2 000

Xl INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad -500 043

ELECTRONICS & COMMUNICATION ENGINEERING

COURSE LECTURE NOTES

Course Name

DIGITAL SIGNAL PROCESSORS AND ARCHITECTURE

Coordinator

Course Code AEC507

Programme B.Tech

Semester Vil

Course Ms. C.Devisupraja, Assistant Professor, ECE

Lecture Num

bers | 1-63

Topic Covere

d All

COURSE OBJECTIVES

The course should enable the students to:

Impart the knowledge of basic DSP concepts and number systems to be used, different types of
A/D, D/A conversion errors.

Learn the architectural differences between DSP and General purpose processor.

Learn about interfacing of serial & parallel communication devices to the processor.

Implement the DSP & FFT algorithms.

COURSE LEARNING OUTCOMES (CLOs):
Students, who complete the course, will have demonstrated the ability to do the following:

AEC507.01

Understand how digital to analog (D/A) and analog to digital (A/D) converters operate on a
signal and be able to model these operations mathematically.

AEC507.02

Understand the inter-relationship between DFT and various transforms.

AEC507.03

Understand the IEE-754 floating point and source of errors in DSP implementations.

AEC507.04

Understand the fast computation of DFT and appreciate the FFT Processing.

AEC507.05

Understand the concept of multiplier and multiplier Accumulator.

AEC507.06

Design SMID,VLIW architectures.

AEC507.07

Understand the modified bus structures and memory access in PDSPs.

AEC507.08

Understand the special addressing modes in PDSPs.

1

AECS07.09 | understand the architecture of TMS320C54XX DSPs.
AEC507.10 | Understand the addressing modes and memory space of TMS320C54XX DSPs.

AECS07.11 | ynderstand the various interrupts and pipeline operation of TMS320C54XX processors.

AEC507.12 Analyze the Program control, instruction set and programming.
AECS07.13 | ynderstand the concept of on-chip Peripherals.

AEC507.14 | Understand the significance of memory space organization.

AEC507.15 Analyze external bus interfacing signals.

AEC507.16 Explain about parallel 1/0O interface, programmed 1/O.

AECS07.17 | Understand the significance of Interrupts and Direct Memory Access.

AECS507.18 | Understand the basic concepts of convolution and correlation.
AEC507.19 Compare the characteristics of IR and FIR filters.

AECS507.20 Analyze the concepts of interpolation and decimation filters.

SYLLABUS

UNIT —1: INTRODUCTION TO DIGITAL SIGNAL PROCESSING

Introduction: Digital signal-processing system, discrete Fourier Transform (DFT) and fast Fourier transform (FFT),
differences between DSP and other micro processor architectures; Number formats: Fixed point, floating point and block
floating point formats, IEEE-754 floating point, dynamic range and precision, relation between data word size and
instruction word size; Sources of error in DSP implementations: A/D conversion errors, DSP computational errors, D/A
conversion errors, Q-notation.

UNIT - 11: ARCHITECTURE OF PROGRAMMABLE DSPs

Multiplier and multiplier accumulator, modified bus structures and memory access in PDSPs, multiple access memory,
multiport memory, SIMD, VLIW architectures, pipelining, special addressing modes in PDSPs, on-chip peripherals.

UNIT — 111: OVERVIEW OF TMS320C54XX PROCESSOR

Architecture of TMS320C54XX DSPs, addressing modes, memory space of TMS320C54XX processors. Program
control, instruction set and programming, on-chip peripherals, interrupts of TMS320C54XX processors, pipeline
operation.

UNIT - IV: INTERFACING MEMORY AND 1/0 PERIPHERALS TO PDSPs

Memory space organization, external bus interfacing signals, memory interface, parallel 1/O interface, programmed 1/O,
interrupts and 1/O, direct memory access (DMA).

UNIT - V: IMPLEMENTATIONS OF BASIC DSP ALGORITHMS

The Q-notation, convolution, correlation, FIR filters, IR filters, interpolation filters, decimation filters, an FFT algorithm
for DFT filters computation of the signal spectrum.

UNIT-1
Introduction to Digital Signal Processing

DSP is a technique of performing the mathematical operations on the signals in digital domain.
As real time signals are analog in nature we need first convert the analog signal to digital, then we
have to process the signal in digital domain and again converting back to analog domain. Thus ADC is
required at the input side whereas a DAC is required at the output end. A typical DSP system is as
shown in figure 1.1.
« The main function of low pass ant aliasing filter is to band limit the input signal to the folding
frequency without distortion.
* It should be noted that even if the signal is band limited, there is always wide-band additive
noise which will be folded back to create aliasing.
* When an analog voltage is connected directly to an ADC, the conversion process can be
adversely affected if the voltage is changing during the conversion time.
» The quality of conversion process can be improved by using sample and hold circuit

Analog Band-limited Digital Processed Output Analog
input signal signal digital signal signal output
3 Analog 3 ADC > DS DAC Recoqstrucnon 3
filter processor filter
I I
I 1 I 1 I
i v] v i
s %] 41l
v Analog to Digital , Digital to Analog v
To avoid Converter : Converter To -avoid
aliasing for [aliasing for
sampling > sampling

Computer /
microprocessor / micro
controller/ etc.

Advantages of DSP

o Programmability: software digital signal processes can be quickly modified, in contrast to analog circuits

which must be physically rearranged.
o Versatility: Flexible and easy to upgrade.
o Stability: Less sensitive environmental changes such as electromagnetic interference.

Need for DSP

Analog signal Processing has the following drawbacks:

They are sensitive to environmental changes

Aging

Uncertain performance in production units

Variation in performance of units

Cost of the system will be high

Scalability

If Digital Signal Processing would have been used we can overcome the above shortcomings of ASP.

YVVVYYVY

A Digital Signal Processing System

A computer or a processor is used for digital signal processing. Anti aliasing filter is a LPF
which passes signal with frequency less than or equal to half the sampling frequency in order to avoid
Aliasing effect. Similarly at the other end, reconstruction filter is used to reconstruct the samples from
the staircase output of the DAC (Figure 1.2).

Aalasng |} ADC | DSP | DAC | Aulsing
Filfer Filter

_'.

Fig 1.2 The Block Diagram of a DSP System

Signals that occur in a typical DSP are as shown in figure 1.3.

0-5 T] I 1 ‘-’"//'/I—f)
(2) 193
0 1 L 1 1]] 1
0.1 0.15 0.2 0.25 0.3 0.35 04 045 0
0.5 T T T T T T T
-) 1).193 T
Ot]] 1 1
0.1 0.15 0.2)
0.5 : ' 0 %5 0}3 0.:?5 0'.4 0.'45 035
(©) 193 \
(
0) 1 1 1 1
a 50.1 0.15 0.2 0.25 03 0.35 04 0.45 4QDS
o 1 L 1 1] L 1
(d) 2 T
Oo 1 ? 1 1 L
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5 T T T T T T T
|
0 1]]] 1 | 1
0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5

Fig 1.3: (a) Continuous time signal

(d) Quantized Signal

(b) Sampled Signal
(e) DAC Output

(¢) Sampled Data Signal

The Sampling Process

ADC process involves sampling the signal and then quantizing the same to a digital value. In
order to avoid Aliasing effect, the signal has to be sampled at a rate at least equal to the Nyquist rate.

The condition for Nyquist Criterion is as given below, fs= 1/T [] [1 2 fm

Where, fs is the sampling frequency, fm is the maximum frequency component in the message
signal. If the sampling of the signal is carried out with a rate less than the Nyquist rate, the higher
frequency components of the signal cannot be reconstructed properly. The plots of the reconstructed

outputs for various conditions are as shown in figure 1.4.

undersampling plot

{1 A f
\ f
|
f
|

0.005 0.01 0015 0.02 0.025
Nyguist plot
4 I‘" + + £+ + < e I\h + + + %] <+ + + + + I + 4
‘1 I
f l |
|
i I [
L T " y 3 l S § T i T I ‘r] T T T l . 2 L 3 ¥ b 7
0.005 0.01 0015 00 0.0% 003 0.035 0.04 0.045 005
Oversampling plot
T 1] § N 4 1 - - - i
VAARNAR AR AR A AR L L =

amplitude

B
o
e
e
e
el

i
i

!

—+ reconstructed |

t 1
00%

Fig 1.4 Verification of Sampling Theorem

0.04

(lj

* T

0.045 005

Discrete Time Sequences

Consider an analog signal x(t) given by, x(t)= A cos (2[] ft). If this signal is sampled at a
Sampling Interval T, in the above equation replacing t by nT we get, x (nT) = A cos (2[1 fnT)
where n=0,1, 2,..etc
For simplicity denote x (nT) as x (n)
» x(n)=A cos (2nfnT) where n= 0,1, 2,..etc
We have fs=1/T also 0[] = 2[TInT
» [Ix(n)=Acos (2afnT)= A cos (2nfn/fs) = A cos m
The quantity [is6 called as digital frequency.
0 = 2nfT = 2nf/fs radians

& =00
1

o
pe

Fig 1.5 A Cosine Waveform

A sequence that repeats itself after every period N is called a periodic sequence.

Consider a periodic sequence x (n) with period N x (n)=x (n+N) n=........ ,-1,0,1,2,........

Frequency response gives the frequency domain equivalent of a discrete time sequence. It is denoted
as X(e%=>x(n) e

Frequency response of a discrete sequence involves both magnitude response and phase response.
Discrete Fourier Transform and Fast Fourier Transform
DFT Pair:
DFT is used to transform a time domain sequence x (n) to a frequency domain sequence X

(K).The equations that relate the time domain sequence x (n) and the corresponding frequency domain
sequence X (K) are called DFT Pair and is given by,

DFT(FFT):

X()= (). e'“j[F]”(k =010 N 1)

IDFT(IFFT)-

1 -1 _,r[%r]mi'
x(n)=—> Xik)-e (n=01...N=1)
N3

The Relationship between DFT and Frequency Response:

We have,

X (e J%)=Xx(n) e-In°

Also

X (K)=Zx(n) e-] 2N

s X (K)= X (ed®) at © = 2nk/N

From the above expression it is clear that we can use DFT to find the Frequency response of a
discrete signal. Spacing between the elements of X(k) is given as [f=fs/N=1/NT=1/T0.Where TO sthe
signal record length.

It is clear from the expression of [f that, in order to minimize the spacing between the samples
N has to be a large value. Although DFT is an efficient technique of obtaining the frequency response
of a sequence, it requires more number of complex operations like additions and multiplications.

Thus many improvements over DFT were proposed. One such technique is to use the
periodicity property of the twiddle factor e#2" N, Those algorithms were called as Fast Fourier
Transform Algorithms. The following table depicts the complexity involved in the computation using
DFT algorithms.

11

Table 1.1 Complexity in DFT algorithm

Operations Number of Computations
Complex Multiplications N*
Complex Additions N (N-1)
Real Multiplications 4N
Real Additions 2N (2N-1)
Trigonomeltric Functions IN?

FFT algorithms are classified into two categories via

1. Decimation in Time FFT
2. Decimation in Frequency FFT

In decimation in time FFT the sequence is divided in time domain successively till we reach
the sequences of length 2. Whereas in Decimation in Frequency FFT, the sequence X(K) is divided
successively. The complexity of computation will get reduced considerably in case of FFT algorithms.

Linear Time Invariant Systems

A system which satisfies superposition theorem is called as a linear system and a system that
has same input output relation at all times is called a Time Invariant System. Systems, which satisfy

both the properties, are called LTI systems.

[nput
X (n)

—

LTI System

—»

Output
y(n)

Fig 1.6 An LTI System

LTI systems are characterized by its impulse response or unit sample response in time domain whereas
it is characterized by the system function in frequency domain.

Convolution

Convolution is the operation that related the input output of an LTI system, to its unit sample
response. The output of the system y (n) for the input x (n) and the impulse response of the system

12

being h (n) is given as y (n) = x(n) * h(n) = 3 (1 X(K) h(n-k), x(n) is the input of the system, h(n) is the
impulse response of the system, y(n) is the output of the system.

Z Transformation
Z Transformations are used to find the frequency response of the system. The Z Transform for
a discrete sequence x (n) is given by, X(Z)=>x(n) z"

The System Function
An LTI system is characterized by its System function or the transfer function. The system

function of a system is the ratio of the Z transformation of its output to that of its input. It is denoted as
H (Z) and is given by H (Z) =Y (Z2)/ X (2).

The magnitude and phase of the transfer function H (Z) gives the frequency response of the
system. From the transfer function we can also get the poles and zeros of the system by solving its
numerator and denominator respectively.

Digital Filters
Filters are used to remove the unwanted components in the sequence. They are characterized

by the impulse response h (n). The general difference equation for an Nth order filter is given by

y (n) =0 aky(n-kK)+ Y [bk x(n-k)
A typical digital filter structure is as shown in figure 1.7.

9)

Fig 1.7 Structure of a Digital Filter

Values of the filter coefficients vary with respect to the type of the filter. Design of a digital filter
involves determining the filter coefficients. Based on the length of the impulse response, digital filters
are classified into two categories via Finite Impulse Response (FIR) Filters and Infinite Impulse
Response (1IR) Filters.

13

FIR Filters
FIR filters have impulse responses of finite lengths. In FIR filters the present output depends
only on the past and present values of the input sequence but not on the previous output sequences.
Thus they are non recursive hence they are inherently stable.FIR filters possess linear phase response.
Hence they are very much applicable for the applications requiring linear phase response.
The difference equation of an FIR filter is represented as

y (n) = X bgx(n-k)

The frequency response of an FIR filter is given as
H (e‘ie)sz]\v e-jk?
H (Z)=Iby Z-K

The major drawback of FIR filters is, they require more number of filter coefficients to realize a
desired response as compared to IIR filters. Thus the computational time required will also be more.

IR Filters
Unlike FIR filters, IIR filters have infinite number of impulse response samples. They are
recursive filters as the output depends not only on the past and present inputs but also on the past
outputs. They generally do not have linear phase characteristics. Typical system function of such

filters is given by,

H(Z)= (h()+h]2‘]+l">22‘2+ hLZ‘L‘) /(l-ayz°]—a122‘2— uNZ‘N‘)

Stability of IIR filters depends on the number and the values of the filter coefficients. The major
advantage of IIR filters over FIR is that, they require lesser coefficients compared to FIR filters for the
same desired response, thus requiring less computation time.

FIR Filter Design
Frequency response of an FIR filter is given by the following expression,

H (e 1% =X by e-JK®

Design procedure of an FIR filter involves the determination of the filter coefficients bk.
bk = (1/27) | H (e 1°) e-1K® g0

IR Filter Design
IIR filters can be designed using two methods viz using windows and direct method. In this
approach, a digital filter can be designed based on its equivalent analog filter. An analog filter is
designed first for the equivalent analog specifications for the given digital specifications. Then using
appropriate frequency transformations, a digital filter can be obtained. The filter specifications consist
of passband and stopband ripples in dB and Passband and Stopband frequencies in rad/sec.

14

Magnitude
(dB)

Passband

Ripple

stopband \
\ttenuation

B B

Transition Frequency
Width

Fig 1.11 Lowpass Filter Specifications

Direct IR filter design methods are based on least squares fit to a desired frequency response. These
methods allow arbitrary frequency response specifications.

Decimation and Interpolation

Decimation and Interpolation are two techniques used to alter the sampling rate of a sequence.
Decimation involves decreasing the sampling rate without violating the sampling theorem whereas
interpolation increases the sampling rate of a sequence appropriately by considering its neighboring
samples.

Decimation
Decimation is a process of dropping the samples without violating sampling theorem. The

factor by which the signal is decimated is called as decimation factor and it is denoted by M. It is
given by,
y(m)=w(mM)=Z by x(mM-k ’u here w(n)= X bk x(n-k }\

Digital Low w (n) SDowln y (n)
ampler ——»

X (n)
——» Pass Filter

h 4

Fig 1.12 Decimation Process

15

Interpolation

Interpolation is a process of increasing the sampling rate by inserting new samples in between.
The input output relation for the interpolation, where the sampling rate is increased by a factor L, is
given as,
y(m)= X bk w(m-k)

where w(n)= x(m/L), m=0,xL, £20L......
0 Otherwise
Insert Low poss y e
(o (L-13 xZCM) - filter |—— =
=l =
Sompling Lf L
Freguency &

Fig 1.13 Interpolation Process

Problems:

1. Obtain the transfer function of the IIR filter whose difference equation is given by y (n)=
0.9y (n-1)+0.1x (n)
y (n)=0.9y (n-1)+0.1x (n)
Taking Z transformation both sides
Y(2)=09Z-1Y (2)+0.1X(2)
Y (2)[1-0.92-1]1=0.1 X (2)
The transfer function of the system is given bythe expression,
H (2)= Y(2)IX(2)
=0.1/[1-0.9Z7
Realization of the IIR filter with the above difference equation is as shown in figure.

0.1

(D

0.9 —

x(n)

Unit
Delay

y(n-1)

16

2. Letx(n)=[0369 12] be interpolated with L=3. If the filter
coefficients of the filters are bk=[1/3 2/3 1 2/3 1/3]. obtain the
interpolated sequence

After inserting zeros,

w(m)=[00030060090012]

bk=[1/3 2/3 1 2/3 1/3]

We have,

y(m)= [bk w(m-k) = b-2 w(m+2)+ b-1 w(m+1)+ b0 w(m)+ bl w(m-1)+ b2 w(m-2)
Substituting the values of m, we get

y(0)=b-2 w(2)+ b-1 w(1)+ b0 w(0)+ bl w(-1)+ b2 w(-2)=0
y(1)=b-2 w(3)+ b-1 w(2)+ b0 w(1)+ bl w(0)+ b2 w(-1)=1
y(2)=b-2 w(4)+ b-1 w(3)+ b0 w(2)+ bl w(1)+ b2 w(0)=2
Similarly we get the remaining samples as,
y(n)=[0123456789101112]

UNIT-2

Architectures for Programmable Digital Signal Processing
Devices

Basic Architectural Features
A programmable DSP device should provide instructions similar to a conventional
microprocessor. The instruction set of a typical DSP device should include the following,
a. Arithmetic operations such as ADD, SUBTRACT, MULTIPLY etc
b. Logical operations such as AND, OR, NOT, XOR etc
c. Multiply and Accumulate (MAC) operation
d. Signal scaling operation
In addition to the above provisions, the architecture should also include,
a. On chip registers to store immediate results
b. On chip memories to store signal samples (RAM)
c. On chip memories to store filter coefficients (ROM)

DSP Computational Building Blocks

Each computational block of the DSP should be optimized for functionality and speed and in
the meanwhile the design should be sufficiently general so that it can be easily integrated with other
blocks to implement overall DSP systems.

