mm bars?	understand	6
3	What are the limits of percentage of steel in slabs?	Remember	6
4	Torsional reinforcement is required in which type of slabs and why?	Understand \& remember	6
5	What is the minimum Flexural Reinforcement in Slabs in either direction?	Understand	6
6	Determine the ultimate moment of resistance of a 150 mm thick slab, reinforced with $10 \mathrm{~mm} \varphi$ bars at 200 mm spacing located at an effective depth of 125 mm . Assume M 20 concrete and Fe 415 steel.	Understand \& remember	6
7	Design a one-way slab, with a clear span of 4.0 m , simply supported on 230 mm thick masonry walls, and subjected to a live load of $4 \mathrm{kN} / \mathrm{m} 2$ and a surface finish of $1 \mathrm{kN} / \mathrm{m} 2$. Assume Fe 415 steel. Assume the beam is subjected to moderate exposure conditions.	Understand \& remember	6
8	Design a slab over $5 \mathrm{~m} \times 7 \mathrm{~m}$ room supported on masonry walls all around with adequate restraint with corners held down. The live load on slab is $2.5 \mathrm{KN} / \mathrm{m} 2$. The slab has a bearing of 150 mm on the walls. Use M2o grade concrete. Draw the structural detailing neatly to a suitable scale.	Understand \& remember	6
9	Design a reinforced concrete slab of size 5 mx 4 m . All the four edges are discontinuous and corners are held down. The slab has to carry a live load of $3 \mathrm{kN} / \mathrm{m} 2$. And floor finish $1 \mathrm{kN} / \mathrm{m} 2$.Use M20 concrete and Fe 500 steel.	Understand \& remember	6
10	A reinforced concrete canopy slab, designed as a cantilever, is under construction. Prior to the removal of the formwork, doubts are expressed about the safety of the structure. It is proposed to prop up the free edge of the cantilever with a beam supported on pillars. Comment on this proposal.	Understand \& remember	6

S. No.	Question	Blooms Taxonomy Level	Course Outcomes
UNIT - IVDESIGN OF COLUMNS			
1	What is the purpose of lateral ties in a RC column?	remember	7
2	What is the difference between load carrying capacity of a helically reinforced column and that of a tied column?	remember	7
3	What is slenderness ratio? Explain.	Understand \& remember	7
4	Differentiate between short and long column.	Understand \& remember	7
5	Define equivalent length of a column. Define crushing and buckling.	Understand	7
6	A short column, $600 \mathrm{~mm} \times 600 \mathrm{~mm}$ in section, is subject to a factored axial load of 1500 kN . Determine the minimum area of longitudinal steel to be provided, assuming M 20 concrete and Fe 415 steel.	Understand \& remember	7
7	For the column section shown in Fig, determine the design strength components corresponding to the condition of 'balanced failure'. Assume M 25 concrete and Fe 415 steel. Consider loading eccentricity with respect to the major axis alone. Assume 8φ ties and 40 mm clear cover.	Understand \& remember	7
8	Using the design aids given in SP: 16, design the longitudinal reinforcement in a rectangular reinforced concrete column of size $300 \mathrm{~mm} \times 600 \mathrm{~mm}$ subjected to a factored load of 1400 kN and a factored moment of 280 kNm with respect to the major axis. Assume M 20 concrete and Fe 415 steel.	Understand \& remember	7
9	Design a short square column, with effective length 3.0 m , capable of safely resisting the following factored load effects (under uniaxial eccentricity): (i) $\mathrm{Pu}=1625 \mathrm{kN}, \mathrm{Mu}=75 \mathrm{kNm}$ (ii) $\mathrm{Pu}=365 \mathrm{kN}, \mathrm{Mu}=198 \mathrm{kNm}$. Assume M 25 concrete and Fe 415 steel.	Understand \& remember	7
10	Design a column of unsupported length 3 m to carry an axial load of 2000 kN and a BM of 150 kNm at service conditions. Design the column as a short column. The column is subjected to severe exposure condition and grade of steel is Fe 500. Provide equal reinforcement on all the faces. Use M30 concrete. Sketch reinforcementdetails.	Understand \& remember	7
UNIT - VDESIGN OF FOOTING, STAIR CASE			
1	Explain about one-way and two-way shear in footings?	Remember	8

S. No.	Question	$\begin{array}{c}\text { Blooms } \\ \text { Taxonomy } \\ \text { Level }\end{array}$	$\begin{array}{c}\text { Course } \\ \text { Outcomes }\end{array}$
2	$\begin{array}{l}\text { What are the situations in which combined footings are } \\ \text { preferred to isolated footings? }\end{array}$	$\begin{array}{c}\text { Remember \& } \\ \text { Understand }\end{array}$	8
3	$\begin{array}{l}\text { Under what circumstances is a trapezoidal shape preferred to a } \\ \text { rectangular shape for a two-column combined footing? }\end{array}$	$\begin{array}{l}\text { Understand }\end{array}$	8
4	$\begin{array}{l}\text { Design a square footing for a rectangular column 300 mm } \times \\ 500 \text { mm, reinforced with 6-25 } \varphi \text { bars, and carrying a service } \\ \text { load of 1250 kN. Assume soil with an allowable pressure of } \\ \text { 200 kN/m2 at a depth of 1.25 m below ground. Assume Fe 415 } \\ \text { grade steel for both column and footing, and M 20 grade } \\ \text { concrete for the footing and M 25 grade concrete for the } \\ \text { column. }\end{array}$	$\begin{array}{l}\text { Understand } \\ \text { \& }\end{array}$	remember

Prepared by: Ms. S.Bhagyalaxmi, Assistant Professor
Ms. PraveenaRao, Assistant Professor

HOD, CIVIL ENGINEERING

