

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	FUND	FUNDAMENTALS OF DATABASE MANAGEMENT SYSTEMS						
Course Code	ACS55	53						
Programme	B.Tech	B.Tech						
Semester	VII	VII EEE ME						
Course Type	Electiv	Elective						
Regulation	IARE - R16							
			Theory		Practi	cal		
Course Structure	Lecti	ıres	Tutorials	Credits	Laboratory	Credits		
	3		-	3	-	-		
Chief Coordinator	Ms. K Radhika, Assistant Professor							
Course Faculty	Ms. P	Ms. P Navya, Assistant Professor						

I. COURSE OVERVIEW:

This course introduces the core principles and techniques required in the design and implementation of database systems. This introductory application-oriented course covers the relational database systems RDBMS - the predominant system for business, scientific and engineering applications at present. It includes Entity-Relational model, Normalization, Relational model, Relational algebra, and data access queries as well as an introduction to SQL. It also covers essential DBMS concepts such as: Transaction Processing, Concurrency Control and Recovery. It also provides students with theoretical knowledge and practical skills in the use of databases and database management systems in information technology applications.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACS002	II	Data Structures	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Database Management Systems	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	/	Quiz	'	Assignments	/	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component	Component Theory				
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks	
CIA Marks	20	05	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Ouiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Assignment
	mathematics, science, engineering fundamentals, and		/Quiz
	an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis : Identify, formulate, review research	2	Seminar
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first		
	principles of mathematics, natural sciences, and		
	engineering sciences		
PO 3	Design / development of solutions: Design solutions	3	Mini Project
	for complex engineering problems and design system		
	components or processes that meet the specified needs		
	with appropriate consideration for the public health		
	and safety, and the cultural, societal, and		
	environmental considerations.		
PO 5	Modern tool usage: Create, select, and apply	3	Seminar
	appropriate techniques, resources, and modern		

Program Outcomes (POs)	Strength	Proficiency assessed by
engineering and IT tools including prediction and		
modeling to complex engineering activities with an		
understanding of the limitations.		

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: An ability to understand the basic	2	Seminar
	concepts in Electronics & Communication Engineering		
	and to apply them to various areas, like Electronics,		
	Communications, Signal processing, VLSI, Embedded		
	systems etc., in the design and implementation of		
	complex systems.		
PSO 2	Problem-Solving Skills: An ability to solve complex	2	Assignment / Quiz
	Electronics and communication Engineering problems,		
	using latest hardware and software tools, along with		
	analytical skills to arrive cost effective and appropriate		
	solutions.		
PSO 3	Successful Career and Entrepreneurship: An	3	Mini Project
	understanding of social-awareness & environmental-		
	wisdom along with ethical responsibility to have a		
	successful career and to sustain passion and zeal for		
	real-world applications using optimal resources as an		
	Entrepreneur.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The cour	The course should enable the students to:					
I	Understand the role of database management system in an organization and learn the database concepts.					
II	Design databases using data modelling and data normalization techniques.					
III	Construct database queries using relational algebra and calculus.					
IV	Understand the concept of a database transaction and related database facilities.					
V	Learn how to evaluate set of queries in query processing.					

IX. COURSE OUTCOMES (COs):--

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	To understand the features of database	CLO 1	Define the terminology, features, and characteristics of database system
	management systems and	CLO 2	Differentiate database systems from file systems
	Relational database.	CLO 3	Describe Data Models, Schemas, Instances, Three
		CLO 3	Schema Architecture and DBMS Component Modules
		CLO 4	Analyze an information storage problem and derive an information model expressed in the form of an entity relation diagram.
		CLO 5	Model the real world database systems using Entity Relationship Diagrams (ERD) from the requirements specification.
CO 2	Design databases using	CLO 6	Describe basics of the relational data model.
	data modelling	CLO 7	Transform an information model into a relational database schema and implement schema using data definition language and/or utilities.
		CLO 8	Formulate solutions to a broad range of query problems using relational algebra.
		CLO 9	Apply relational calculus to solve broad range of query problems.
CO 3	To use SQL- the standard	CLO 10	Demonstrate SQL queries with correlated subqueries
	language of relational databases.	CLO 11	Illustrate the Functional Dependencies , Inference Rules, Minimal Sets of FDs
		CLO 12	Understand normalization theory and improve the design by normalization.
CO 4	To understand the concept	CLO 13	Understand the properties of transaction(ACID)
	of Transaction and Query processing.	CLO 14	Demonstrate serializability by taking various schedules
		CLO 15	Gain knowledge on transaction processing to maintain consistency and integrity of data in database systems.
		CLO 16	Describe concurrency control techniques to implement data integrity in database systems.
		CLO 17	Illustrate various backup and recovery techniques for database systems.
CO 5	Learn how to evaluate	CLO 18	Illustrate various lock based protocols
	time stamp based	CLO 19	Analyze various time stamp based protocols
	protocols and paging	CLO 20	Understand the concepts of update and shadow paging