Multipliers
The advent of single chip multipliers paved the way for implementing DSP functions on a

VLSI chip. Parallel multipliers replaced the traditional shift and add multipliers now days. Parallel
multipliers take a single processor cycle to fetch and execute the instruction and to store the result.
They are also called as Array multipliers. The key features to be considered for a multiplier are:
a. Accuracy
b. Dynamic range
c. Speed

The number of bits used to represent the operands decides the accuracy and the dynamic range
of the multiplier. Whereas speed is decided by the architecture employed. If the multipliers are
implemented using hardware, the speed of execution will be very high but the circuit complexity will
also increases considerably. Thus there should be a tradeoff between the speed of execution and the
circuit complexity. Hence the choice of the architecture normally depends on the application.

Parallel Multipliers
Consider the multiplication of two unsigned numbers A and B. Let A be represented using m
bits as (Am-1 Am-2 Al A0) and B be represented using n bits as (Bn-1 Bn-2 B1 B0).
Then the product of these two numbers is given by,

A A AN

B; B, By By
ABy ABy ABy AgBy
ABy AB ABL Ay
3B, ABy AB, AB
AzB; AyBs A1B; AoB3
P7 Pé PS5 P4 P3 P2 P1 P0

This operation can be implemented paralleling using Braun multiplier whose hardware structure is as

shown in the figure 2.1.

DSP Algorithm and Architecture 10EC751

'3 N 2 "4

s
P. | P 6 Pe 1')<-, AF’{ T)'/,. P P o

Fig 2.1 Braun Multiplier for a 4X4 Multiplication

Multipliers for Signed Numbers

In the Braun multiplier the sign of the numbers are not considered into account. In order to
implement a multiplier for signed numbers, additional hardware is required to modify the Braun
multiplier. The modified multiplier is called as Baugh-Wooley multiplier.

Consider two signed numbers A and B,

m-d p
A=-A, 2™ + 2 A2!
=0

n-2 R
B=-B,2*! + fu B2
Product P=Pyip1----.. P, Py
m-2n-2 .. m-3 n-3 ;
P=Ap 1Bn 2™+ 2 2 AB2™ 2 AB, 2™ -2 Ay, BR™
i=0 F0

i=0 j=0 i=

Speed
Conventional Shift and Add technique of multiplication requires n cycles to perform the
multiplication of two n bit numbers. Whereas in parallel multipliers the time required will be the
longest path delay in the combinational circuit used. As DSP applications generally require very high
speed, it is desirable to have multipliers operating at the highest possible speed by having parallel
implementation.

Bus Widths

Consider the multiplication of two n bit numbers X and Y. The product Z can be at most 2n
bits long. In order to perform the whole operation in a single execution cycle, we require two buses of
width n bits each to fetch the operands X and Y and a bus of width 2n bits to store the result Z to the
memory. Although this performs the operation faster, it is not an efficient way of implementation as it
IS expensive. Many alternatives for the above method have been proposed. One such method is to use
the program bus itself to fetch one of the operands after fetching the instruction, thus requiring only
one bus to fetch the operands. And the result Z can be stored back to the memory using the same
operand bus. But the problem with this is the result Z is 2n bits long whereas the operand bus is just n
bits long. We have two alternatives to solve this problem, a. Use the n bits operand bus and save Z at
two successive memory locations. Although it stores the exact value of Z in the memory, it takes two
cycles to store the result.
b. Discard the lower n bits of the result Z and store only the higher order n bits into the memory. It is
not applicable for the applications where accurate result is required. Another alternative can be used
for the applications where speed is not a major concern. In which latches are used for inputs and
outputs thus requiring a single bus to fetch the operands and to store the result (Fig 2.2).

Do tex baa

MG p AL 4 7 7

Fig 2.2: A Multiplier with Input and Output Latches
Shifters

Shifters are used to either scale down or scale up operands or the results. The following
scenarios give the necessity of a shifter

a. While performing the addition of N numbers each of n bits long, the sum can grow up to n+log2 N
bits long. If the accumulator is of n bits long, then an overflow error will occur. This can be overcome
by using a shifter to scale down the operand by an amount of log2N.
b. Similarly while calculating the product of two n bit numbers, the product can grow up to 2n bits
long. Generally the lower n bits get neglected and the sign bit is shifted to save the sign of the product.
c. Finally in case of addition of two floating-point numbers, one of the operands has to be shifted
appropriately to make the exponents of two numbers equal.

From the above cases it is clear that, a shifter is required in the architecture of a DSP.

Barrel Shifters

In conventional microprocessors, normal shift registers are used for shift operation. As it
requires one clock cycle for each shift, it is not desirable for DSP applications, which generally
involves more shifts. In other words, for DSP applications as speed is the crucial issue, several shifts
are to be accomplished in a single execution cycle. This can be accomplished using a barrel shifter,
which connects the input lines representing a word to a group of output lines with the required shifts
determined by its control inputs. For an input of length n, log2 n control lines are required. And an
dditional control line is required to indicate the direction of the shift.

The block diagram of a typical barrel shifter is as shown in figure 2.3.

n

SHEFTE R Jl - —F—> OnEpnt

{
i

L/R No.- o L petdene
e\ One AOx

ConDwel 41\ pmu

Fig 2.3 A Barrel Shifter

Input bits

/lft

i

Output bits

—» 0,

I"I |

g 1

,;’\ I
iy

b . - ——
L » uj W e I
' =1 - 3
£ Ee
-1 (1 | C H) ‘[Oun F u ¢ { 2 f ;
Ao 0 (<o) Ks Az Ay Ho
Ao | & S A 2 A g fal 2 f‘n
Ay, 3 C $2) A, Az A- Ay
i 2 L 3z) Az Az Az A

(4]

Fig 2.4 Implementation of a 4 bit Shift Right Barrel Shifter

Figure 2.4 depicts the implementation of a 4 bit shift right barrel shifter. Shift to right by 0, 1, 2 or 3
bit positions can be controlled by setting the control inputs appropriately.

Multiply and Accumulate Unit

Most of the DSP applications require the computation of the sum of the products of a series of
successive multiplications. In order to implement such functions a special unit called a multiply and
Accumulate (MAC) unit is required. A MAC consists of a multiplier and a special register called
Accumulator. MACs are used to implement the functions of the type A+BC. A typical MAC unit is as

shown in the figure 2.5.

~z

b
i "\ »t £a)

M;U\ Ll e A

P odduckt Re (‘3-(».’(T)\

ﬂ ,\/2 ﬁ
_ A-D D\//S O 2 /

// 2. n

A c cranouJd o Ga*

A4 2"

Fig 2.5 A MAC Unit

Although addition and multiplication are two different operations, they can be performed in parallel.
By the time the multiplier is computing the product, accumulator can accumulate the product of the
previous multiplications. Thus if N products are to be accumulated, N-1 multiplications can overlap
with N-1 additions. During the very first multiplication, accumulator will be idle and during the last
accumulation, multiplier will be idle. Thus N+1 clock cycles are required to compute the sum of N
products.

Overflow and Underflow

While designing a MAC unit, attention has to be paid to the word sizes encountered at the
input of the multiplier and the sizes of the add/subtract unit and the accumulator, as there is a
possibility of overflow and underflows. Overflow/underflow can be avoided by using any of the
following methods viz
a. Using shifters at the input and the output of the MAC
b. Providing guard bits in the accumulator
c. Using saturation logic

Shifters
Shifters can be provided at the input of the MAC to normalize the data and at the output to de
normalize the same.

Guard bits

As the normalization process does not yield accurate result, it is not desirable for some
applications. In such cases we have another alternative by providing additional bits called guard bits in
the accumulator so that there will not be any overflow error. Here the add/subtract unit also has to be
modified appropriately to manage the additional bits of the accumulator.

Saturation L ogic

Overflow/ underflow will occur if the result goes beyond the most positive number or below
the least negative number the accumulator can handle. Thus the overflow/underflow error can be
resolved by loading the accumulator with the most positive number which it can handle at the time of
overflow and the least negative number that it can handle at the time of underflow. This method is
called as saturation logic. A schematic diagram of saturation logic is as shown in figure 2.7. In
saturation logic, as soon as an overflow or underflow condition is satisfied the accumulator will be
loaded with the most positive or least negative number overriding the result computed by the MAC
unit.

=] S
1o arnt mae célahu(————% A Ao o eiiatlak
ve lLue =

M Dp Loaton

rMuont p s
veadluua 7

< I (MSR) T

OUCA ‘» LC'VO/

LC‘E—; A-\l > undeaploro
s

Fig 2.7: Schematic Diagram of the Saturation Logic

Arithmetic and Logic Unit

A typical DSP device should be capable of handling arithmetic instructions like ADD, SUB,
INC, DEC etc and logical operations like AND, OR , NOT, XOR etc. The block diagram of a typical
ALU for a DSP is as shown in the figure 2.8.
It consists of status flag register, register file and multiplexers.

e - -

Fig 2.8 Arithmetic Logic Unit of a DSP

Status Flags

ALU includes circuitry to generate status flags after arithmetic and logic operations. These flags
include sign, zero, carry and overflow.

Qverflow Management
Depending on the status of overflow and sign flags, the saturation logic can be used to limit the

accumulator content.

Reqister File
Instead of moving data in and out of the memory during the operation, for better speed, a large set of

general purpose registers are provided to store the intermediate results.

Bus Architecture and Memory
Conventional microprocessors use Von Neumann architecture for memory management

wherein the same memory is used to store both the program and data (Fig 2.9). Although this
architecture is simple, it takes more number of processor cycles for the execution of a single
instruction as the same bus is used for both data and program.

, d0(NS C\’\(

Moo ,(_A" L J

Fig 2.9 Von Neumann Architecture

In order to increase the speed of operation, separate memories were used to store program and
data and a separate set of data and address buses have been given to both memories, the architecture
called as Harvard Architecture. It is as shown in figure 2.10.

P20 canho

'.;.4\'\1 ‘(;L’\ NLNS s —_—
}>‘h l";'\ [L')"\ Oy
Dk =
/L VLE AL L
N
f\ Ad o s
—.—/-DLL G
.T,) L " O ’.,\ A C A .f';L'L 'y

<

Fig 2.10 Harvard Architecture

Although the usage of separate memories for data and the instruction speeds up the processing,
it will not completely solve the problem. As many of the DSP instructions require more than one
operand, use of a single data memory leads to the fetch the operands one after the other, thus
increasing the delay of processing. This problem can be overcome by using two separate data
memories for storing operands separately, thus in a single clock cycle both the operands can be fetched

together (Figure 2.11).

\ ALK =
]' 7 :)[
4 f O/
: r'— E J
‘ " ' ¥ :.A i
| - 13
|
| - -4 — — — —
R o ‘
i) T 2 o~
H T °
— e / o AT\
£ — L 5
= L3 > —
= e I j ‘
< = ' Y -~
A i S ——— F.
- o ‘
l 1

NS —

Fig 2.11 Harvard Architecture with Dual Data Memory

Although the above architecture improves the speed of operation, it requires more hardware
and interconnections, thus increasing the cost and complexity of the system. Therefore there should be
a trade off between the cost and speed while selecting memory architecture for aDSP.

On-chip Memories
In order to have a faster execution of the DSP functions, it is desirable to have some memory
located on chip. As dedicated buses are used to access the memory, on chip memories are faster.
Speed and size are the two key parameters to be considered with respect to the on-chip memories.

Speed

On-chip memories should match the speeds of the ALU operations in order to maintain the single
cycle instruction execution of the DSP.

Size

In a given area of the DSP chip, it is desirable to implement as many DSP functions as possible. Thus
the area occupied by the on-chip memory should be minimum so that there will be a scope for
implementing more number of DSP functions on- chip.

Organization of On-chip Memories
Ideally whole memory required for the implementation of any DSP algorithm has to reside on-
chip so that the whole processing can be completed in a single execution cycle. Although it looks as a
better solution, it consumes more space on chip, reducing the scope for implementing any functional
block on-chip, which in turn reduces the speed of execution. Hence some other alternatives have to be
thought of. The following are some other ways in which the on-chip memory can be organized.

a As many DSP algorithms require instructions to be executed repeatedly, the instruction can be
stored in the external memory, once it is fetched can reside in the instruction cache.

b. The access times for memories on-chip should be sufficiently small so that it can be accessed more
than once in every execution cycle.

¢. On-chip memories can be configured dynamically so that they can serve different purpose at
different times.

Data Addressing Capabilities

Data accessing capability of a programmable DSP device is configured by means of its
addressing modes. The summary of the addressing modes used in DSP is as shown in the table below.
Table 2.1 DSP Addressing Modes

Addressing Operand Sample Format Operation
Mode
Immediate | Immediate Value ADD #imm #imm +A —»A
Register Register Contents ADD reg reg+A —» A
Direct Memory Address Register | ADD mem mem+A > A
Indirect Memory contents with | ADD *addreg *addreg +A —» A
address in the register

Immediate Addressing Mode
In this addressing mode, data is included in the instruction itself.

Register Addressing Mode
In this mode, one of the registers will be holding the data and the register has to be specified in
the instruction.

Direct Addressing Mode
In this addressing mode, instruction holds the memory location of the operand.

Indirect Addressing Mode
In this addressing mode, the operand is accessed using a pointer. A pointer is generally a
register, which holds the address of the location where the operands resides. Indirect addressing mode
can be extended to inculcate automatic increment or decrement capabilities, which has lead to the
following addressing modes.

Table 2.2 Indirect Addressing Modes

Addressing Mode Sample Format Operation
Post Increment ADD *addreg+ A —» A+ *Faddreg
addreg —» addreg+]1
Post Decrement ADD *addreg- A T A+ *addreg
addreg —» addreg-1
Pre Increment ADD +*addreg addreg —* addreg+1
A —» A+ *addreg
Pre Decrement ADD -*addreg addreg —» addreg-1

A —» A+ *addreg

Post_Add_Offset ADD *addreg, offsetreg+ | A —® A+ *addreg
addreg —» addreg+offsetreg

Post_Sub_Offset ADD *addreg, offsetreg- | A — A + *addreg
addreg — addreg-offsetreg
Pre_Add_Offset ADD offsetreg+,*addreg | addreg — addreg+oftsetreg
A —» A+ *addreg
Pre_Sub_Offset ADD offsetreg-,*addreg | addreg — addreg-offsetreg

A —» A+ *addreg

Special Addressing Modes

For the implementation of some real time applications in DSP, normal addressing
modes will not completely serve the purpose. Thus some special addressing modes are
required for such applications.

Circular Addressing Mode
While processing the data samples coming continuously in a sequential manner,

circular buffers are used. In a circular buffer the data samples are stored sequentially from
the initial location till the buffer gets filled up. Once the buffer gets filled up, the next data
samples will get stored once again from the initial location. This process can go forever as
long as the data samples are processed in a rate faster than the incoming datarate.

Circular Addressing mode requires three registers viz

a. Pointer register to hold the current location (PNTR)

b. Start Address Register to hold the starting address of the buffer (SAR)

c. End Address Register to hold the ending address of the buffer (EAR)

There are four special cases in this addressing mode. They are

a. SAR < EAR & updated PNTR > EAR
b. SAR < EAR & updated PNTR < SAR
c. SAR >EAR & updated PNTR > SAR
d. SAR > EAR & updated PNTR < EAR
The buffer length in the first two case will be (EAR-SAR+1) whereas for the next tow cases (SAR-
EAR+1)
The pointer updating algorithm for the circular addressing mode is as shown below.
: Pomter Updating Algoritlin

Updated PNTR. «— PNTR * nxrement

If SAR < EAR
And if Updated PNTR. = EAR then
New PNTR. «+—— Updated PNTR — Buffer size
And if Updated PNTR < SAR then
New PNTR Updated PNTR + Buffer sze

If SAR - EAR
Andd if Updated PNTR > SAR then
New PNTR. 44— Updated PNTR — Buffer size
And if Updated PNTR < EAR. then
New PNTR. —— Updated PNTR + Buffer sze

Flse
New PNTR «+—— Updated PNTR

Four cases explained earlier are as shown in the figure 2.12.

Lots addaens

< Al %
RNews PTES H_ Cal

ENa '((/ Mo PRTE

tp doltd PR — — — = =~— E AR

“iq I addaom

'..'Lpd.a&'cd L e

l_c;_s (ldd.d\

"

-

}/

thighn e = |
(am 'y SARCEAL § Cat Uy SAE Cene. 4
Updaled FRNTR > €A L wpdatod POTE C SAR
lvac (_dsL‘L\ Lm«b (\(Ld\
Wpdalid PRTh[— — — —
AR 1}
g EAL \
&au

W PRTE .;_nf Yt \

f (Cq v\,(li

SA e

// N PRTKR h—;.#

} AR
afsd bl | =~ — = -
H\'g‘«\ addi

Fig 2.12 Special Cases in Circular Addressing Mode

Bit Reversed Addressing Mode
To implement FFT algorithms we need to access the data in a bit reversed manner. Hence a
special addressing mode called bit reversed addressing mode is used to calculate the index of the next
data to be fetched. It works as follows. Start with index 0. The present index can be calculated by
adding half the FFT length to the previous index in a bit reversed manner, carry being propagated from
MSB to LSB.

