COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTION

Course Code	Category	Ho	Hours / Week		Credits	Maximum Marks			
AHS004	Foundation	L	Т	Р	С	CIA	SEE	Total	
		3	1	-	4	30	70	100	
Contact Classes: 45	Tutorial Classes: 15	P	Practical Classes: Nil		es: Nil	Total Classes: 60			
OBJECTIVES:									
The course should enable the students to:									
I. Understand the basic theory of complex functions to express the power series.									
II. Evaluate the contour integration using Cauchy residue theorem.									
III. Enrich the knowled	dge of probability on singl	le rando	om varia	ables ai	nd probabili	ty distrib	utions.		
COURSE LEARNIN	G OUTCOMES (CLOs)	:							
1. Define continuity, differentiability, analyticity of a function using limits.									
2. Understand the conditions for a complex variable to be analytic and/or entire function.									
3. Understand the concepts of Cauchy-Riemann relations and harmonic functions.									
4. Understand the concept of complex differentiation to the real-world problems of signals modulated by									
electromagnetic waves.									
5. Evaluate the area under a curve using the concepts of indefinite integration									
6. Understand the concepts of the Cauchy's integral formula and the generalized Cauchy's integral									
formula.									
7. Evaluate complex functions as power series and radius of convergence of power series 9. Understand the concern of complex integration to the real world machines of flow with simulation									
o. Onderstand the concept of complex integration to the real-world problems of flow with circulation around a cylinder								1011	
 9 Solve the Taylor's and I aurent series expansion of complex functions 									
10 Understand the concept of different types of singularities for analytic function									
11. Evaluate poles, residues and solve integrals using Cauchy's residue theorem									
12. Evaluate bilinear transformation by cross ratio property.									
13. Identify the conditions of fixed and critical point of Bilinear Transformation.									
14. Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum									
Mechanical scattering and Quantum theory of atomic collisions.									
15. Demonstrate an understanding of the basic concepts of probability and random variables.									
16. Classify the types of random variables and calculate mean, variance.									
17. Finding moment al	bout origin, central momen	nts, mo	ment ge	eneratir	ng function	of probab	ility		
distribution.			_						
18. Understand the concept of random variables to the real-world problems like graph theory, machine								nine	
learning and natural language processing.									
19. Recognize where the binomial distribution and poisson distribution could be appropriate model and								and	
11nd mean, varianc	e of the distributions.		of		uibuti an a				
20. Apply the interential methods relating to the means of normal distributions.								41	
21. Understand binomial distribution to the phenomena of real-world problem like sick versus healthy.								uly.	
22. Onderstand the mapping of normal distribution in real-world problem to predict soccer scores									
24 Possess the knowle	doe and skills for employ	ahility a	and to e	ucceed	in national	and inter	national	level	
competitive evaminatio	ons	aonity (in national	and much	interoritur	10,01	

Unit-I	COMPLEX FUNCTIONS AND DIFFERENTIATION	Classes: 10				
Complex functions differentiation and integration: Complex functions and its representation on argand plane, concepts of limit, continuity, differentiability, analyticity, Cauchy-Riemann conditions and harmonic functions; Milne-Thomson method.						
Unit -II	COMPLEX INTEGRATION	Classes: 08				
Line integral: Evaluation along a path and by indefinite integration; Cauchy's integral theorem; Cauchy's integral formula; Generalized integral formula; Power series expansions of complex functions and contour Integration: Radius of convergence.						
Unit -III	POWER SERIES EXPANSION OF COMPLEX FUNCTION	Classes: 10				
Expansion in Taylor's series, Maclaurin's series and Laurent series. Singular point; Isolated singular point; Pole of order m; Essential singularity; Residue: Cauchy Residue Theorem. Evaluation of Residue by Laurent Series and Residue Theorem. Evaluation of integrals of the type $\int_{0}^{2\pi} f(\cos\theta, \sin\theta) d\theta$ and $\int_{-\infty}^{\infty} f(x) dx$						
Bilinear Ira	nstormation					
Unit -IV	SINGLE RANDOM VARIABLES	Classes: 09				
Random variables: Discrete and continuous, probability distributions, mass function-density function of a probability distribution. Mathematical expectation. Moment about origin, central moments, moment generating function of probability distribution.						
Unit -V	PROBABILITY DISTRIBUTIONS	Classes: 08				
Binomial, Poisson and normal distributions and their properties.						
Text Book	Text Books:					
 Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 10th Edition, 2010 B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2015. 						
Reference Books:						
 T.K.V Iyengar, B.Krishna Gandhi, "Engineering Mathematics - III", S. Chand & Co., 12th Edition, 2015. T.K.V Iyengar, B.Krishna Gandhi, "Probability and Statistics", S. Chand & Co., 7th Edition, 2015. Churchill, R.V. and Brown, J.W, "Complex Variables and Applications", Tata Mc Graw-Hill, 8th Edition, 2012. 						
Web References:						
 http://www.efunda.com/math/math_home/math.cfm http://www.ocw.mit.edu/resourcs/#Mathematics http://www.sosmath.com http://www.mathworld.wolfram.com 						
E-Text Books:						
 http://www.keralatechnologicaluniversity.blogspot.in/2015/06/erwin-kreyszig-advanced-engineering- mathematics-ktu-ebook-download.html http://www.faadooengineers.com/threads/13449-Engineering-Maths-II-eBooks 						