Hall Ticke	t No	Question Paper Code: AHS006	
	INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)		
TON FOR LIBER	B.Tech I Semester End Examinations (Supplementary)	- February, 2018	
	${\bf Regulation: \ IARE-R16}$		
	ENGINEERING PHYSICS		

Common for (CSE | IT | ECE | EEE)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) What are ferromagnetic materials? Discuss the hysteresis loop with B-H curve. [7M]
 - (b) Sulphur is elemental solid dielectric whose dielectric constant is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given that sulphur density is $2.07 \times 10^3 \text{kg/m}^3$ and atomic weight is 32.07. [7M]
- 2. (a) What is Magnetic dipole moment? Discuss the classification of magnetic materials. [7M]
 - (b) An elemental solid dielectric material has polarizability $7 \times 10^{-40} F m^2$. Assuming the internal field to be Lorentz field. Calculate the dielectric constant for the material if the material has 3×10^{28} atoms $/m^3$. [7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a) Explain the construction and working of ruby laser with neat diagram.	[7M]
	(b) Discuss the conditions for laser action and draw block diagram of laser system.	[7M]

4. (a) Give the construction and working of He-Ne laser.

[7M]

(b) Calculate the energy difference in eV between the two energy levels of Neon atoms of He-Ne laser if the transition between these levels results in emission of light of wavelength = 632.8nm [7M]

$\mathbf{UNIT} - \mathbf{III}$

5.	(a) Explain briefly bottom-up fabrication of nanomaterial by sol-gel method.	[7M]
	(b) Explain quantum confinement with respect to principle of nanotechnology.	[7M]
6.	(a) Explain chemical vapour deposition to synthesize nanomaterials.	[7M]
	(b) Explain the characterization of nanomaterial by XRD.	[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) What are the properties of matter waves? Obtain the expression of wave function for a p in one dimensional potential well of infinite height.	particle [7M]
	(b) Calculate the velocity and kinetic energy of an electron of wavelength 1.66 X 10^{-10} m.	
		[7M]
8.	(a) Describe Davisson and Germer experiment to verify matter waves.	[7M]
	(b) Give the physical significance of wave function.	[7M]
$\mathbf{UNIT}-\mathbf{V}$		
9.	(a) Derive an expression for the carrier concentration in p -type semiconductor,	[7M]

(b) The energy gap of Ga As is 1.42 eV. The effective masses of electrons and holes are: $0.067 m_0$ and $0.48 m_0$ respectively. Calculate the concentration of electrons at 300 K. [7M]

10. (a) Explain Hall effect and mention its uses.

(b) Derive an expression for number of electrons per unit volume in the conduction band of n type semiconductor. [7M]

 $-\circ\circ\bigcirc\circ\circ-$

[7M]