Current index= Previous index+ B (1/2(FFT Size))

Address Generation Unit

The main job of the Address Generation Unit is to generate the address of the operands
required to carry out the operation. They have to work fast in order to satisfy the timing constraints. As
the address generation unit has to perform some mathematical operations in order to calculate the
operand address, it is provided with a separate ALU.
Address generation typically involves one of the following operations.
a. Getting value from immediate operand, register or a memory location
b. Incrementing/ decrementing the current address
c. Adding/subtracting the offset from the current address
d. Adding/subtracting the offset from the current address and generating new address according to
circular addressing mode
e. Generating new address using bit reversed addressing mode

The block diagram of a typical address generation unit is as shown in figure 2.13.

e — e -
N = | i “1
L, S 1 —) L — 1 T
| 1 LI
I [‘

Fig 2.13 Address generation unit

Programmability and program Execution
A programmable DSP device should provide the programming capability involving branching,
looping and subroutines. The implementation of repeat capability should be hardware based so that it
can be programmed with minimal or zero overhead. A dedicated register can be used as a counter. In a
normal subroutine call, return address has to be stored in a stack thus requiring memory access for
storing and retrieving the return address, which in turn reduces the speed of operation. Hence a LIFO
memory can be directly interfaced with the program counter.

Program Control
Like microprocessors, DSP also requires a control unit to provide necessary control and timing
signals for the proper execution of the instructions. In microprocessors, the controlling is micro coded
based where each instruction is divided into microinstructions stored in micro memory. As this
mechanism is slower, it is not applicable for DSP applications. Hence in DSP the controlling is
hardwired base where the Control unit is designed as a single, comprehensive, hardware unit.
Although it is more complex it is faster.

Program Sequencer

It is a part of the control unit used to generate instruction addresses in sequence needed to
access instructions. It calculates the address of the next instruction to be fetched. The next address can
be from one of the following sources.
a. Program Counter
b. Instruction register in case of branching, looping and subroutine calls
c. Interrupt Vector table
d. Stack which holds the return address
The block diagram of a program sequencer is as shown in figure 2.14.

Fig 2.14 Program Sequencer

Program sequencer should have the following circuitry:

a. PC has to be updated after every fetch

b. Counter to hold count in case of looping

c. A logic block to check conditions for conditional jump instructions
d. Condition logic-status flag

Problems:

1). Investigate the basic features that should be provided in the DSP architecture to be used to
implement the following N™ order FIR filter.

Solution:-

y(n)= Y h(i) x(n-i) n=0,1,2...
In order to implement the above operation in a DSP, the architecture requires the
following features

i. A RAM to store the signal samples x (n)

ii. A ROM to store the filter coefficients h (n)

iii. An MAC unit to perform Multiply and Accumulate operation

iv. An accumulator to store the result immediately

v. A signal pointer to point the signal sample in the memory

vi. A coefficient pointer to point the filter coefficient in the memory
vii. A counter to keep track of the count

viii. A shifter to shift the input samples appropriately

2). Itis required to find the sum of 64, 16 bit numbers. How many bits should the
accumulator have so that the sum can be computed without the occurrence of
overflow error or loss of accuracy?

The sum of 64, 16 bit numbers can grow up to (16+ log2 64)=22 bits long. Hence
the accumulator should be 22 bits long in order to avoid overflow error from occurring.

1. Inthe previous problem, it is decided to have an accumulator with only 16 bits
but shift the numbers before the addition to prevent overflow, by how many bits
should each number be shifted?

As the length of the accumulator is fixed, the operands have to be shifted by an
amount of log2 64 = 6 bits prior to addition operation, in order to avoid the condition of
overflow.

2. Ifall the numbers in the previous problem are fixed point integers, what isthe
actual sum of the numbers?

The actual sum can be obtained by shifting the result by 6 bits towards left side after the sum
being computed. Therefore
Actual Sum= Accumulator content X 2 ©

3. Ifasum of 256 products is to be computed using a pipelined MAC unit, and if the MAC
execution time of the unit is 100nsec, what will be the total time required to complete the
operation?

As N=256 in this case, MAC unit requires N+1=257execution cycles. As the single MAC
execution time is 100nsec, the total time required will be, (257*100nsec)=25.7usec

4. Consider a MAC unit whose inputs are 16 bit numbers. I1f 256 products are to be
summed up in this MAC, how many guard bits should be provided for the
accumulator to prevent overflow condition from occurring?
As it is required to calculate the sum of 256, 16 bit numbers, the sum can be as
long as (16+ log2 256)=24 bits. Hence the accumulator should be capable of handling
these 22 bits. Thus the guard bits required will be (24-16)= 8 bits.
The block diagram of the modified MAC after considering the guard or extention bits is as shown in
the figure

>< Y

-— =~ T x
l MM L2 ‘>(.'cr A —]

e

ADD oo /
=

GLumad e A
g D

=T

5. What are the memory addresses of the operands in each of the following cases of indirect
addressing modes? In each case, what will be the content of the addreg after the memory
access? Assume that the initial contents of the addreg and the offsetreg are 0200h and 0010h,
respectively.

a. ADD *addreg

b.ADD +*addreg

c. ADD offsetreg+,*addreg
d. ADD *addreg,offsetreg-

Instruction Addressing Operand Address addreg Content
Mode after Access
ADD *addreg- Post Decrement 0200h 0200-01=01FFh
ADD +*addreg Pre Increment 0200401=0201h 0201h
ADD offsetreg+, *addreg | Pre_Add_Offset 02004+0010=0210h | 0210h

ADD *addreg,offsetreg-

Post_Sub_Offset

0200h

0200-0010=01FOh

6. A DSP has a circular buffer with the start and the end addresses as 0200h and 020Fh
respectively. What would be the new values of the address pointer of the buffer if, in the course
of address computation, it gets updated to

a. 0212h
b. 01FCh
Buffer Length= (EAR-SAR+1) = 020F-0200+1=10h
a. New Address Pointer= Updated Pointer-buffer length = 0212-10=0202h
b. New Address Pointer= Updated Pointer+ buffer length = 01FC+10=020Ch

7. Repeat the previous problem for SAR= 0210h and EAR=0201h
Buffer Length= (SAR-EAR+1)= 0210-0201+1=10h
c. New Address Pointer= Updated Pointer- buffer length = 0212-10=0202h
d. New Address Pointer= Updated Pointer+ buffer length = 01FC+10=020Ch

9. Compute the indices for an 8-point FFT using Bit reversed Addressing Mode
Start with index 0. Therefore the first index would be (000)
Next index can be calculated by adding half the FFT length, in this case it is (100)
to the previous index. i.e. Present Index= (000)+B (100)= (100)
Similarly the next index can be calculated as
Present Index= (100)+B (100)= (010)
The process continues till all the indices are calculated. The following table summarizes
the calculation.

Index in Binary BCD value Bit reversed index BCD value
000 0 000 0
001 1 100 4
010 2 010 2
011 3 110 6
100 4 001 1
101 5 101 5
110 6 011 3
111 7 111 7

UNIT-3

Programmable Digital Signal Processors

Introduction:

Leading manufacturers of integrated circuits such as Texas Instruments (T1), Analog devices &
Motorola manufacture the digital signal processor (DSP) chips. These manufacturers have developed a
range of DSP chips with varied complexity.

The TMS320 family consists of two types of single chips DSPs: 16-bit fixed point &32-bit floating-
point. These DSPs possess the operational flexibility of high-speed controllers and the numerical
capability of array processors

Commercial Digital Signal-Processing Devices:

There are several families of commercial DSP devices. Right from the early eighties, when
these devices began to appear in the market, they have been used in numerous applications, such as
communication, control, computers, Instrumentation, and consumer electronics. The architectural
features and the processing power of these devices have been constantly upgraded based on the
advances in technology and the application needs. However, their basic versions, most of them have
Harvard architecture, a single-cycle hardware multiplier, an address generation unit with dedicated
address registers, special addressing modes, on-chip peripherals interfaces. Of the various families of

programmable DSP devices that are commercially available, the three most popular ones are those

from Texas Instruments, Motorola, and Analog Devices. Texas Instruments was one of the first to
come out with a commercial programmable DSP with the introduction of its TMS32010 in 1982.

Summary of the Architectural Features of three fixed-Points DSPs

Architectural Feature TMS320C25 DSP 56000 ADSP2100
Data representation 16-bit fixed
format 16-bit fixed 24-bit fixed point point
Hardware multiplier 16 x 16 24x 24 16 x 16
ALU 32 bits 56 bits 40 bits
24-bit program
Internal buses 16-bit program bus 24-bit program bus bus
2 x 24-bit data
16-bit data bus buses 16-bit data bus

24-bit global 16-bit result

The architecture of TMS320C54xx digital signal processors:

TMS320C54xx processors retain in the basic Harvard architecture of their predecessor,
TMS320C25, but have several additional features, which improve their performance over it. Figure 3.1
shows a functional block diagram of TMS320C54xx processors. They have one program and three
data memory spaces with separate buses, which provide simultaneous accesses to program instruction
and two data operands and enables writing of result at the same time. Part of the memory is
implemented on-chip and consists of combinations of ROM, dual-access RAM, and single-access
RAM. Transfers between the memory spaces are also possible.

The central processing unit (CPU) of TMS320C54xx processors consists of a 40- bit arithmetic
logic unit (ALU), two 40-bit accumulators, a barrel shifter, a 17x17 multiplier, a 40-bit adder, data
address generation logic (DAGEN) with its own arithmetic unit, and program address generation logic
(PAGEN). These major functional units are supported by a number of registers and logic in the
architecture. A powerful instruction set with a hardware-supported, single-instruction repeat and block
repeat operations, block memory move instructions, instructions that pack two or three simultaneous
reads, and arithmetic instructions with parallel store and load make these devices very efficient for
running high-speed DSP algorithms.

Several peripherals, such as a clock generator, a hardware timer, a wait state generator, parallel
I/0 ports, and serial 1/O ports, are also provided on-chip. These peripherals make it convenient to
interface the signal processors to the outside world. In these following sections, we examine in detail
the various architectural features of the TMS320C54xx family of processors.

External buses

On-chip Memory

Off-chip memory

Cache memory
Instruction cycle time
Special addressing
modes

Data address
generators

Interfacing features

16-bit
program/data bus

544 words RAM

4K words ROM

64 K words
program
64k words data

100 nsec

Bit reversed

1

Synchronous serial
/O

DMA

databus
24-bit program/data
bus

512 words PROM
2 X 256 words data
RAM

2 X 256 words data
ROM

64K words program
2 x 64K words data

97.5 nsec.

Modulo

Bit reversed

2

Synchronous and

Asynchronous serial
/0 DMA

bus
24-bit program
bus
16-bit data bus

16K words
program

16K words data
16 words
program

125 nsecc.

Modulo
Bit reversed

2

DMA

System control
interface

Program address generation

Data address generation

-

BRC, RSA, REA

logic (PAGEN) logic (DAGEN)
P l ARAUD, ARAU1
< PG, IPTR, RC, ARDART

ARP, BK, DP, SP

v A A A & A F 9
PAB |
FB |
- v fMemory
s and
cad | \:—> external
interface
ce |
v
DAB |
4 v
Peripheral
DB | <_> interface
L
EAB |
EB |
A
EXP encoder
A A
Xl D Al B
vy ¥
N\ MUX S
v
) y
T register
'
T| DA a |P|C|D T|A|B|C D [B|A|C|D
Yvyy YYyYwyy YyYYYyy 4 YYyy
\Sign ctr/ \Sign ctr /' | A@0) | | B@0) | \Signctr/ \Signctr/ N\, Sign cir /
v v v L J A J
Multiplier {17 x 17) . MUX 1 Sarrel shifter
AlB A A A A ALU(40)
Y Yy M{U| B
: A Bv
Fractional N MUX / Legend: :

A J

J

: Adder(40) ;

A

ZERO SAT

ROUND

A Accumulator A

B Accumulator B S..".

C CB databus Y

D DB data bus L MSWILSW
E EB data bus COoMP select
M MAC unit

P PB program bus E

S Barrel shifter i

T T reqgister

U_ALU

Figure 3.1.Functional architecture for TMS320C54xx processors.

Bus Structure:

The performance of a processor gets enhanced with the provision of multiple buses to provide
simultaneous access to various parts of memory or peripherals. The 54xx architecture is built around
four pairs of 16-bit buses with each pair consisting of an address bus and a data bus. As shown in
Figure 3.1, these are The program bus pair (PAB, PB); which carries the instruction code from the
program memory. Three data bus pairs (CAB, CB; DAB, DB; and EAB, EB); which interconnected
the various units within the CPU. In Addition the pair CAB, CB and DAB, DB are used to read from
the data memory, while The pair EAB, EB; carries the data to be written to the memory. The ‘54xx
can generate up to two data-memory addresses per cycle using the two auxiliary register arithmetic
unit (ARAUO and ARAU1L) in the DAGEN block. This enables accessing two operands
simultaneously.

Central Processing Unit (CPU):

The ‘54xx CPU is common to all the ‘54xx devices. The ’54xx CPU contains a 40-bit
arithmetic logic unit (ALU); two 40-bit accumulators (A and B); a barrel shifter; a
17 x 17-bit multiplier; a 40-bit adder; a compare, select and store unit (CSSU); an exponent
encoder(EXP); a data address generation unit (DAGEN); and a program address generation unit
(PAGEN).

The ALU performs 2’s complement arithmetic operations and bit-level Boolean operations on
16, 32, and 40-bit words. It can also function as two separate 16-bit ALUs
and perform two 16-bit operations simultaneously. Figure 3.2 show the functional diagram of the ALU
of the TMS320C54xx family of devices.

Accumulators A and B store the output from the ALU or the multiplier/adder block and provide a
second input to the ALU. Each accumulators is divided into three parts: guards bits (bits 39-32), high-
order word (bits-31-16), and low-order word (bits 15- 0), which can be stored and retrieved
individually. Each accumulator is memory-mapped and partitioned. It can be configured as the
destination registers. The guard bits are used as a head margin for computations.

AG(39-32) AH(31-16) AL(15-0)

BG(39-32) BH(31-16) BL(15-0)
| CB15-CBO |
7 | | DB15-DB0 |
L 2 |
Al B| T| C D S Shifter output (40)
MUX MUX
SXM—{ Signctr | | Sgnctr | 4+— SXM
4]
A oM
I A I I B I C16
A A C
ACC
ALU OVA/OVB
ZAIZB
MUX T
140
140 A A A A Legend:
Al M| Ul B A Accumulator A
40 B Accumulator B
C CB databus
D DB data bus
MAC M MAC unit
oufput S Barmel shifter
T Tregister
U ALU

Figure 3.2.Functional diagram of the central processing unit of the TMS320C54xx
processors.

Barrel shifter: provides the capability to scale the data during an operand read or write.

No overhead is required to implement the shift needed for the scaling operations. The’54xx barrel
shifter can produce a left shift of 0 to 31 bits or a right shift of 0 to 16 bits on the input data. The shift
count field of status registers ST1, or in the temporary

register T. Figure 3.3 shows the functional diagram of the barrel shifter of TMS320C54xx processors.
The barrel shifter and the exponent encoder normalize the values in an accumulator in a single cycle.
The LSBs of the output are filled withOs, and the MSBs can be either zero filled or sign extended,
depending on the state of the sign-extension mode bit in the status register ST1. An additional shift
capability enables the processor to perform numerical scaling, bit extraction, extended arithmetic, and
overflow prevention operations.

| DB15-DB0 |

40 | CB15-CB0 |
A £]
16 L
B v
40 B*A D CVG
N wx /
(Sign control |+— SXM
Y
L-4— T :.-16 through 31 range
TC (test bit) —— B(if{g'tg”gﬁf [«— ASM(4-0): —16 through 15 range
' ‘ |_¢— [nstruction register immediate: —16
through 15 or 0 through 15 range
ALU <«
40
MSW/ILSW
oo —’_ o
CSSU Write select
Legend:
A Accumulator A
16 B Accumulator B
C CBdatabus
D D8 databus
T Tregister
| EB15-EBO |

Figure 3.3.Functional diagram of the barrel shifter

Multiplier/adder unit: The kernel of the DSP device architecture is multiplier/adder unit. The
multiplier/adder unit of TMS320C54xx devices performs 17 x 17 2’s complement multiplication with
a 40-bit addition effectively in a single instruction cycle.

In addition to the multiplier and adder, the unit consists of control logic for integer and
fractional computations and a 16-bit temporary storage register, T. Figure 3.4 show the functional
diagram of the multiplier/adder unit of TMS320C54xx processors. The compare, select, and store unit
(CSSU) is a hardware unit specifically incorporated to accelerate the add/compare/select operation.
This operation is essential to implement the Viterbi algorithm used in many signal-processing
applications. The exponent encoder unit supports the EXP instructions, which stores in the T register
the number of leading redundant bits of the accumulator content. This information is useful while
shifting the accumulator content for the purpose of scaling.

| CB15-CB0 | 40,

From accumulator A
| DB15-DB0 |
40, From accumulator B
| PB15-PB0] 3
? L
T D A PLALDLC
Y i, S,
\ X MUX / Y MUX
| Signcir | | Signctr | yo—
17 17 A Accumulator A
B Accumulator B
C CBdatabus
D DB databu
XM M P PB prograr:bus
Multiplier (17 x 17) b T Tregister
A B
FRCT
XA YA
Adder (40) OVM
—p— OVA/OVB
Zero detect Round SAT
L » 7A/ZB
40
>~ p— To accumulator A/B

Figure 3.4. Functional diagram of the multiplier/adder unit of TMS320C54xx processors.

Internal Memory and Memory-Mapped Registers:

The amount and the types of memory of a processor have direct relevance to the efficiency and
performance obtainable in implementations with the processors. The ‘54xx memory is organized into
three individually selectable spaces: program, data, and I/O spaces. All ‘54xx devices contain both
RAM and ROM. RAM can be either dual-access type (DARAM) or single-access type (SARAM). The
on-chip RAM for these processors is organized in pages having 128 word locations on each page.

The ‘54xx processors have a number of CPU registers to support operand addressing and
computations. The CPU registers and peripherals registers are all located on page 0 of the data

memory. Figure 3.5(a) and (b) shows the internal CPU registers and peripheral registers with their

addresses. The processors mode status (PMST) registers
that is used to configure the processor. It is a memory-mapped register located at address 1Dh_on page
0 of the RAM. A part of on-chip ROM may contain a boot loader and look-up tables for function such

as sine, cosine, u- law, and A- law.