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
ACS553.01	CLO 1	Define the terminology, features, and	PO 1	3
		characteristics of database system		
ACS553.02	CLO 2	Differentiate database systems from file systems	PO 1,PO 2	3
ACS553.03	CLO 3	Describe Data Models, Schemas, Instances, Three	PO 1	3
		Schema Architecture and DBMS Component		
		Modules		
ACS553.04	CLO 4	Analyze an information storage problem and	PO 2, PO 3	3
		derive an information model expressed in the form		
		of an entity relation diagram.		
ACS553.05	CLO 5	Model the real world database systems using	PO 2, PO 3	2
		Entity Relationship Diagrams (ERD) from the	PO 5	
		requirements specification.		

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
ACS553.06	CLO 6	Describe basics of the relational data model.	PO 1	3
ACS553.07	CLO 7	Transform an information model into a relational	PO 2, PO 3	2
		database schema and implement schema using		
		data definition language and/or utilities.		
ACS553.08	CLO 8	Formulate solutions to a broad range of query	PO 2, PO 3	3
		problems using relational algebra.		
ACS553.09	CLO 9	Apply relational calculus to solve broad range of	PO 2, PO 3	3
		query problems.	,	
ACS553.10	CLO 10	Illustrate the Functional Dependencies, Inference	PO 1, PO 2	2
		Rules, Minimal Sets of FDs		
ACS553.11	CLO 11	Understand normalization theory and improve the	PO 2, PO 3	2
		design by normalization.	,	
ACS553.12	CLO 12	Understand the properties of transaction(ACID)	PO 1	2
ACS553.13	CLO 13	Demonstrate serializability by taking various	PO 1	3
7105555.15	CLO 13	schedules	101	3
ACS553.14	CLO 14		PO 1, PO 2	2
7105555.14	CLO 14	maintain consistency and integrity of data in	101,102	2
		database systems.		
ACS553.15	CLO 15	Describe concurrency control techniques to	PO 1, PO 2	2
1105555.15	CLO 13	implement data integrity in database systems.	101,102	2
ACS553.16	CLO 16		PO 1, PO 2	2
		for database systems.		_
ACS553.17	CLO 17	Ť	PO 1, PO 2	3
		control, Database recovery techniques	- , -	
ACS553.18	CLO 18		PO 1	3
ACS553.19	CLO 19	Analyze various time stamp based protocols PO 1,PO 2		3
ACS553.20	CLO 20	Understand the concepts of update and shadow	PO 1, PO 2	3
		paging	<u> </u>	
L		1 0 0		

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes		Program C	Outcomes (P	Program Specific Outcomes (PSOs)			
(COs)	PO 1	PO 2	PO 3	PO 5	PSO1	PSO2	PSO3
CO 1	3						
CO 2		2		2			
CO 3		3				3	
CO 4	3	2					
CO 5		2				2	

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)									ram Sp					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2		3													
CLO 3	3												2		
CLO 4	3		3												
CLO 5			2		3									2	1
CLO 6	3														
CLO 7			2											2	
CLO 8			3											2	
CLO 9			3											3	
CLO 10		2													
CLO 11			2											2	
CLO 12	2														
CLO 13	3														
CLO 14		2											2		
CLO 15		2												2	
CLO 16		2												2	
CLO 17		3													
CLO 18	3												2		
CLO 19		3											2		
CLO 20	2 1	3			1	_									

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO1, PO2, PO3,PO5, PSO1	SEE Exams	PO1, PO2, PO3,PO5, PSO1	Assignments	PO1, PO2, PO3, PSO1	Seminars	PO1, PO2, PO3,PO5, PSO1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO3,PO5, PSO1						

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

L	UNIT-I	CONCEPTUAL MODELING

Introduction to file and database systems: Database system structure, data models, introduction to network and hierarchical models, ER model, relational model.

UNIT -II RELATIONAL APPROACH

Relational algebra and calculus: Relational algebra, selection and projection, set operations, renaming, joins, division, examples of algebra queries, relational calculus, tuple relational calculus

UNIT -III BASIC SQL QUERY AND NORMALIZATION

SQL data definition; Queries in SQL: updates, views, integrity and security, relational database design. Normal Forms: 1NF, 2NF, 3NF and BCNF.

