Hall Ticket	et No	uestion Paper Code: BCC002		
INSTITUTE OF AERONAUTICAL ENGINEERING				
EUCATION FOR LIBER	(Autonomous)			
ON FOR LIBE	M.Tech I Semester End Examinations (Regular) - January/H	February, 2018		
	Regulation: IARE–R16			
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS				
	(CAD/CAM)			
Time: 3 Hou	ours	Max Marks: 70		

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

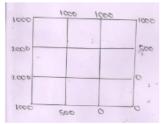
$\mathbf{UNIT}-\mathbf{I}$

- 1. (a) Summarize the discrete grid point method for finite difference approximation. [7M]
 - (b) Solve by Crank-Nicolson method, $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, 0 < x < 1, t > 0, u(x, 0) = 100(x x^2), u(o, t) = 0, u(1, t) = 0$. Compute u for one time step with $h = \frac{1}{4}$ [7M]
- 2. (a) Define finite difference method. Summarize the advantages and disadvantages of finite difference method. [7M]
 - (b) Compute u for one step by Crank-Nicolson method if $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 5 u(x,0)=20, u(0,t)=0 and u(5,t)=100. [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Explain the meanings of the concepts of consistency, stability, and convergence of numerical methods. [7M]
 - (b) "Prove that sum of consistency analysis and stability analysis is consistency convergence analysis". Justify your answer.

[7M]


- 4. (a) Explain five point formula for finite difference by alternate direction implicit method. [7M]
 - (b) Explain the stability analysis of implicit methods and describe the types of errors. [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Explain the method of characteristics for the hyperbolic partial differential equation. [7M]
 - (b) Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 1; t > 0, using explicit method given that u(x, 0) = 0; $u_t(x, 0) = 0$, u(0, t) = 0 and $u(1, t) = 100 \sin(\pi t)$. Compute u for four time steps with h = 0.25. [7M]
- 6. (a) Prove that there is no explicit, unconditionally stable system for hyperbolic partial differential equation [7M]
 - (b) Explain the Lax-Wendroff for the partial differential equation with an example in multiple dimensional. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7. (a) Given the values of u(x, y) on the boundary of the square in the figure 1, evaluate the function u(x, y) satisfying the Laplace equation $u_{xx} + u_{yy} = 0$ at the pivotal points. [7M]

Figure 1

- (b) Solve $u_{xx} + u_{yy} = -(x+y)^2$ over the square region bounded by lines x = 0, y = 0, x = 3, y = 3 given that u = 0 throughout the boundaries taking h = 1. [7M]
- 8. (a) Explain solution of Laplace's equation [7M]
 (b) Solve the Poisson equation ∇²u = −10(x² + y² + 10) over the square mesh with sides x = 0; y = 0; x = 3; y = 3 with u = 0 on the boundary and mesh length=1. [7M]

$\mathbf{UNIT} - \mathbf{V}$

9.	(a)	Explain the convergence of iteration methods to solve large linear systems.	[7M]
	(b)	Using Galerkin's method to solve the boundary value problem y'' -y+x = 0; 0 < x < 1; y(0)) = 0,
		y(1) = 0.	[7M]
10.	(a)	Explain weighted residual method with an example	[7M]

(b) Using finite element method to solve y''+1 = 0; 0 < x < 1; y(0) = 0; y(1) = 0. [7M]

 $-\circ\circ\bigcirc\circ\circ-$