NAME DEC HEX DESCRIPTION

IMR 0 0 Interrupt mask register

IFR 1 1 Interrupt flag register

— 2-5 2-5 Reserved for testing

STO 6 6 Status register 0

ST1 7 7 Status register 1

AL 8 8 Accumulator A low word (15-0)
AH 9 9 Accumulator A high word (31-16)
AG 10 A Accumulator A guard bits (39-32)
BL 1 B Accumulator B low word (15-0)
BH 12 C Accumulator B high word'(31-16)
BG 13 D Accumulator B guard bits (39-32)
TREG 14 E Temporary register

TRN 15 F Transition register

ARO 16 10 Auxiliary register 0

AR1 17 1 Auxiliary register 1

AR2 18 12 Auxiliary register 2

AR3 19 13 Auxiliar;y register 3

AR4 20 14 Auxiliary register 4

AR5 21 15 Auxiliary register 5

ARG 22 16 Auxiliary register 6

AR/ 23 5 Auxiliary register 7

o 24 18 Stack pointer register

BK 25 19 Circular buffer size register

BRC 26 1A Block repeat counter

RSA 27 1B Block repeat start address

REA 28 1€ Block repeat end address

PMST 29 1D Processor mode status (PMST) register
XPC 30 1E Extended program page register
— 31 1F Reserved

Figure 3.5(a) Internal memory-mapped registers of TMS320C54xx processors.

ADCRESS

MAME DEC HEX DESCRIPTION

DRR20 32 20 McBSF O Data Receive Register 2
DRR10 33 21 McB5P 0 Data Recelve Register 1
OXR20 34 22 McBSF 0 Data Transmit Register 2
LAK1O 35 23 MoBSP O Pata Transmit Register 1
T 36 24 Timer Register

PRD a7 25 Timer Period Register

TCR s 26 Timer Control Register

— 39 27 Reserved

SWWVSH a 28 Software YWatl-Stale Register

BSCR 41 29 Bank-Switching Control Register

- 42 28, Reserved

SWCR 43 2B software Watt-State Centrol Register
HPIC a4 2C HPM Contiol Register (HMODE = O only)
o LT T 20-2F Reserved

DRR22 48 30 McBSP 2 Data Receive Register 2
DRR12 439 £} | McBSP 2 Data Receive Ragister 1
DXR22 50 32 McBSP 2 Data Transmit Register 2
DXRY2 51 33 McB5P 2 Data Transmit Register 1
5P5A2 52 34 MOESF 2 Subbank Acdcdness Regisies
SPSD2 53 as McBSP 2 Subbank Data Register

—_ 54-55 3I6-37 Reserved

SPSAD 56 38 BMCcBSP 0 Subbank Addiess Register
SPSDO 57 39 McBSP 0 Subbank Data Register

— SB-59 3A-3B Reserved

GPHOCR &0 ac General-Purpose MO Control Register
GPIO5R 81 D General-Purpose MO Status Register
CSIDR 62 3E Device ID Register

— 63 IF Resarved

DRR2Y 64 40 MCESF 1 Lhata recelve Reglister 2
DRR11 65 41 M<BESP 1 Data Receive Register 1
DXR21 (=13 a2 MCcBSP 1 Data Transmi: Register 2
DxXR11 67 43 McBSP 1 Data Transmit Reglster 1

—_ a8-71 4447 Reserved

S5P5A1 T2 48 McBSP 1 Subbank Address Hegister
SPSD1 73 49 McBSP 1 Subbank Data Register

— 74-83 40-53 Reserved

DMPREC 84 c4 DMA Prority and Enable Control Register
DMSA, 85 55 DMA Subbank Addres: Register

Figure 3.5(b).peripheral registers for the TMS320C54xx processors

Status reqisters (ST0,ST1):

STO: Contains the status of flags (OVA, OVB, C, TC) produced by arithmetic operations
& bit manipulations.

ST1: Contain the status of various conditions & modes. Bits of STO&ST1registers can be set or clear
with the SSBX & RSBX instructions.

PMST: Contains memory-setup status & control information.

Status register(O diagram:

Figure 3.6(a). STO diagram

ARP: Auxiliary register pointer.

TC: Test/control flag.

C: Carry bit.

OVA: Overflow flag for accumulator A.
OVB: Overflow flag for accumulator B.
DP: Data-memory page pointer.

Status register] diagram:

Figure 3.6(b). ST1 diagram

BRAF: Block repeat active
flag

BRAF=0, the block repeat is deactivated.
BRAF=1, the block repeat is activated.

CPL.: Compiler mode

CPL=0, the relative direct addressing mode using data page pointer is selected.
CPL=1, the relative direct addressing mode using stack pointer is selected.

HM: Hold mode, indicates whether the processor continues internal execution or acknowledge for
external interface.

INTM: Interrupt mode, it globally masks or enables all interrupts.
INTM=0_all unmasked interrupts are enabled.

INTM=1_all masked interrupts are disabled.
0: Always read as 0

OVM: Overflow mode.
OVM=1_the destination accumulator is set either the most positive value or the most negative value.
OVM=0_the overflowed result is in destination accumulator.

SXM: Sign extension mode.
SXM=0 _Sign extension is suppressed.

SXM=1_Data is sign extended
C16: Dual 16 bit/double-Precision arithmetic mode.

C16=0_ALU operates in double-Precision arithmetic mode.
C16=1_ALU operates in dual 16-bit arithmetic mode.

ERCT: Fractional mode.
FRCT=1_the multiplier output is left-shifted by 1bit to compensate an extra sign bit.

CMPT: Compatibility mode.
CMPT=0_ ARP is not updated in the indirect addressing mode.

CMPT=1_ARP is updated in the indirect addressing mode.

ASM: Accumulator Shift Mode.
5 bit field, & specifies the Shift value within -16 to 15 range.

Processor Mode Status Register (PMST):
[PTR(15-7) MP/MC(6) |OVLY(5) AVIS@E) |[DROM(3) |CLKOFF(2) [SMUL(1)

[2]
(@]

T(0)

Figure 3.6(c).PMST register diagram

INTR: Interrupt vector pointer, point to the 128-word program page where the interrupt vectors
reside.

MP/MC: Microprocessor/Microcomputer mode,

MP/MC=0, the on chip ROM is enabled.

MP/MC=1, the on chip ROM is enabled.

OVLY: RAM OVERLAY, OVLY enables on chip dual access data RAM blocks to be mapped into
program space.

AVIS: It enables/disables the internal program address to be visible at the address pins.
DROM: Data ROM, DROM enables on-chip ROM to be mapped into data space.
CLKOFF: CLOCKOUT off.

SMUL.: Saturation on multiplication.

SST: Saturation onstore.

Data Addressing Modes of TMS320C54X Processors:

Data addressing modes provide various ways to access operands to execute instructions and place
results in the memory or the registers. The 54XX devices offer seven basic addressing modes

1. Immediate addressing.

2. Absolute addressing.

3. Accumulator addressing.

4. Direct addressing.

5. Indirect addressing.

6. Memory mapped addressing

7. Stack addressing.

Immediate addressing:

The instruction contains the specific value of the operand. The operand can be short (3,5,8 or 9
bit in length) or long (16 bits in length). The instruction syntax for short operands occupies one
memory location,

Example: LD #20, DP.
RPT #0FFFFh.

Absolute Addressing:
The instruction contains a specified address in the operand.
1. Dmad addressing. MVDK Smem,dmad, MVDM dmad,MMR
2. Pmad addressing. MVVDP Smem,pmad, MVVPD pmem,Smad
3. PA addressing. PORTR PA, Smem,
4.*(Ik) addressing .

Accumulator Addressing:
Accumulator content is used as address to transfer data between Program and Data memory.
Ex: READA *AR2

Direct Addressing:

Base address + 7 bits of value contained in instruction = 16 bit address. A page of 128
locations can be accessed without change in DP or SP.Compiler mode bit (CPL) in ST1 register is
used.

If CPL =0 selects DP

CPL =1 selects SP,

It should be remembered that when SP is used instead of DP, the effective address is
computed by adding the 7-bit offset to SP.

> DP(9)

> SP(16) * ‘ 7 LSBs from IR(dma)

DAGEN DAB(16) (read)
cpL| CPL
O EA = DP :offset(IR) m
\ 4 1 EA = SP+offset(IR) (or)(!
CAB(16)
(32-bit read)

AN

Databus DB(16)

~N
Data bus EB(16)

Figure 3.7 Block diagram of the direct addressing mode for TMS320C54xx Processors.

Indirect Addressing:

0 Data space isaccessed by address present in an auxiliary register.

TMS320C54xx have 8, 16 bit auxiliary register (ARO — AR 7). Two auxiliary register arithmetic units
(ARAUO & ARAU1)

Used to access memory location in fixed step size. ARO register is used for indexed and bit reverse
addressing modes.

o For single— operand addressing

MOD _ type of indirect addressing

ARF _ AR used for addressing

ARP depends on (CMPT) bit in ST1

CMPT = 0, Standard mode, ARP set to zero

CMPT =1, Compatibility mode, Particularly AR selected by ARP

AROBE Ik 1
ARPG
s ARATIO
= ARO(16) mdex >, °o 0
3| ARI(16) S
> AR(16) S ARO BEK 1
> AR3(16) > \I/ \4; \lJ
3 AR4(16) S
> AR5 (16) > ARAUL
>| AR6(16) >
> AR7(16) >, 4\ A A
S| BK(16) > Lo, 0
Data bus DB(16)
Data bus EB(16)

DAB(16) (read)

EAB(16) (write)
or
CAB(16)
(32-bit read)

Figure 3.8 Block diagram of the indirect addressing mode for TMS320C34xx Processors,

[Operand syntax Function
“ARX Addr = ARX;
“ARX - Addr=ARx: ARx =ARx-I
“ARX + Addr= ARx: ARX = ARx +]
“+ARX Addr = ARx+1: ARx =ARx +]
“ARXx - OB Addr= ARx: ARxXx = B(ARx - ARO)
“ARX - 0 Addr=Arx: ARx =ARx-ARO
AR + 0 Addr=Arx; ARx = ARX +ARO
*ARx + 0B Addr = ARx : ARx = B(ARX + ARO)
“ARX - % Addr = ARx: ARx =circ(ARx - 1)
F+AR — 0% Addr = Arx; ARX = circ(ARx - ARO)
“ARX + % Addr= ARXx ; ARx =circ (ARx + 1)

>
>
>

Table 3.2 Indirect addressing options with a single data —memory operand.
Circular Addressing;

Used in convolution, correlation and FIR filters.

A circular buffer is a sliding window contains most recent data. Circular buffer of size R must
start on a N-bit boundary, where 2N >R .

1 The circular buffer size register (BK): specifies the size of circular buffer.

Effective base address (EFB): By zeroing the N LSBs of a user selected AR (ARX).

1 End of buffer address (EOB) : By repalcing the NLSBs of ARx with the N LSBs of

BK. If0 _index + step < BK ; index = index +step;

else if index + step _ BK ; index = index + step - BK; else if

index

+ step < 0; index + step + BK

New
ARx

Fust 1 at location N-1

IS N NI 0
IS5 N NIl 0
- | | PORTTRT— L)
BK| 0....0 Bhcosisismans BL
\/
IS | N Nl 0
5 N Nl 0 4 -
EOBHL| BB | Bl BL
1 - | L
Index W
(Cwreular
addressing 15 N\ /N N-1 0
algorithm
logic FFB| H...H Divcannamnnn 0
Base(low address)
| O |y — L
New Index Legend: F¥B Effective base address
H High-order bits
L Low- order bits
Bl N N1 0 L' New low-order bits
\ V BL Low-order bit of circular buffer
BB | Rassrsas b size register

Figure 3.9 Block diagram of the circular addressing mode for TMS320C54xx Processors.

Data

Top of circwlar buffer
15 N N1 0
Effective — Flement 0
base H.. .H |
Flement 1
15 N Nl 0
ARy [H_H x . —_ Flement 1 mLSBs of ARx)
15 N Nl 0
Last element
H..H LSBs BK —> Last element + 1

Ficure 3.10 circular addressing mode implementation for TMS320C54xx Processors.

Bit-Reversed Addressing:

o Used for FFT algorithms.
o ARO specifies one half of the size of the FFT.

o The value of ARO = 2N-1: N = integer FFT size = 2N
o ARO + AR (selected register) = bit reverse addressing.
o The carry bit propagating from left to right.

Dual-Operand Addressing:
Dual data-memory operand addressing is used for instruction that simultaneously

perform two reads (32-bit read) or a single read (16-bit read) and a parallel store (16-bit
store) indicated by two vertical bars, Il. These instructions access operands using indirect addressing
mode.

If in an instruction with a parallel store the source operand the destination operand point to the
same location, the source is read before writing to the destination. Only 2 bits are available in the
instruction code for selecting each auxiliary register in this mode. Thus, just four of the auxiliary
registers, AR2-AR5, can be used, The ARAUSs together with these registers, provide capability to
access two operands in a single cycle. Figure 3.11 shows how an address is generated using dual data-
memory operand addressing.

15-8 7-6 54 3-1 1-0

Opeode Xmod Xar Yimod Yar

Name Function

Opcode This field contains the operation code for the instruction

Xmod [Defined the type of indirect addressing mode used for accessing the Xmem
operand

XAR Xmem AR selection field defines the AR that contains the address of Xmem

Y mod [Defies the type of inderect addressing mode used for accessing the Ymem
operand

Y ar Ymem AR selection field defines the AR that contains the address of Ymem

Table 3.3.Function of the different field in dual data memory operand addressing

N

AROBK Ik 1
ARP(3
e ARATIO
AAAA
> ARO(16) index > H-% 0B
> ARI(16) > ARO BK 1 - DAB(16) (read)
> amde) > VAA
> AR4(16) >
> AR (16) > ARAUL
> BE (16) > 1% 0 EAB (16) (write)
o or

CAB(16)

Data bus DB(16
5 (32-bit read)

Data bus EB(16)

Figure 3.11 Block diagram of the Indirect addressing options with a dual data —memory

operand.

Memory-Mapped Register Addressing:
» Used to modify the memory-mapped registers without affecting the current data page
» pointer (DP) or stack-pointer (SP)
o Overhead for writing to a register is minimal
o Works for direct and indirect addressing

o Scratch —pad RAM located on data PAGEO can be modified
» STM #x, DIRECT

» STM #tbl, AR1

0000h
All bits 0s
9 7, 7 LSBs from instruction register (IR) 0060h
or current auxiliary register
16 007Fh
16-bit memory-mapped register address
Figure 3.12.16 bit memory mapped register address generation.
3.4.7 Stack Addressing:
« Used to automatically store the program counter during interrupts and subroutines.
« Can be used to store additional items of context or to pass data values.
« Uses a 16-bit memory-mapped register, the stack pointer (SP).
« PSHD X2
Stack and SP before operation Stack and SP after operation
SP 0011 0001 SPI 0010 | 0001
0010 0010 X2
0011 X1 0011 X1
0100 0100
0101 0101
0110 0110

Figure 3.13. Values of stack &SP before and after operation.

Memory Space of TMS320C54xx Processors
» A total of 128k words extendable up to 8192k words.
» Total memory includes RAM, ROM, EPROM, EEPROM or Memory mapped peripherals.
> [1 Data memory: To store data required to run programs & for external
memorymapped registers.

Size 64k words

On chip On chip Memory mapped
DARAM RAM registers

Program memory: To store program instructions &tables used in the execution
of programs.

Organized into 128 pages, each of 64k word size

Page0: Page 1to 127:
' Paﬂ Of 128k Space extended pages
» 4k words are on-chip ROM

» Remaining space for

DARAM &SARAM

Table 3.4.Function of different pin PMST register

PMST bit Logic On-chip memory configuration

s

MP/MC 0 ROM enabled
| ROM not available
OVLY 0 RAM in data space
] RAM in program space
DROM 0 ROM not in data space
1 ROM in data space
Hex PageOProgam — yoy Page 0 Program Hex Dt
0000 Reserved 0000 | Reserved 0000
(OVLY=1) (OVLY=1) My Mol
Exteral Extemal 00SF| Registers
007F| (OVLY=0) 007F [(OVLY=0) 0060 | Scratch-Pad
0080 OnChip | 0080 OnChip 007F | RAM
DARAMO-3 DARAMO-3 0080
(OVLY=1) (OVLY=1) On-Chip
- (gmmlo - External DARAMO-3
= = X 16-bi
0) i (([);/LY Io) - (32K X 16-bit)
fema
External BC](:)SS : " On-Chip
FFF On-Chip ROM DARAMA-7
FEFF [(16K X 16-bit (DROM=1)
FF00
FF80 Interrupts FFIF Reserved Extzrmal
(Extemal) | ppy - Interupts (DROM =0)
FFFF preF [__(On-Chip) FFFF

MPAC= 1 MPAIC =0

(Microprocessor Mode) (Microcomputer Mode)

Address ranges for on-chip DARAM in data memoryare: ~~ DARAMO: 0080h-IFFFh; ~ DARAMI: 2000h-3FFFh

DARAM2: 4000h-SFFFh; DARAM3: 6000h-7FFFh
DARAM4: 8000h-9FFFh; DARAMS: AO0Oh-BFFFh
DARAM6: CO00h-DFFFh; DARAM?: EO0Oh-FFFFh

Figure 3.14 Memory map for the TMS320C5416 Processor.

Program Control

» It contains program counter (PC), the program counter related H/W, hard stack, repeat
counters &status registers.
» PC addresses memory in several ways namely:
» Branch: The PC is loaded with the immediate value following the branch instruction
» Subroutine call: The PC is loaded with the immediate value following the call instruction
> Interrupt: The PC is loaded with the address of the appropriate interrupt vector.
> Instructions such as BACC, CALA, etc ;The PC is loaded with the contents of the accumulator
low word
» End of a block repeat loop: The PC is loaded with the contents of the block repeat program
address start register.
> Return: The PC is loaded from the top of the stack.
Problems:
1. Assuming the current content of AR3 to be 200h, what will be its contents after
each of the following TMS320C54xx addressing modes is used? Assume that the
contents of ARO are 20h.
a. *AR3+0
b. *AR3-0
c. *AR3+
d. *AR3
e. *AR3

f. *+AR3 (40h)
g. *+AR3 (-40h)

Solutio n:

a. AR3 «— AR3 + ARO;
AR3 = 200h + 20h = 220h
b. AR3«+ AR3 - ARO;
AR3 = 200h - 20h = 1EOh
c. AR3 «— AR3 + 1;

AR3 =200h + 1 =201h
d. AR3 «— AR3 - 1;

AR3 =200h - 1 =1FFh

e. AR3 is not modified.
AR3 = 200h

f. AR3 < AR3 + 40h;
AR3 =200 + 40h = 240h
g. AR3 «— AR3 - 40h;
AR3 =200 - 40h = 1C0Oh

2.