UNIT -IV TRANSACTION MANAGEMENT

Transaction processing: Introduction, need for concurrency control, desirable properties of transaction, schedule and recoverability, serializability and schedules

UNIT -V CONCURRENCY CONTROL

Concurrency control; Types of locks: Two phases locking, deadlock, timestamp based concurrency control, recovery techniques, concepts, immediate update, deferred update, shadow paging.

Text Books:

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw-Hill, 4th Edition, 2002.

Reference Books:

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education, 3rd Edition, 2003.
- 2. Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company, 3rd Edition, 2003.
- 3. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", Pearson Education, United States, 1st Edition, 2000.
- 4. Peter Rob, Corlos Coronel, "Database System, Design, Implementation and Management", Thompson Learning Course Technology, 5th Edition, 2003.

XV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture	Topics to be covered	Course	Reference
No		Learning	
		Outcomes	
		(CLOs)	
1-3	Introduction, Data base System Applications, Purpose of data	CLO 1	T2: 1.1- 1.5
	base Systems, View of Data - Data Abstraction, Instances		
	and Schemas Data Models,, Database Languages, Data base		
	access for applications Programs		
4-6	Transaction Management component of DB architecture,	CLO 2	T2: 1. 6-1.8,1.10,
	Data base users, History of database systems, Database		T1: 2.1
	design, ER		
	Diagrams.		

7-9	Entities, Attributes and entity sets, Relationships and		T1: 2.2-2.6
	relationship sets, Additional features of ER model,	CLO4, CLO5	
	Conceptual design with ER model, Conceptual design for		
10.12	large enterprises	CI O C	F1 2127
10-13	Relational Model: Introduction to the Relational Model –	CLO 6,	T1: 3.1-3.7
	Integrity Constraint Over relations, Enforcing Integrity	CLO 7, CLO 8	
14-16	constraints – Querying relational data		T1. 4 1 4 2 2
14-16	Relational Algebra and Calculus: Relational Algebra –	CLO 8, CLO 9	T1: 4.1,4.2.2
	Selection and projection –set operations – renaming, Joins – Division	CLO9	
17-19	Relational calculus – Tuple relational Calculus	CLO 10	T1:4.3, 4.4
20-24	Form of Basic SQL Query – Examples of Basic SQL Queries	CLO 14,	T1: 5.2-5.5
	Comparison Operators - Aggregative Operators, NULL	CLO 15	
	values, Logical connectivity's - AND, OR and NOT,		
	Integrity Constraints in SQL		
25-27	Introduction to Nested Queries - Correlated Nested Queries	CLO 16,	T1: 5.6- 5.8
	Set Comparison Operators – Aggregative Operators, Triggers	CLO 17	
	and Active Data bases		
28-30	Introduction to Schema refinement - Problems Caused by	CLO 11	T1: 19.1,19.1.3
	redundancy ,Decompositions - Problem related to		
21.22	decomposition	GY 0. 12	T2 10 1 10 0
31-33	Functional dependencies, reasoning about FDS ,Lossless join	CLO 12	T2: 19.4-19.8
24.27	Decomposition , Dependency preserving decomposition	GI O 12	F2 10 0 10 0
34-37	Schema refinement in Data base Design, Normal Forms,	CLO 13, CLO 14	T2: 19.8-199
38-41	MVDs, JDs		T2: 15.1-15.29
38-41	Transaction Management: Transaction Concept-Transaction State- Implementation of atomicity and Durability,	CLO 18	12: 15.1-15.29
	Concurrent Executions, Serializability, Recoverability,		
	Implementation of Isolation, Testing for Serializability.		
42-43	Concurrency control; Types of locks: Two phases locking,	CLO 18	T2: 16.1,16.2
.2 .5	deadlock, timestamp based concurrency control	220 10	T2: 16.3,16.4
44.45	1	GT 0 10	
44-45	Recovery techniques, concepts, immediate update, deferred	CLO 19,	T2: 17.1 -17.10
	update, shadow paging.	CLO 20	

XVII.GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	DESCRIPTION	PROPOSED	RELEVANCE	RELEVANCE
		ACTIONS	WITH POS	WITH PSOS
1	Conversion of ER model	Seminars / Guest	PO 2, PO 12	PSO 1
		Lecture		
2	Practical Implementation of	Assignments/ Lab	PO 3, PO 5,	PSO 2
	triggers and assertions using	experiments		
	PL/SQL			
3	Implementation of Transaction	Assignments/ Lab	PO 2, PO 5,	PSO 2
	and security restriction using	experiments		
	SQL.			

Prepared by:

Ms. K Radhika, Assistant Professor

HOD, EEE