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UNIT – I

1. (a) Summarize the discrete grid point method for finite difference approximation. [7M]
(b) Solve by Crank-Nicolson method, ∂2u

∂x2 = ∂u
∂t , 0 < x < 1, t > 0, u(x, 0) = 100(x − x2), u(o, t) =

0, u(1, t) = 0. Compute u for one time step with h =1
4 [7M]

2. (a) Define finite difference method. Summarize the advantages and disadvantages of finite difference
method. [7M]

(b) Compute u for one step by Crank-Nicolson method if ∂u
∂t = ∂2u

∂x2 , 0 < x < 5 u(x,0)=20, u(0,t)=0
and u(5,t)=100. [7M]

UNIT – II

3. (a) Explain the meanings of the concepts of consistency, stability, and convergence of numerical
methods. [7M]

(b) ”Prove that sum of consistency analysis and stability analysis is consistency convergence analysis”.
Justify your answer.

[7M]

4. (a) Explain five point formula for finite difference by alternate direction implicit method. [7M]
(b) Explain the stability analysis of implicit methods and describe the types of errors. [7M]

UNIT – III

5. (a) Explain the method of characteristics for the hyperbolic partial differential equation. [7M]
(b) Solve ∂2u

∂t2
= ∂2u

∂x2 , 0 < x < 1; t > 0, using explicit method given that u(x, 0) = 0; ut(x, 0) = 0,
u(0, t) = 0 and u(1, t) = 100 sin(πt). Compute u for four time steps with h = 0.25. [7M]

6. (a) Prove that there is no explicit, unconditionally stable system for hyperbolic partial differential
equation [7M]

(b) Explain the Lax-Wendroff for the partial differential equation with an example in multiple di-
mensional. [7M]
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UNIT – IV

7. (a) Given the values of u(x, y) on the boundary of the square in the figure 1, evaluate the function
u(x, y) satisfying the Laplace equation uxx + uyy = 0 at the pivotal points. [7M]

Figure 1

(b) Solve uxx + uyy = −(x+ y)2 over the square region bounded by lines x =0, y = 0, x = 3,
y = 3 given that u = 0 throughout the boundaries taking h = 1. [7M]

8. (a) Explain solution of Laplace’s equation [7M]
(b) Solve the Poisson equation ∇2u = −10(x2 + y2 +10) over the square mesh with sides x = 0; y =

0; x = 3; y = 3 with u = 0 on the boundary and mesh length=1. [7M]

UNIT – V

9. (a) Explain the convergence of iteration methods to solve large linear systems. [7M]
(b) Using Galerkin’s method to solve the boundary value problem y′′-y+x = 0; 0 < x < 1; y(0) = 0,

y(1) = 0. [7M]

10. (a) Explain weighted residual method with an example [7M]
(b) Using finite element method to solve y”+1 = 0; 0 < x < 1; y(0) = 0; y(1) = 0. [7M]
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