Assuming the current contents of AR3 to be 200h, what will be its contents after

each of the following TMS320C54xx addressing modes is used? Assume that the contents of ARO are

20h

a. *AR3 + 0B
b. *AR3 - 0B

Solution:

a. AR3 «— AR3 + ARO with reverse carry propagation;
AR3 = 200h + 20h (with reverse carry propagation) = 220h.
b. AR3 «— AR3 - ARO with reverse carry propagation;
AR3 = 200h - 20h (with reverse carry propagation) =23Fh

Instruction and programming

Operators Used in Instruction Set:

Symbols Operators Evaluation
+ -~ Unary plus, minus, 1s complement Right to left
1 % Multiplication, division, modulo Left to right
+ - Addition, subtraction Left to right
<< >> Left shift, right shift Left to right
<<< Logical left shift Left to right
< < Less than, LT or equal Left to right
> = Greater than, GT or equal Left to right
7 I= Not equal to Left to right
& Bitwise AND Left to right
A Bitwise exclusive OR Left to right

Bitwise OR Left to right

Table 4.1. Operator used in instruction set

4.1.1 Arithmetic Instructions:

Add Instructions:

Syntax

ADD Smem, src

ADD Smem, TS, src

ADD Smem, 16, src [, dst |
ADD Smem [, SHIFT |, src [, dst |
ADD Xmem, SHFT, src

ADD Xmem, Ymem, dst

ADD #1k [, SHFT |, src [. dst |
ADD #lk, 16, src [, dst |

ADD src [, SHIFT | [. dst |
ADD src, ASM [, dst |

ADDC Smem, src

ADDM #1k, Smem

ADD: Add to Accumulator

Expression
SIC SIC = SIC + Smem
src = src + Smem << TS
dst = src + Smem << 16
dst = src + Smem << SHIFT
src = src + Xmem <<_ SHFT
dst = Xmem << 16 + Ymem << 16
dst = src + #lk << SHFT
dst = src + #lk << 16
dst = dst + src << SHIFT
dst = dst + src << ASM
src = src + Smem + C

Smem = Smem + #1k

Single data-memory operand
Dual data-memory operands

Syntax :
1: ADD Smem, src
2: ADD Smem, TS, src
3: ADD Smem, 16, src [, dst]
4: ADD Smem [, SHIFT]. src [. dst |
5: ADD Xmem, SHFT, src
6: ADD Xmem, Ymem, dst
7: ADD #1k [, SHFT], src [, dst |
8: ADD #Ik. 16, src [, dst]
9: ADD src [, SHIFT], [, dst]
10: ADD src, ASM [, dst |
Operands :
Smem:
Xmem, Ymem:
src. dst:

A (accumulator A)

B (accumulator B)

-32768 <1k <32 767
—16 < SHIFT < 15
0<SHFT =15

Execution :

1: (Smem) + (src) — src

2: (Smem) << (TS) + (src)— sr¢

3: (Smem) << 16 + (src) — dst

4: (Smem) [<< SHIFT] + (src) — dst

SUB: Subtract From Accumulator

Syntax SUB Smem, src

SUB Smem, TS, src

SUB Smem, 16, src[, dst]

SUB Smem|[, SHIFT], src|[, dst]
SUB Xmem, SHFT, src

SUB Xmem, Ymem, dst

SUB #/k[, SHFT], src|, dst]
SUB #lk, 16, src[, dst]

: SUB src[, SHIFT], [, dst]

10: SUB src, ASM [, dsi]

Operands src, dst: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand
Xmem, Ymem: Dual data-memory operant
-32768 = |k = 32767
0 = SHFT = 15
=16 = SHIFT = 1&

QPN OREUN S

Execution (src) - (Smem) — src

{src)— (Smem) << TS — src

{src) - (Smem) << 16 — dst

(src) = (Smem) << SHIFT — dst

{src) = (Xmem) << SHFT - src
(Xmem) << 16 - (Ymem) << 16 —» dst
{src)— |k << SHFT — dst

(src) - |k << 16 — dst

. {dst) - (src) << SHIFT — dst

10: {dst) - (src) << ASM — dst

Status Bits Affected by SXM and OVM
Affects C and OVdst (or OVsre, if dst = src)

eSO

SUBB: Subtract From Accumulator with Borrow

Syntax SUBB Smem, src

Operands SIC: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand

Execution (src) — (Smem) — (logical inversion of C} —= src

Status Bits Affected by OVM and C
Affects C and OVsrc

SUBC: Subtract Conditionally

Syntax SUBC Smem, src
Operands Smem: Single data-memory operand
src: A (accumulator A)

B (accumulator B)

Execution (sre) — ((Smem) << 15) — ALL output
If ALU output = 0
Then
((ALU output) << 1)+ 1 — src
Else (src) <=1 — src

Status Bits Affected by SXM
Affects C and OVsrc

SUBS: Subtract with accumulator with sign extension suppressed

Syntax SUBS Smem, src
Operands Smem: Single data-memory operand
sre: A (accumulator A)

B (accumulator B)

Execution (src) = unsigned (Smem) — src

Status Bits Affected by OVM
Affects C and OVsrc

MPY: Multiply With/Without Rounding

Syntax

Operands

Execution

Status Bits

1: MPY[R] Smem, dst

2: MPY Xmem, Ymem, dst

3: MPY Smem, #lk, dst

4: MPY #lk, dst

Smem: Single data-memory operand

Xmem, Ymem:

dst: A (accumulator A)

B (accumulator B)

-32768 < kk < 32767

10 (T) X (Smem) - dst
2. (Xmem) x (Ymem)-> dst

(Xmem) T

3. (Smem) x Ik - dst

(Smem)->T

4 (T)x k- dst

Affected by FRCT and OVM
Affects OVdst

MPYA: Multiply by Accumulator A

Syntax

Operands

Execution

Status Bits

1: MPYA Smem
2: MPYA dst

Smem: Single data-memory operand
dst: A (accumulator A)
B (accumulator B)

1: (Smem) x (A(32-16)) =B
(Smem)—T
2. (T) X (A(32-16)) — dst

Affected by FRCT and OVM
Affects QVdst (OVB in syntax 1)

MPY U:Multiply Unsigned

Dual data-memory operands

SQUR: Square

Syntax 1. SQUR Smem, dsf
2. SQUR A, dst

Operands Smem: Single data-memory operand
dst: A (accumulator A)

B (accumulator B)

Execution 1: (Smem)— T
(Smem) x (Smem) — dst
2: (A(32-18)) % (A[32-16])) — dst

Status Bits Affected by OVM and FRCT
Affects OVsre

SQURA: Square and Accumulate

Syntax SQURA Smem, src
Operands Smem: Single data-memory operand

src: A (accumulator A)

B (accumulator B)

Execution (Smem)—T

(Smem) % (Smem) + (src) — src
Status Bits Affected by OVM and FRCT

Affects OVsrc

SQURS: Square and Subtract

Syntax SQURS Smem, src
Operands Smem: Single data-memory operand
src: A (accumulator A)
B (accumulator B}
Execution {Smem) — T
{sre) — (Smem) x (Smem) — sre
Status Bits Affected by OVM and FRCT

Affects OVsrc

MACI[R]: Multiply Accumulate With/Without Rounding

Syntax MAC[R] Smem, src
MACI[R] Xmem, Ymem, src |, dst]
MAC #/k, src|, dst]

4: MAC Smem, &Ik, src|, dst]

LD

Operands Smem: Single data-memory operands
Xmem, Ymem: Dual data-memory operands
src, dst: A (accumulator A)
B (accumulator B)
-32768 < |k < 32767

Execution 1: (Smem) X (T) + (src) = src

(Xmem) X (Ymem) (src) ~ dst

(Xmem) —

3 (T)x lk+{src)-—~ dst
(Smem) x k + (src) — dst
(Smem) =T

Status Bits Affected by FRCT and OYM
Affects OVdst (or OVsre, if dst is not specified)

MACA[R]: Multiply by Accumulator A and Accumulate With/Without Rounding

Syntax 1: MACA[R] Smem(, B]
2: MACA[R] T, src|, dst]

Operands Smem: Single data-memory operand
src, dst: A (accumulator A)
B (accumulator B)

Execution 1. (Smem) X (A(32-16))+ (B)~B
(Smem) =T
2. (T) x (A(32-16)) + (src) - dst

Status Bits Affected by FRCT and OVM
Affects OVdst (or OVsrc, if dst is not specified) and OVB in syntax 1

MA CD: Multiply by Program Memory and Accumulate With Delay

Syntax MACD Smem, pmad, src
Operands Smem: Single data-memory operand
sIc: A (accumulator A)

B (accumulator B)
0 < pmad < 65535

MACP: Multiply by Program Memory and Accumulate

Syntax MACP Smem, pmad, src
Operands Smem: Single data-memory operand
src: A (accumulator A)

B (accumulator B)
0 = pmad = 65535

Execution (pmad) — PAR

If (RC) = 0

Then
(Smem) x (Pmem addressed by PAR) + (src) == src
(Smem)— T
(PAR) + 1 — PAR

Else
(Smem) x (Pmem addressed by PAR) + (src) - src
(Smem) = T

Status Bits Affected by FRCT and OVM
Affects OVsre

MA CSU: Multiply Signed by Unsigned and Accumulate

Syntax MACSU Xmem, Ymem, src
Operands Xmem, Ymem: Dual data-memory operands
src: A (accumulator A)
B (accumulater B)
Execution unsigned(Xmem) x signed(Ymem) + (src) — sic
(Xmem)—T
Status Bits Affected by FRCT and OVM

Affects OVsrc

MA CSU: Multiply Signed by Unsigned and Accumulate

Syntax MACSU Xmem, Ymem, src

Operands Xmem, Ymem: Dual data-memory operands
src: A (accumulator A)

B {accumulator B)

Execution unsigned(Xmem) x signed(Ymem) + (src) — src
(Xmem)—=T

Status Bits Affected by FRCT and OVM
Affects OVsrc

MAS[R] :Multiply and Subtract With/Without Rounding

Syntax 1. MAS[R] Smem, src
2. MAS[R] Xmem, Ymem, src|, dst]
Operands Smem: Single data-memory operand
Xmem, Ymem: Dual data-memory operands
src, dst; A (accumulator A)

B (accumulator B)

MASA[R] :Multiply by Accumulator A and Subtract With/Without Rounding

Syntax 1: MASA Smem|[, B]
2. MASA[R] T, src|, dst]

Operands Smem: Single data-memory operand
src, dst A (accumulator A)
B (accumulator E)|

Execution 1. (B) — (Smem) x (A(32-16)) =B
(Smem)—T
2. (src) — (T) x (A(32-16)) — dst

Status Bits Affected by FRCT and OVM
Affects OVdst (or OVsrc, if dst is not specified) and QVB in syntax 1

MAX :Accumulator Maximum

Syntax MAX o=t

Operands dst: A (accumulator A)
B (accumulator B)

Execution If (A = B)
Then
{(A) —= dst
Q—
Else
(B) —= dst
1 == &

Status Bits Affects C

MIN : Accumulator Minimum

Syntax MIN dst

Operands dst: A (accumulator A)
B (accumulator B)

Execution If (A =< B)
Then
(A) —= dst
0—C
Else
(B) —= dst
1—C

Status Bits Affects C

ABDST: Absolute Distance

Syntax ABDST Xmem, Ymem
Operands Xmem, Ymem: Dual data-memory operands
Execution (B) + | (A(32-16))| - B

((Xmem) = (Ymem)) << 16 — A

Status Bits Affected by OVM, FRCT, and SXM
Affects C, OVA, and OVB

ABS: Absolute Value of Accumulator

ABS B

Before Instruction After Instruction
A A

OV oM

CMPL :Complement Accumulator

Syntax

Operands

Execution

Status Bits

CMPL src|, dst]

src, dst: A (accumulator A)
B (accumulator B)

(src) — dst

None

CMPM :Compare Memory With Long Immediate

Syntax

Operands

Execution

Status Bits

CMPM Smem, #lk

Smem: Single data-memory operan
-32768 = |k = 32767

If (Smem) = kk
Then

1—=TC
Else

0—=TC

Affects TC

CMPS :Compare, Select and Store Maximum

Syntax

Operands

Execution

Status Bits

CMPS src, Smem

src: A (accumulator A)
B (accumulator B)

Smem: Single data-memory operand

If ((src(31—-16)) = (src(15-0)))
Then
(src(31-16)) — Smem
(TRN) << 1 — TRN
0 — TRN(O)
0—-=1C
Else
(src(15-0)) — Smem
(TRN) <<1 — TRN
1 — TRN(O)
1—=TC

Affects TC

EXP: Accumulator Exponent

Syntax EXP src

Operands src: A (accumulator A)
B (accumulator B)

Execution If(src) = 0
Then

0—-T
Else

(Number of leading bits of src) — 8 = T

Status Bits None

SAT :Saturate Accumulator

Operands src. A (accumulator A)
B (accumulater B)

Execution Saturate (src) = src

Status Bits Affects QVsre

NORM: Normalization

Syntax NORM src|, dst]

Operands src, dst - A (accumulator A)
B (accumulator B)

Execution (src) << TS — dst

Status Bits Affected by SXM and OVM
Affects OVdst (or OVsrc, when dst = src)

4.1.2 Logical Operations:

AND: AND With Accumulator

Syntax AND Smem, sic
AND #lk[, SHFT], src |, dst]
AND #lk, 16, src [, dst]

AND src[, SHIFT], [, dst]

el

Operands Smem: Single data-memeory operand
SIC; A (accumulator A)
B {accumulator B)
-16 = SHIFT = 15
0 = SHFT = 15
0=lk=65535

Execution 1: (Smem) AND (src) — src
2. |k << SHFT AND (src)— dst
3: Ik << 16 AND (src)— dst
4: (dst) AND (src) << SHIFT — dst

Status Bits None

ANDM:AND Memory With Long Immediate

Syntax ANDM #lk, Smem

Operands Smem: Single data-memory operand
0< k<6553

Execution lk AND (Smem) = Smem

Status Bits None

OR: OR with Accumulator

Symtax 1: OR Smerm. src
2= OR #F% [. SHFT). sec[. ost)
= OR #Fk_16. sic[. dst]

&4 OR src[. SHIFT) [gsr]
Operands src,. dst - A (acocumulator A)
B {accumuliator B)
Srvem - Sangle data-memocy operand

Execution 1: (Smem) OR (srcf{15—0)) — src
src{39—16) unchanged
2: Ik << SHFT OR {src) — dst
3: Kk << 16 OR (src) — dst
4: (src or [dst]) OR (src) << SHIFT — dst

Status Bits None

ORM: OR Memory With Constant

Syntax ORM #Ik, Smem

Operands Smem: Single data-memory operand
0 < Ik < 65535

Execution lk OR (Smem) = Smem

Status Bits None

XOR: Exclusive OR With Accumulator

Syntax 1: XOR Smem, src
2. XOR #lk[, SHFT], src|, dst]
3: XOR #lk, 16, src[, dst]
4. XOR src[, SHIFT] [, dsf]
Operands src, dst: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand
0 =SHFT =15

-16 = SHIFT = 15
0=1lk=06553%

Execution

Status Bits

1 (Smem) XOR (src) = stc
2. k<< SHFT XOR (src) - dst
3. k<< 16 XOR (src) -» dst
d: (src) << SHIFT XOR (dst) - dst

None

XORM: Exclusive OR Memory with Constant

Syntax

Operands

Execution

Status Bits

XORM #/k, Smem

Smem: Single data-memory operand

0= Ik = 655835
Ik XOR (Smem) — Smem

None

ROL: Rotate Accumulator Left

Syntax

Operands

Execution

Status Bits

ROL src

src . A (accumulator A)
B (accumulator B)

(C) — src(0)

(src(30-0)) — sre(31-1)

(src(31))—=C
0 — sre(39-32)

Affected by C
Affects C

ROLTC: Rotate Accumulator Left Using TC

Syntax

Operands

Execution

Status Bits

ROLTC src

Src: A (accumulator A)
B (accumulator B)

(TC) —= =re(0)

{sre(30-0)) — sre(31-=1)

(sre(31)) —C
0 — src(39-32)

Affects C
Affected by TC

ROR: Rotate Accumulator Right

Syntax RCOR src
Operands src: A (accumulator A)
B (accumulator B)
Execution (C) == src(31)
(src(31-=1)) — =src(30-0)
(sre(0)) —= C

0 — src(39-32)

Status Bits Affects C
Affected by C

SFTA: Shift Accumulator Arithmetically

Syntax SFTA src, SHIFT, dst]

Operands src,dst A (accumulator A)

B (accumulator B)
-16 < SHIFT < 15

Execution [fSHIFT <0
Then
(sre((~=SHIFT)=1))=C
(src(39-0)) << SHIFT = dst
If SXM =1
Then
(src(39)) = dst(39-(39 + (SHIFT + 1)) [or sre(39-(39 + (SHIFT + 1)),

if dst is not specified]
Else

0 - dst(39-39 + (SHIFT + 1))) [or src(33-(39 + (SHIFT + 1)),
if dst is not specified]
Else
(sre(39 - SHIFT)) - C
(src) << SHIFT - dst

0> dst{(SHIFT - 1)-0) [or sre((SHIFT = 1)-0), i dst is not specified]

Status Bits Affected by SXM and OVM
Affects C and OVdst (or OVsrc, if dst = src)

SFTC: Shift Accumulator Conditionally

Syntax SFTC src

Operands src: A (acocumulator A
B (accumulator B)

Execution If (sre) =0
Then
1 — TC
Else

If (sre(31)) XOR (src(30)) =0
Then (two significant sign bits)
0O—-=TC
(sre) == 1 — src
Else (only one sign kit)
1 —=TC

Status Bits Affects TC

SFTL: Shift Accumulator Logically

Syntax SFTL sre, SHIFT, ast)
Operands src, dst: A (accumulator A)
E (accumulator B)
-16 = SHIFT = 15
Execution [FSHIFT <0
Then

src((-SHIFT)-1}=C
sre(31-0) << SHIFT — dst
0 — dst[39-(31 + (SHIFT + 1))}
[fSHIFT=10
Then
0-=C
Else
src(31 - (SHIFT-1)) = C
sro((31 — SHIFT)-0) << SHIFT —» dst
0 = dst({{SHIFT - 1}-0) [or sre{{SHIFT = 1)-0], if dst is not specified)
0 — dst(39-32) [or src(38-32), if dst is not specified)

Status Bits Affects C
BIT :Test Bit
Syntax BIT Xmem, BITC
Operands Xmem: Dual data-memory operand
0=BITC=15
Execution (Xmem(15-BITC)) - TC

Status Bits Affects TC

BITEF: Test Bit Field Specified by Immediate Value

Syntax BITF Smem, #Ik
Operands Smem: Single data-memory operand
0 = Ik = 65535
Execution If ((Smem) AND Ik) = 0
Then
n—-TC
Else
1—=TC
Status Bits Affects TC

BITT :Test Bit Specified by T

Example BITT *AR7+0
Before Instruction

T

L —

ARO

ART
Data Memory

0100h

After Instruction

T

Tc
ARD
ART

01000

4.1.3.Load and Store operations:

LLD: Load Accumulator with Shift

Syntax Smem, dst

Smem, TS, dst
Smem, 16, dst
Smem|[, SHIFT], dst
Xmem, SHFT, dst
#K. dst

#Ik[, SHFT], dst
#Ik_ 16, dst

src, ASM [, dst]
src[, SHIFT], dst

6666666666

0:

For additional load instructions, see Load T/DP/ASM/ARP on page 4-70.
Operands Smem: Single data-memory operand

Xmem: Dual data-memory operand

src, dst A (accumulator A)

B (accumulator B)
0=K= 255
32768 = Ik = 32767

—16 = SHIFT = 15
0 = SHFT= 15

Execution 12 (Smem) - dst

2. (Smem) << TS - dst

3. (Smem) << 16 — dst

4: (Smem) << SHIFT -» dst
5. (Xmem) << SHFT - ds!
6. K- dst

7. Ik << SHFT - dst

8. Ik<<16-» dst

9. (src) << ASM - dst

10: (src) << SHIFT = ast

Status Bits Affected by SXM in all accumulator loads
Affected by OYM in loads with SHIFT or ASM shift
Affects QVdst (or OVsrc, when dst = src) in loads with SHIFT or ASM shift

LD :Load T/DP/ASM/ARP

Syntax

Operands

Execution

Status Bits

LD Smem T
LD Smem, DP
LD #kS DP

LD #k5 ASM
LD #k3, ARP
LD Smem, ASM

g fy o

Smem: Single data-memory operand
0= k9 < 511

-16<kb= 15

0=kKl=s7

{(Smem) — T

I {(Smem{8-0)) — DP
k9 — DP

K5 — ASM

kK3 — ARP

. (Smem(4—0)) — ASM

Dok W=

None

LDM: Load Memory-Mapped Register

Syntax

Operands

Execution

Status Bits

LDM MMR, dst

MMR: Memory-mapped register
dst: A (accumulator)
B (accumulator)

(MMR) — dst(15-0)
00 0000h — dst(39-16)

None

LDIMAC[R] :Load Accumulator With Parallel Multiply Accumulate With/Without
Rounding

Syntax LD Xmem, dst
| MAC[R] Ymem[, dst_]
Operands dst: A (accumulator A)
B (accumulator B)
dst_: If dst= A, then dst_= B; if dst= B, then dst_=A

Xmem, Ymem: Dual data-memory operands

Execution (Xmem) << 16 - dst (31-16)
If (Rounding)
Round (((Ymem) x (T)) + (dst_)) = dst_
Else
((Ymem) x (T)) +(dst_) — dst_

Status Bits Affected by SXM, FRCT, and OVM
Affects OVdst_

LDIMASIR]: Load Accumulator With Parallel Multiply Subtract With/Without
Rounding

Syntax LD Xmem, dst
|| MAS[R] Ymem [, dst_]

Operands Xmem, Ymem: Dual data-memory operands

dst: A (accumulator A)

B (accumulator B)

dst_: If dst= A, then dst_ = B: if dst= B, then dst_= A
Execution (Xmem) << 16 — dst (31-16)

If (Rounding)

Round ((dst_) = ((T) % (Ymem))) — dst_
Else

(dst_) = ((T) x (Ymem)) — dst_

Status Bits Affected by SXM, FRCT, and OVM
Affects OVdst_

LDR: Load Memory Value in Accumulator High With Rounding

Syntax LDR Smem, dst
Dperands Smem: Single data-memeory operand
dst: A (accumulator A)
B (accumulator B)
Execution (Smem) << 16 + 1 << 15 — dst(31-16)
Status Bits Affected by SXM

LDU :Load Unsigned Memory Value

Syntax LDU Smem, dst

Operands Smem: Single data-memory operand
dst: A (accumulator A)
B (accumulator B)

Execution (Smem) - dst(15-0)
00 0000h - dst{39-16)

LMS: Least Mean Square

Syntax LMS Xmem, Ymem
Operands xmem Ymem: Dual data-memary operands
Execution (A) + (Xmem) << 16 + 215 A

(B] + (Xmem) % (Ymem) - B

Status Bits Affected by SXM, FRCT, and VM
Affects C, OYA, and OVB

LTD :Load T and Insert Delay

Syntax LTD Smem
QOperands Smem. Single data-memory operand
Execution (Smem) T

(Smem) - Smem + 1

Status Bits None

ST : Store T, TRN, or Immediate Value Into Memory

Syntax 1. ST T Smem
2. 8T TRN, Smem
3 ST #k Smem

Operands Smem: Single data-memary operand
=32768 <k < 32767

Execution 1: {T)— Smem

2: {TEN) —= Smem
3: |k — Smem

Status Bits None

STH : Store Accumulator High Into Memory

Syntax STH src, Smem
STH src, ASM, Smem
STH src, SHFT, Xmem

STH src[, SHIFT], Smem

hON=

Operands sSrc: A (accumulator A)
B (accumulator B)
Smenm: Single data-memory operand
Xmem: Dual data-memory operand
0 = SHFT = 15
—18 = SHIFT = 15

Execution 1. (src) << (-16) = Smem

2. (src) << (ASM = 16) = Smem
3: (sre) << (SHFT = 16) = Xmem
4.

(src) << (SHIFT = 16) - Smem

Status Bits Affected by SXM

STL: Store Accumulator Low Into Memory

Syntax STL src, Smem
STL src, ASM, Smeam
STL sre, SHFT, Xmem

STL s=src [, SHIFT], Smem

el

Operands src: A (accumulator A)
B (accumulator B)
Smem: Single data-memeory operand
Xmem: Dual data-memory operand
0 = SHFT = 15
—18 = SHIFT = 15

Execution (src) — Smem

1:

2. (src) << ASM - Smem
3. {src) << SHFT — Xmem
4:

(src) << SHIFT - Smem

Status Bits Affected by SXM

STIADD : Store Accumulator With Parallel Add

Syntax ST sre, Ymem
||ADD Xmem, dst
Operands src, dst: A (accumulator A

B (accumulator B
KAmem, Ymem: Dual date-memory operands
dst_; If dst= A, then dst_=B; if dst=B, then dst_=A

Execution (src) << (ASM — 16} — Ymem
(dst_) + (Xmem) << 16 — dst

Status Bits Affected by OVM, SXM, and ASM
Affects C and OVdst

STILD: Store Accumulator with Parallel Load

Syntax 1. ST src, Ymem
|| LD Xmem, dst

2: ST src, Ymem

|| LD Xmem, T

Operands src, dst. A (accumulator A)
B (accumulator B)
Xmem, Ymem: Dual data-memory operands

Execution 1. (src) << (ASM — 16) —= Ymem
(Xmem) << 16 — dst
2. (src) << (ASM — 16) — Ymem
(Xmem) — T

Status Bits Affected by OVM and ASM
Affects C

STIMACIR]: Store Accumulator With Parallel Multiply Accumulate With/Without
Rounding

Syntax ST src, Ymem
|| MAC[R] Xmem, dst

Operands src, dst: A (accumulator A)
B (accumulator B)
Xmem, Ymem: Dual data-memory operands

Execution (src << (ASM — 16)) = Ymem
If (Rounding)
Then
Round ((Xmem) % (T) + (dst)) — dst
Else
(Xmem) x (T) + (dst) — dst

Status Bits Affected by OVM, SXM, ASM, and FRCT
Affects C and OVdst

STIMAS[R]: Store Accumulator With Parallel Multiply Subtract With/Without
Rounding

Syntax ST src, Ymem
|| MAS[R] Xmem, dst

Operands src, dst: A (accumulator A)
B (accumulator B)

Xmem, Ymem: Dual data-memory operands

Execution (src <= (ASM = 16)) = Ymem
If (Rounding)
Then
Round ({dst) = (Xmem) x (T))— dst
Elss

(dst) = (Xmem) x (T) — dst

Status Bits Affected by OVM, SXM, ASM, and FRCT
Affects C and OVdst

STIMPY: Store Accumulator With Parallel Multiply

Syntax 8T src, Ymem
|| MPY Xmem, dst

Operands src, dst: A (accumulator A)
E (accumulator B)

Xmem, Ymem: Dual data-memory operands
Execution (src <= (ASM — 18)) —= Ymem
(T) x (Xmem) — dst

Status Bits Affected by OVM, SXM, ASM. and FRCT
Affects C and OVdst

STISUB: Store Accumulator With Parallel Subtract

Syntax ST src, Ymem
|| SUB Xmem, dst

Operands sre, dst; A (accumulator A)
B (accumulator B)

Amem, Ymem: Dual data-memory operands

dst_: If dst= A, then dst_=B,; if dst=B, then dst_=A.
Execution (sre << (ASM — 18]} = Ymem

(Kmem) << 16 - (dst_) — dst
Status Bits Affected by OVM, SXM, and ASM

Affects C and OVdst

STRCD: Store T Conditionally

Syntax
Operands

Execution

Status Bits

STRCD Xmem, cond

Xmem: Dual data-memory operand

The following table lists the conditions (cond operand) for this instruction.

Condition Condition

Cond Description Code Cond Description Code
AEQ (A)=0 0101 BEQ (B)=0 1101
ANEQ (A) = 0 0100 BNEQ (B) =0 1100
AGT (A) >0 0110 BGT (B) >0 1110
AGEQ A)=10 0010 BGEQ (B)=0 1010
ALT (A) = 0 0011 BLT (B) =<0 1011
ALEQ (A)= 0 01m BLEQ B)=0 1M1
If (cond)

(T) - Xmem
Else

(Xmem) — Xmem

None

4.1.4. Miscellaneous Load-Type and Store-Type Instructions

MVDD: Move Data From Data Memory to Data Memory With X, Y addressing

Syntax

Operands

Execution

Status Bits

MVDD Xmem, Ymem

Xmem, Ymem: Dual data-memory operands

(Xmem) — Ymem

None

MVDK: Move Data From Data Memory to Data Memory With Destination Addressing

Syntax

Operands

Execution

Status Bits

MVDK Smem, dmad

Smem: Single data-memory operand
0 = dmad = 65 535

(dmad) — EAR

If (RC) = 0

Then
(Smem) — Dmem addressed by EAR
(EAR) + 1 — EAR

Else
(Smem) — Dmem addressed by EAR

None

MVDM: Move Data From Data Memory to Memory-Mapped Register

Syntax MVDM dmad, MMR

Operands MMR: Memory-mapped register
0 < dmad < 65 535

Execution dmad — DAR
If(RC)y= 0
Then

(Dmem addressed by DAR) — MMR
(DAR) + 1 — DAR

Else
(Omem addressed by DAR) — MMR

Status Bits None

MVDP: Move Data from Data Memory to Program Memory

Syntax MVDP Smerm, pmad

Operands Smem: Single data-memory operand
0 = pmad = 65 535

Execution pmad — PAR
If(RC) = O
Then
{Smem) — Pmem addressed by PAR
{PAR) + 1 — PAR
Else
(Smem) — Pmem addressed by PAR

Status Bits None

MV KD: Move Data From Data Memory to Data Memory With Source Addressing

Syntax MVKD dmad, Smem

Operands Smem: Single data-memory operand
0 < dmad < 65535

dmad - DAR

If{RC) = 0

Then
(Dmem addressed by DAR) -» Smem
(DAR)+ 1 - DAR

Else
(Dmem addressed by DAR) - Smem

Execution

Status Bits None
Example 1 MVKD 300h, 0
Befora Instruction
DP | 004|
Data Memory
0200n | ABCD)
0300h | 1234 |

After Instruction

oP [oo4f

0200h

0300h

MVMD: Move Data From Memory-Mapped Register to Data Memory

Syntax MVMD MMR, dmad

Operands MMR: Memory-mapped register
0 = dmad = 65 535

Execution dmad — EAR

If(RC) =0

Then
(MMR) — Dmem addressed by EAR
{(EAR)+1— EAR

Else
(MMR) — Dmem addressed by EAR

Status Bits Mone

1234

MVMM: Move Data From Memory-Mapped Register to Memory-Mapped Register

Syntax

Operands

Execution

Status Bits

Example

MVMM MMRx. MMRYy

MMRXx: ARO-AR7, SP
MMRYy: ARO-AR7, SP

(MMRx) - MMRYy

None

MV 5P, ARL

Before Instruction After Instruction

AR) R
§ 1200 s

MVPD: Move Data From Program Memory to Data Memory

Syntax

Operands

Execution

Status Bits

MVPD pmad, Smem

Smem: Single data-memory operand
0 = pmad = 65535

pmad — PAR

If (RC) = O

Then
(Pmem addressed by PAR) — Smem
(PAR) + 1 — PAR

Else
(Pmem addressed by PAR) — Smem

MNone

PORTR: Read Data from Port

PORTW: Write Data to Port

Syntax

Operands

Execution

Status Bits

PORTW Smem, PA

Smem: Single data-memory operand
0 < PA = 65535

(Smem) — PA

None

READA: Read Program Memory addressed by Accumulator A and Store in Data
Memory

Syntax READA Smem
Operands Smem: Single data-memory operand
Execution A — PAR

If ((RC)=0)

{Pmem (addressed by PAR)) — Smem
(PAR) + 1 — PAR
(RC)-1—=RC
Else
(Pmem (addressed by PAR)) — Smem

Status Bits None

WRITA: Write Data to Program Memory Addressed by Accumulator A

Syntax WRITA Smem
Operands Smem: Single data-memory operand
Execution A — PAR

If(RC) = 0

Then

(Smem) — (Pmem addressed by PAR)
(PAR) + 1 — PAR
(RC)-1—=RC
Else
(Smem) — (Pmem addressed by PAR)

Status Bits None

Branch Instructions

B[D]: Branch Unconditionally

Syntax B[D] pmad
Operands 0 < pmad < 65 535
Execution pmad — PC

Status Bits None

BACC[D]: Branch to Location Specified by Accumulator

Syntax

Operands

Execution

Status Bits

BACC[D] src

src: A (accumulator A)
B (accumulator B)

(src(15-0)) — PC

MNone

BANZ[D]: Branch on Auxiliary Register Not Zero

Syntax

Operands

Execution

Status Bits

BANZ[D] pmad, Sind

Sind: Single indirect addressing operand
0 < pmad < 65 535
If ((ARx) = 0)
Then
pmad — PC
Else
(PC)+2—PC
None

BC [D]: Branch Conditionally

Syntax

Execution

Status Bits

BC[D] pmad, cond [, cond [, cond]]

If (cond(s))
Then

pmad — PC
Else

(PC)+2—=PC

Affects OVA or OVB if OV or NOV is chosen

FB [D]: Far Branch Unconditionally

Syntax
Operands

Execution

Status Bits

FB[D] extpmad
0 < extpmad < 7F FFFF

(pmad(15-0)) — PC
(pmad(22-16)) — XPC

None

FBACC [D]: Far Branch to Location Specified by Accumulator

Syntax FBACC[D] src

Operands src: A (accumulator A)
B (accumulator B)
Execution (src(15-0)) — PC
(src(22-16)) — XPC
Status Bits MNone

CALA [D]: Call Subroutine at Location Specified by Accumulator

Syntax CALA[D] src
Operands src: A (accumulator A)
B (accumulator B)
Execution Nondelayed
(SP)-1—=5SP

(PC)+1 — TOS
(src(15-0)) — PC

Delayed
(SP)-1—=SP
(PC)+3 —=TOS
(src(15-0)) —= PC

Status Bits None

CALL[D]: Call Unconditionally

Syntax CALL[D] pmad
Operands 0 < pmad < 65535

Execution Nondelayed
(SP)— 1—=S8P
(PC) + 2—-TOS
pmad — PC

Delayed

(SP)— 1—=5P
(PC)+4 - TOS
pmad — PC

Status Bits None

CC [D]: Call Conditionally

Dept.ECE, SIBIT Page

Syntax

Operands

CC[D] pmad, cond|, cond|, cond]
0 < pmad < 6553

The following table lists the conditions (cond operand for this instruction.

Condition Condition
Cond Description Code Cond Description Code
BIO BiDlw 00000011 {NBIO BiDhigh 00000010
C C=1 00001100 JNC C=0 0000 1000
T T1C=1 00110000 JNTC TC=0 0010 0000
AEQ (A)=0 01000101 JBEQ (B)=0 0100 1101
ANEQ (A)#0 01000100 JBNEQ (B)=0 01001100
AGT (A)>0 0100010 §BGT (B)>0 01001110
AGEQ (A)z0 01000010 §BGEQ (B)20 01001010
AT [A)<0 000001 [BLT (B)<0 01001011
ALEQ (Aj<0 01000111 [BLEQ (8)<0 0100111
AV Aoveflow 01110000 [(BOV ~ Boverfow 01111000
ANOV Anooverow 01100000 ((BNOV B nooveriow 01101000

UNC Unconditional 0000 0000

Execution MNondelayed

If (cond(s))

Then
(SP) — 1 —=SP
(PC) + 2 —TOS
pmad — PC

Else
(PC)+ 2 — PC

Delayed
If (cond(s))
Then
(SsP) — 1 — SP
(PC)+4 — TOS
pmad — PC
Else
(PC)y+ 2 — PC

Status Bits Affects OVA or OVEB (if OV or NOV is chosen)

FCALA [D]: Far Call Subroutine at Location Specified by Accumulator

Syntax FCALA[D] src
Operands src: A (accumulator A)
B (accumulator B)
Execution Nondelayed
(SP)-1—SP
(PC)+1—=TOS
(SP)—1—=SP
(XPC) — TOS

(src(15-0)) — PC
(src(22-16)) — XPC

Delayed

(SP)—1— SP
(PC)+3 —= TOS
(SP)—1—SP
(XPC) — TOS
(src(15-0)) — PC
(src(22—-16)) — XPC

Status Bits None

FCALL[D]: Far Call Unconditionally

Syntax

Operands

Execution

Status Bits

Interrupt Instructions:

FCALL[D] sxiprmad
0 = extpmad = FF FFFF

NMondelayed

(sSP) — 1 — =P

(PC) + 2 —=TOS
(SP)—1— SF

(XPC) — TOS
(pmad({15-0})) — PC
(pmad{22—15)) — XPC

Delayed
{sp}- 1—=SP

PC) +4 — TOS

SP)—1 — SP

XPC) — TOS
pmad(15-0}) — PC
pmad(22—-16)) — XPC

Mone

INTR: Software Interrupt

Syntax

Operands

Execution

Status Bits

TRAP: Software Interrupt

INTR K
0=K=31

(SP)— 1—=SP

(PC)+ 1 —=TOS

interrupt vector specified by K — PC
1— INTM

Affects INTM and IFR

Syntax TRAP K

Operands 0=K=3

Execution (SP) - 1—=5P
(PC) + 1 —=TOS
Interrupt vector specified by K — PC

Status Bits None

Return Instructions

FRET [D]: Far Return

Syntax FRET[D]

Operands None

Execution (TOS) —= XPC
(SP)+ 1 —= SP
(TOS) — PC

(SP)+ 1—SP

Status Bits MNone

FRETE [D]: Enable Interrupts and Far Return From Interrupt

Syntax FRETE[D]
Operands None
Execution (TOS) — XPC
(SP) + 1 — SP
(TOS) — PC
(SP) + 1 — SP
0 — INTM
Status Bits Affects INTM

RC [D]: Return Conditionally

Syntax
Operands

Opcode

Execution

Status Bits

RC[D] cond|, cona|, cond]]

The following table lists the conditions (cond operand) for this instruction.

Condition Condition

Cond Description Code Cond Description Code

BIO BiOlw 00000011 [NBIO BiOhigh 00000010
C C=1 0000 1100 [{NC C=0 0000 1000
C TC=1 00110000 fINTC TC=0 0010 0000
AEQ (A)=0 01000101 |[BEQ (B)=0 0100 1101
ANEQ (A)#0 01000100 (|BNEQ (B) =0 0100 1100
AGT (A)>0 01000110 (|BGT (B)>0 0100 1110
AGEQ (A)20 01000010 [|BGEQ (B)=0 0100 1010
ALT (A)<0 01000011 fIBLT (B} <0 0100 1011
ALEQ (A)s0 01000111 |BLEQ (B)=0 0100 1111
AQV Aoverflow 01110000 [BOV Boverflow 0111 1000
ANOV Anooverflow 01100000 ||BNOV B nooverflow 0110 1000
UNC Unconditional 0000 0000

15 14 13 12 11 10 9 8 7 &6 13 1.0
= £ ¥ § 4 9 2 d|l€e¢ E B ELEE ¢ B

If (cond(s))

Then
(TOS) - PC
(SP)+1— SP

Else
{PC)+1—=PC

None

RET [D]: Return

Syntax RET[D]
Operands None
Execution (TOS) —= PC

(SP) + 1 —SP
Status Bits None

RETF [D]: Enable Interrupts and Fast Return From Interrupt

Syntax RETF[D]
Operands None
Execution (RTN) — PC
(SP)+ 1 —=SP
0 —INTM
Status Bits Affects INTM

Repeat Instructions

RPT: Repeat Next Instruction

Syntax 1: RPT Smem
2: RPT #K
3. RPT #k
Operands Smem: Single data-memory operand
0=K= 255
0 =<Ik < 65535
Execution 1. (Smem)— RC
2. K—=RC
3: k—=RC
Status Bits None

RPTB [D]: Block Repeat

Syntax
Operands

Execution

Status Bits

RPTB[D] pmad
0 = pmad = 65 535

1 — BRAF
If (delayed) then
(PC)+4 — RSA
Else
(PC)+2 — RSA
pmad — REA

Affects BRAF

RPTZ: Repeat Next Instruction and Clear Accumulator

Syntax

Operands

Execution

Status Bits

RPTZ dst, #/k

dst: A (accumulator A)
B (accumulator B)
0 =<Ilk < 865535

0 — dst
Ik - RC

None

Stack-Manipulating Instructions FRAME:

Stack Pointer Immediate Offset

Operands
Execution

Status Bits

Example

-128 < K < 127
(SP) + K- SP
None

FRAME 10h

Before Instruction

sp [100

POPD: Pop Top of Stack to Data Memory

Syntax

Operands

Execution

Status Bits

POPD Smem

Smem: Single data-memory operand

(TOS) — Smem
(SP) + 1—SP

None

After Instruction

sp [1010

POPM: Pop Top of Stack to Memory-Mapped Register

Syntax
Operands

Execution

Status Bits

POPM MMR
MMR: Memory-mapped register

(TOS) — MMR
(SP) + 1 —SP

MNone

PSHD: Push Data-Memory Value onto Stack

Syntax
Operands

Execution

Status Bits

PSHD Smem
Smem: Single data-memory operand

(SP) — 1 —=SP
(Smem) — TOS

None

PSHM: Push Memory-Mapped Register onto Stack

Syntax

Operands

Execution

Status Bits

PSHM MMR

MMR: Memory-mapped register

(SP) — 1 —>SP
(MMR) — TOS

None

Miscellaneous Program-Control Instructions

SSBX: Set Status Register Bit

Syntax

Operands

Execution

Status Bits

SSBX N, SBIT

0 = SBIT = 15
N=0or1

1 — STN(SBIT)

None

RSBX: Reset Status Register Bit

Syntax RSBX N, SBIT

Operands 0=SBIT< 15
N=0or1
Execution 0 - STN(SBIT)
Status Bits None
Example 1 RSBX SXM ; SXM means: n=1 and SBIT=8
Before Instruction After Instruction
ST sTH

NOP: No Operation

Syntax NOP
Operands None
Execution None
Status Bits None

RESET: Software Reset

Syntax RESET
Operands None
Execution These fields of PMST, STO, and ST1 are loaded with the values shown:
(IPTR) <<7 = PC 0 - 0OVA 0-OVB
1=C 1-TC 0 - ARP
0—DP 1 - SXM 0 - ASM
0 - BRAF 0—-HM 1—-XF
0—C16 0 - FRCT 0 - CMPT
0—-CPL 1= INTM 0-IFR
00— OVM

Status Bits The status bits affected are listed in the execution section.

On chip peripherals:

It facilitates interfacing with external devices. The peripherals are:
e General purpose 1/0 pins

A software programmable wait state generator.

Hardware timer

Host port interface (HPI)

Clock generator

Serial port

It has two general purpose 1/O pins:

» BIO-input pin used to monitor the status of external devices.
» XF- output pin, software controlled used to signal external devices

Software programmable wait state generator:

> Extends external bus cycles up to seven machine cycles.

Hardware Timer
» [1Anon chip down counter
» [1 Used to generate signal to initiate any interrupt or any other process

o Consists of 3 memory mapped registers:
» The timer register (TIM)
» Timer period register (PRD)
» Timer controls register (TCR)
* Pre scaler block (PSC).
« TDDR (Time Divide Down ratio)
* TIN &TOUT

The timer register (TIM) is a 16-bit memory-mapped register that decrements at every pulse from the
prescaler block (PSC).
The timer period register (PRD) is a 16-bit memory-mapped register whose contents are loaded onto
the TIM whenever the TIM decrements to zero or the device is reset (SRESET).

The timer can also be independently reset using the TRB signal. The timer control register
(TCR) is a 16-bit memory-mapped register that contains status and control bits. Table shows the
functions of the various bits in the TCR.

The prescaler block is also an on-chip counter. Whenever the prescaler bits count down to 0, a
clock pulse is given to the TIM register that decrements the TIM register by 1. The TDDR bits contain
the divide-down ratio, which is loaded onto the prescaler block after each time the prescaler bits count
down to 0.

That is to say that the 4-bit value of TDDR determines the divide-by ratio of the timer clock
with respect to the system clock. In other words, the TIM decrements either at the rate of the system
clock or at a rate slower than that as decided by the value of the TDDR bits. TOUT and TINT are the
output signal generated as the TIM register decrements to 0. TOUT can trigger the start of the
conversion signal in an ADC interfaced to the DSP.

The sampling frequency of the ADC determines how frequently it receives the TOUT signal.

TINT is used to generate interrupts, which are required to service a peripheral such as a DRAM
controller periodically. The timer can also be stopped, restarted, reset, or disabled by specific status

bits.
Bit Name Function
[5-12 Reserved Reserved:; always read as 0.
11 Soft Used in conjunction with the free bit to determine the state of the timer
Soft=0,the timer stops immediately.
Soft=1,the timer stops when the counter decrements to (.
10 Free Use in conjunction with the soft bit
Free=0,the soft bit selects the timer mode
free=1,the timer runs free
Bil Name Function
0-6 PSC Timer prescaler counter, specifies the count for the on-chip timer
5 TRB Timer reload. Reset the on-chip timer.
u TSS Timer stop status, stop or starts the on-chip timer.
3-0 TDDR Timer divide-down ration

Table 4.6. Pin details of software wait state generator

SRESET

B —— e G

PRD TDDR
1 1 CPU clock
TIM PSC | —
Borvrow Borvrow T35
1 1 ~ TINT
[~ - | OUT

Figure 4.2 Logical block diagram of timer circuit.

Host port interface (HPI):

» Allows to interface to an 8bit or 16bit host devices or a host processor
Signals in HPI are:

Host interrupt (HINT)

HRDY

HCNTLO &HCNTL1

HBIL

HR/w

Page

, HPI16 T
hosT | PPOUISOD | : =
: esmse b
DRTALIN]] HINT HPIDLIS 0] el re
DA w0 (=
Aclr ess117:0] o - *E"g
te _JIHCNTLO
o HCNTL
—af HBIL
HAS
R/W o HR/W
== Sdxx
Dotastrobes » HDS1, HDS2, HCS CPU
READY | HRDY

4.3. A generic diagram of the host port interface (HPI)

Important signals in the HPI are as follows:
« The 16-bit data bus and the 18-bit address bus.
» The host interrupt, Hint, for the DSP to signal the host when it attention is required.
« HRDY, a DSP output indicating that the DSP is ready for transfer.
« HCNTLO and HCNTLZ1, control signal that indicate the type of transfer to carry out. The
transfer types are data, address, etc.

« HBIL. Ifthis is low it indicates that the current byte is the first byte; if it is high, it
indicates that it is second byte.

« HR/W indicates if the host is carrying out a read operation or a write operation

Clock Generator:

The clock generator on TMS320C54xx devices has two options-an external clock
and the internal clock. In the case of the external clock option, a clock source is directly connected to
the device. The internal clock source option, on the other hand, uses an internal clock generator and a
phase locked loop (PLL) circuit. The PLL, in turn, can be hardware configured or software

programmed. Not all devices of the TMS320C54xx family have all these clock options; they vary
from device to device.

Serial 1/0O Ports:
Three types of serial ports are available:
* Synchronous ports.
« Buffered ports.
* Time-division multiplexed ports.

The synchronous serial ports are high-speed, full-duplex ports and that provide direct
communications with serial devices, such as codec, and analog-to-digital (A/D) converters. A buffered
serial port (BSP) is synchronous serial port that is provided with
an auto buffering unit and is clocked at the full clock rate. The head of servicing interrupts. A time-
division multiplexed (TDM) serial port is a synchronous serial port that is provided to allow time-
division multiplexing of the data. The functioning of each of these on-chip peripherals is controlled by
memory-mapped registers assigned to the respective peripheral.

Interrupts of TMS320C54xx Processors:
Many times, when CPU is in the midst of executing a program, a peripheral device may require

a service from the CPU. In such a situation, the main program may be interrupted by a signal
generated by the peripheral devices. This results in the processor suspending the main program in
order to execute another program, called interrupt service routine, to service the peripheral device. On
completion of the interrupt service routine, the processor returns to the main program to continue from
where it left.
Interrupt may be generated either by an internal or an external device. It may also be generated by
software. Not all interrupts are serviced when they occur. Only those interrupts that are called
nonmaskable are serviced whenever they occur. Other interrupts, which are called maskable interrupts,
are serviced only if they are enabled. There is also a priority to determine which interrupt gets serviced
first if more than one interrupts occur simultaneously.

Almost all the devices of TMS320C54xx family have 32 interrupts. However, the
types and the number under each type vary from device to device. Some of these interrupts are
reserved for use by the CPU.

Pipeline operation of TMS320C54xx Processors:

The CPU of ‘54xx devices have a six-level-deep instruction pipeline. The six stages of the
pipeline are independent of each other. This allows overlapping execution of instructions. During any
given cycle, up to six different instructions can be active, each at a different stage of processing. The
six levels of the pipeline structure are program prefetch, program fetch, decode, access, read and
execute.

1 During program prefetch, the program address bus, PAB, is loaded with the address of the next
instruction to be fetched.

2 In the fetch phase, an instruction word is fetched from the program bus, PB, and loaded into the
instruction register, IR. These two phases fromthe instruction fetch sequence.

3 During the decode stage, the contents of the instruction register, IR are decoded to determine the
type of memory access operation and the control signals required for the data-address generation unit
and the CPU.

4 The access phase outputs the read operand’s on the data address bus, DAB. If a second operand is
required, the other data address bus, CAB, also loaded with an appropriate address. Auxiliary
registers in indirect addressing mode and the stack pointer (SP) are also updated.

5 In the read phase the data operand(s), if any, are read from the data buses, DB and CB. This phase
completes the two-phase read process and starts the two phase write processes. The data address of the
write operand, if any, is loaded into the data write address bus, EAB.

6 The execute phase writes the data using the data write bus, EB, and completes the operand write
sequence. The instruction is executed in this phase.

Loads IR withthe | h2ds DB with the datal read operand

_ contents ot PEL) oads CB with the dataZ read operand
Logds PAB wih decodes the I5'S | gads EAB with the data1 read
the FLC's contents contents

address, if required

| ! }
Prefetch |Fetch |Decode |Access |Read |Execute

| | !

Loads FE with

the fetched Loads DAB with the datal read Execules the
Instructi on ward address, ifreguired instruction & oads
Loads DAE with the data’? read EE with write data

address, ifrequired
Updates auxiliary registers &stack
pointer

Figure 4.4. Pipeline operation of TMS320C54xx Processors
Pipe Flow

TIME

P, F, : [A Ry X
3 Fo | Dy | Ay R, | &
4 F, | Dy Ay Ry Xy

P. |F. | D. | A |R | X
Pli Fﬁ Dﬁ Aﬁ

i
&

Figure 4.5.Pipe flow diagram

Unit 4

Interfacing Memory & Parallel 1/O Peripherals
to DSP Devices

Introduction: A typical DSP system has DSP with external memory, input devices and output devices.
Since the manufacturers of memory and I/O devices are not same as that of manufacturers of DSP and
also since there are variety of memory and 1/O devices available, the signals generated by DSP may not
suit memory and 1/0 devices to be connected to DSP. Thus, there is a need for interfacing devices the
purpose of it being to use DSP signals to generate the appropriate signals for setting up communication
with the memory. DSP with interface is shown in fig. 7.1.

Memory
Program & Data

/}.
inte rta'
{I

Input Devices |« |ﬁt_e-rf_a-ce DSP Processor| mterfacel Output Devices

i s e an

Fig. 7.1: DSP system with interfacing

Memory Space Organization: Memory Space in TMS320C54xx has 192K words of 16 bits each.
Memory is divided into Program Memory, Data Memory and 1/O Space, each are of 64K
words. The actual memory and type of memory depends on particular DSP device of the
family. If the memory available on a DSP is not sufficient for an application, it can be
interfaced to an external memory as depicted in fig. 7.2. The On- Chip Memory are faster than

Memory
Program & Data
ALU
/ A MAC
I hY
- Barrel Shifter
Program Data :
Memory Memory
Internal memory

A ‘-_.r
by

External Memory

Fig. 7.2: Internal memory and interfacing of external memory

External Memory. There are no interfacing requirements. Because they are on-chip, power
consumption is less and size is small. It exhibits better performance by DSP because of better
data flow within pipeline. The purpose of such memory is to hold Program / Code /
Instructions, to hold constant data such as filter coefficients / filter order, also to hold
trigonometric tables / kernels of transforms employed in an algorithm. Not only constants are
stored in such memory, they are also used to hold variable data and intermediate results so that
the processor need not refer to external memory for the purpose.

External memory is off-chip. They are slower memory. External Interfacing is required to

establish the communication between the memory and the DSP. They can be with large memory space.
The purpose is being to store variable data and as scratch pad memory. Program memory can be ROM,
Dual Access RAM (DARAM), Single Access RAM (SARAM), or a combination of all these. The
program memory can be extended externally to 8192K words. That is, 128 pages of 64K words each.
The arrangement of memory and DSP in the case of Single Access RAM (SARAM) and Dual Access
RAM (DARAM) is shown in fig. 7.3. One set of address bus and data bus is available in the case of
SARAM and two sets of address bus and data bus is available in the case of DARAM. The DSP can
thus access two memory locations simultaneously.

Wddress e
K——> M
DSP Memory DSP - e
= i —
Data
SARAM DARAM

Fig. 7.3: SARAM & DARAM

There are 3 bits available in memory mapped register, PMST for the purpose of on-chip

memory mapping. They are microprocessor / microcomputer mode. If this bit is 0, the on-chip ROM is
enabled and addressable and if this bit is 1 the on-chip ROM not available. The bit can be manipulated
by software / set to the value on this pin at system

reset. Second bit is OVLY. It implies RAM Overlay. It enables on-chip DARAM data memory blocks
to be mapped into program space. If this bit is 0, on-chip RAM is addressable in data space but not in
Program Space and if it is 1, on-chip RAM is mapped into Program & Data Space. The third bit is
DROM. It enables on-chip DARAM 4-7 to be mapped into data space. If this bit is 0, on-chip
DARAM 4-7 is not mapped into data space and if this bit is 1, on-chip DARAM 4-7 is mapped into
Data Space. On-chip data memory is partitioned into several regions as shown in table 7.1. Data
memory can be onchip / off-chip.

Table 7.1: Data memory 64 K
0000-005F | Memory Mapped
96 locations | Registers

0060-007F | Scratch pad RAM
32 locations
0080-7FFF | On-chip

DARAM 0-3
32Kx 16bit
8000-FFFF | On-chip
32K DARAM 4-7
locations for Data

The on-chip memory of TMS320C54xx can be both program & data memory. It enhances speed of
program execution by using parallelism. That is, multiple data access capability is provided for
concurrent memory operations. The number of operations in single memory access is 3 reads & one
write. The external memory to DSP can be interfaced with 16 -23 bit Address Bus, 16 bit Data Bus.
Interfacing Signals are generated by the DSP to refer to external memory. The signals required by the
memory are typically chip Select, Output Enable and Write Enable. For example, TMS320C5416 has
16K ROM, 64K DARAM and 64K SARAM.

Extended external Program Memory is interfaced with 23 address lines i.e., 8192K locations. The
external memory thus interfaced is divided into 128 pages, with 64K words per page.

: External Bus Interfacing Signals: In DSP there are 16 external bus interfacing signals. The signal is
characterized as single bit i.e., single line or multiple bits i.e., Multiple lines / bus. It can be
synchronous / asynchronous with clock. The signal can be

active low / active high. It can be output / input Signal. The signal carrying line / lines Can be
unidirectional / bidirectional Signal. The characteristics of the signal depend on

the purpose it serves. The signals available in TMS320C54xx are listed in table 7.2 (a) & table 7.2 (b).

Table 7.2 (a) External Bus Interfacing Signals

1 AO-A19 20 bit Address Bus
2 DO-DI15 16 bit Data Bus
3 TS Data Space Select
4 Program Space Select
123 e
5 'S /O Space Select
6 R/W Read/Write Signal
7 Memory Strobe
MSTRB
8 /O Strobe
IOTRB

In external bus interfacing signals, address bus and data bus are multi-lines bus. Address bus is
unidirectional and carries address of the location refereed. Data bus is bidirectional and carries data to

or from DSP. When data lines are not in use, they are tri-stated. Data Space Select, Program Space
Select, 1/0 Space Select are meant for data space, program space or 1/O space selection. These
interfacing signals are all active low. They are active during the entire operation of data memory /
program memory / 1/0O space reference. Read/Write Signal determines if the DSP is reading the
external device or writing.

Read/Write Signal is low when DSP is writing and high when DSP is reading. Strobe Interfacing
Signals, Memory Strobe and 1/O Strobe both are active low. They remain low

during the entire read & write operations of memory and I/O operations respectively. External Bus
Interfacing Signals from 1-8 are all are unidirectional except Data Bus which is bidirectional. Address
Lines are outgoing signals and all other control signals are also outgoing signals.

Table 7.2 (b) External Bus Interfacing Signals

0 READY Data Ready Signal

10 HOLD Hold Request

11 HLDA Hold J’ji'l:klli:}‘lr‘-"lﬂdgc

12 MSC Micro State Complete
13 Iﬁ Interrupt Request

14]ﬁ Interrupt Acknowledge
15 XF External Flag Output
16 Branch Control Input

BIO

Data Ready signal is used when a slow device is to be interfaced. Hold Request and Hold
Acknowledge are used in conjunction with DMA controller. There are two Interrupt related signals:
Interrupt Request and Interrupt Acknowledge. Both are active low. Interrupt Request typically for data
exchange. For example, between ADC / another Processor. TMS320C5416 has 14 hardware interrupts
for the purpose of User interrupt, Mc-BSP, DMA and timer. The External Flag is active high,
asynchronous and outgoing control signal. It initiates an action or informs about the completion of a
transaction to the peripheral device. Branch Control Input is a active low, asynchronous, incoming
control signal. A low on this signal makes the DSP to respond or attend to the peripheral device. It
informs about the completion of a transaction to the DSP.

The Memory Interface: The memory is organized as several locations of certain number of bitumber
of locations decides the address bus width and memory capacity. The number of bits per locations
decides the data bus width and hence word length. Each location has unique address. The demand of
an application may be such that memory capacity required is more than that available in a memory IC.
That means there are insufficient words in memory IC. Or the word length required may be more than
that is available in a memory IC. Thus, there may be insufficient word length. In both the cases, more
number of memory ICs are required.

Typical signals in a memory device are address bus to carry address of referred memory location. Data
bus carries data to or from referred memory location. Chip Select Signal selects one or more memory
ICs among many memory ICs in the system. Write Enable enables writing of data available on data
bus to a memory location. Output Enable signal enables the availability of data from a memory
location onto the data bus. The address bus is unidirectional, carries address into the memory IC. Data
bus is bidirectional. Chip Select, Write Enable and Output Enable control signals are active high or
low and they carry signals into the memory ICs. The task of the memory interface is to use DSP
signals and generate the appropriate signals for setting up communication with the memory. The
logical spacing of interface is shown in fig. 7.4.

TMS320C5416
Memory
23 x+1
AD-A22
T’ — % AD-Ax
DO-D15 |
._1/*‘:_. DO-D15
R/W Memory .
, Interface }——o WE
PS. ﬁﬁ_.‘* S
— OF
1|k|llrl'.'l.."
— MSTRE—— —x TS
— 1 MP/MC

Fig. 7.4 Memory Interface for TMS320C5416

The timing sequence of memory access is shown in fig. 7.5. There are two read operations, both
referring to program memory. Read Signal is high and Program Memory Select is low. There is one
Write operation referring to external data memory. Data Memory Select is low and Write Signal low.
Read and write are to memory device and hence memory strobe is low. Internal program memory
reads take one clock cycle and External data memory access require two clock cycles.

DSP Algorithm and Architecture 10EC751

Address :>K ')!(

-
=
o
g
@
2
g
X

R/W

PS
DS

MSTRB —\

Fig. 7.5 Timing Sequence for External Memory Access

Effects of ‘No decode’ interface are

* Fast memory Access

« ENTIRE Address space is used by the Device that is connected

« Memory responds to 0000-1FFFh and also to all combinations of address bits A13-
A19 (In the example quoted)

« Program space select & data space select lines are not used

« SRAM is thus indistinguishable as a program or data Memory

TMS320C54 SRAM
13
AO0-A22 ¢
AD-A12

16
DO-D15 ﬁ DO-D15

L 4
]
s

MSTREB

OF
Vee _*

MPMC R ;W

A J
=
5!

Fig. P7.4: Memory interface without decode circuit

DSP Algorithm and Architecture

10EC751

Problem P7.5: Design an interface to connect a 64K x 16 flash memory to a

TMS320C54xx device. The Processor address bus to be used is A0O-A15. The flash

memory has the signals as shown in fig. P7.5.

Solution: Address lines from AO0-A15 are used to address 64K locations. All the data

lines, DO-D15 are used to carry data word. Data Space Select line is connected to chip

enable of memory so that whenever DSP refers to data memory, this flash memory is

enabled. When DSP refers to memory and it is a write operation, both memory strobe and

read/write signals will be low. They are combined in using OR gate and used as write

enable for memory. Memory read is performed by combining memory strobe and XF

signals.

NS

MSTREH_JD
R/W

Ag-Ais
Dg-Dis
DS |
DSP
MP/MC

XF

) D—

ArAis L
VP
Dg-D;s WH
—_— VPH
CE
28F400B
WE
OE

Fig. P7.5: Interfacing flash memory

Ve

Parallel 1/0O Interface: 1/0 devices are interfaced to DSP using unconditional 1/O mode, programmed
I/0 mode or interrupt I/0O mode. Unconditional 1/O does not require any handshaking signals. DSP
assumes the readiness of the 1/0 and transfers the data with its own speed. Programmed 1/O requires
handshaking signals. DSP waits for the readiness of the 1/0O readiness signal which is one of the
handshaking signals. After the
completion of transaction DSP conveys the same to the I/O through another handshaking signal.
Interrupt 1/0 also requires handshaking signals. DSP is interrupted by the 1/O indicating the readiness

of the 1/0. DSP acknowledges the interrupt, attends to the interrupt. Thus, DSP need not wait for the
I/0 to respond. It can engage itself in execution as long as there is no interrupt.

: Programmed | /O interface: The timing diagram in the case of programmed 1/O is shown in fig.
7.6. 1/0O strobe and 1/0O space select are issued by the DSP. Two clock cycles each are required for 1/0
read and 1/O write operations.

CLEOUT

Fig. 7.6: Read-Write-Read Sequence of Operations

An example of interfacing ADC to DSP in programmed 1/0 mode is shown in fig. 7.7. ADC has a start
of conversion (SOC) signal which initiates the conversion. In programmed 1/O mode, external flag
signal is issued by DSP to start the conversion. ADC issues end of conversion (EOC) after completion
of conversion. DSP receives Branch input control by ADC when ADC completes the conversion. The
DSP issues address of the ADC, 1/0O strobe and read / write signal as high to read the data. An address
decoder does the translation of this information into active low read signal to ADC. The data is
supplied on data bus by ADC and DSP reads the same. After reading,

DSP issues start of conversion once again after the elapse of sample interval. Note that

there are no address lines for ADC. The decoded address selects the ADC. During conversion, DSP
waits checking branch input control signal status for zero. The flow chart of the activities in
programmed I/O is shown in fig. 7.8.

Ag-Aus —> Address
decoder o
1S —> » RD
R/W |—»
DSP ADC
DO-D;S < DO_D” Analog In
—
Vs _\]’ » SOC
=T MP/MC
BIO |« EOC

Fig. 7.7: ADC in Programmed I/O mode

(start) Conversion over -

v
v

XF=1.wait. XF=0 Read sample from ADC

(start ADC) v
Store, Process

¥

no
0 save Processed sample

TR .
— 1 Yes Wait for sampling interval

Fig. 7.8: Programmed I/O mode

Interrupt 1/0O: This mode of interfacing I/O devices also requires handshaking signals. DSP is
interrupted by the 1/0 whenever it is ready. DSP Acknowledges the interrupt, after testing certain
conditions, attends to the interrupt. DSP need not wait for the 1/O to respond. It can engage itself in
execution. There are a variety of interrupts. One of the classifications is maskable and nonmaskable. If
maskable, DSP can ignore when that interrupt is masked. Another classification is vectored and non-
vectored. If vectored, Interrupt Service subroutine (ISR) is in specific location. In Software Interrupt,
instruction is written in the program.

In Hardware interrupt, a hardware pin, on the DSP IC will receive an interrupt by the external
device. Hardware interrupt is also referred to as external interrupt and software interrupt is referred to
as internal interrupt. Internal interrupt may also be due to execution of certain instruction can causing
interrupt. In TMS320C54xx there are total of 30 interrupts. Reset, Non-maskable, Timer Interrupt,
HPI, one each, 14 Software Interrupts, 4 External user Interrupts, 6 Mc-BSP related Interrupts and 2
DMA related Interrupts. Host Port Interface (HPI) is a 8 bit parallel port. It is possible to interface to a
Host Processor using HPI. Information exchange is through on-chip memory of DSP
which is also accessible Host processor.

Registers used in managing interrupts are Interrupt flag Register (IFR) and Interrupt Mask
Register (IMR). IFR maintains pending external & internal interrupts. One in any bit position implies
pending interrupt. Once an interrupt is received, the orresponding bit is set. IMR is used to mask or
unmask an interrupt. One implies that the corresponding interrupt is unmasked. Both these registers
are Memory Mapped Registers. One flag, Global enable bit (INTM), in ST1 register is used to enable
or disable all interrupts globally. If INTM is zero, all unmasked interrupts are enabled. If it is one, all
maskable interrupts are disabled.

When an interrupt is received by the DSP, it checks if the interrupt is maskable. If the interrupt
is non-maskable, DSP issues the interrupt acknowledgement and thus serves the interrupt. If the
interrupt is hardware interrupt, global enable bit is set so that no other interrupts are entertained by the
DSP. If the interrupt is maskable, status of the INTM is checked. If INTM is 1, DSP does not respond
to the interrupt and it continues with program execution. If the INTM is 0, bit in IMR register
corresponding to the interrupt is checked. If that bit is 0, implying that the interrupt is masked, DSP
does not respond to the interrupt and continues with its program execution. If the interrupt is
unmasked, then DSP issues interrupt acknowledgement. Before branching to the interrupt service
routine, DSP saves the PC onto the stack. The same will be reloaded after attending the interrupt so as
to return to the program that has been interrupted. The response of DSP to an Interrupt is shown in
flow chart in fig. 7.9.

[Interrupt request received }

H/W or S/IW
interrupt?

INTM=1

PC saved on stack

'

ISR executed

}

v R Return instruction
Y restores PC

k J

Interrupt w—.L

acknowledged Main program
continues

Fig. 7.9: Response of DSP to interrupt

: Direct Memory Access (DMA) operation: In any application, there is data transfer

between DSP and memory and also DSP and 1/O device, as shown in fig. 7.10. However, there may be
need for transfer of large amount of data between two memory regions or between memory and 1/0.
DSP can be involved in such transfer, as shown in fig. 7.11. Since amount of data is large, it will
engage DSP in data transfer task for a long time. DSP thus will not get utilized for the purpose it is
meant for, i.e., data manipulation. The intervention of DSP has to be avoided for two reasons: to
utilize DSP for useful signal processing task and to increase the speed of transfer by direct data
transfer between memory or memory and 1/0. The direct data transfer is referred to as direct memory
access (DMA). The arrangement expected is shown in fig. 7.12. DMA controller helps in data transfer
instead of DSP.

DSP Memory

=
Q

Fig. 7.10: Interface between DSP and external devices

Memory — DSP jx——y Memory

Memory k——y DSP |c—— /O

Fig. 7.11: Data transfer with intervention by DSP

Memory Memory

Memory Vo

Fig. 7.12: data transfer without intervention by DSP

In DMA, data transfer can be between memory and peripherals which are either internal

or external devices. DMA controller manages DMA operation. Thus DSP is relieved of the task of
data transfer. Because of direct transfer, speed of transfer is high. In TMS320C54xx, there are up to 6
independent programmable DMA channels. Each channel is between certain source & destination.

One channel at a time can be used for

data transfer and not all six simultaneously. These channels can be prioritized. The speed of transfer
measured in terms of number of clock cycles for one DMA transfer depends on several factors such as
source and destination location, external interface conditions, number of active DMA channels, wait
states and bank switching time. The time for data transfer between two internal memory is 4 cycles for
each word.

Requirements of maintaining a channel are source & Destination address for a channel,
separately for each channel. Data transfer is in the form of block, with each block having frames of 16
/ 32 bits. Block size, frame size, data are programmable. Along with these, mode of transfer and
assignment of priorities to different channels are also to be maintained for the purpose of data transfer.

There are five, channel context registers for each DMA channel. They are Source

Address Register (DMSRC), Destination Address Register (DMDST), Element Count Register
(DMCTR), Sync select & Frame Count register (DMSFC), Transfer Mode Control Register
(DMMCR). There are four reload registers. The context register DMSRC & DMDST are source &
destination address holders. DMCTR is for holding number of data elements in a frame. DMSFC is to
convey sync event to use to trigger DMA transfer, word size for transfer and for holding frame count.
DMMCR Controls transfer mode by specifying source and destination spaces as program memory,
data memoryor 1/0O space. Source address reload & Destination address reload are useful in

reloading source address and destination address. Similarly, count reload and frame count reload are
used in reloading count and frame count. Additional registers for DMA that are common to all
channels are Source Program page address, DMSRCP, Destination Program page address, DMDSTP,
Element index address register, Frame index address register.

Number of memory mapped registers for DMA are 6x(5+4) and some common registers

for all channels, amounting to total of 62 registers required. However, only 3 (+1 for priority related)
are available. They are DMA Priority & Enable Control Register (DMPREC), DMA sub bank Address
Register (DMSA), DMA sub bank Data Register with auto increment (DMSDI) and DMA sub bank
Data Register (DMSDN). To access each of the DMA Registers Register sub addressing Technique is
employed. The schematic of the arrangement is shown in fig. 7.13. A set of DMA registers of all
channels (62) are made available in set of memory locations called sub bank. This voids the need for
62 memory mapped registers. Contents of either DMSDI or DMSDN indicate the code (1’s & 0’s) to
be written for a DMA register and contents of DMSA refers to the unique sub address of DMA
register to be accessed. Mux routes either DMSDI or DMSDN to the sub bank. The memory location
to be written

Subbank DMSDI >

Access mux
registers DMSDN
—
Vi Vi
DMSA
Subbank
Address register
_‘

Fig. 7.13: Register Subaddress Technique

DMSDI is used when an automatic increment of the sub address is required after each access. Thus it
can be used to configure the entire set of registers. DMSDN is used when single DMA register access
is required. The following examples bring out clearly the method of accessing the DMA registers and

transfer of data in DMA mode.

UNIT-5

Implementation of Basic DSP_Algorithms

Introduction:

In this unit, we deal with implementations of DSP algorithms & write programs to implement
the core algorithms only. However, these programs can be combined with input/output routines to
create applications that work with a specific hardware.

» Q-notation

> FIR filters

> 1IR filters

> Interpolation filters
> Decimation filters

The Q-notation:

DSP algorithm implementations deal with signals and coefficients. To use a fixed point DSP
device efficiently, one must consider representing filter coefficients and signal samples using fixed-
point2’s complement representation. Ex: N=16, Range: -2N-1 to +2N-1 -1(-32768 to
32767).Typically, filter coefficients are fractional numbers.

To represent such numbers, the Q-notation has been developed. The Q-notation specifies the number
of fractional bits.

Ex: Q7

000001010 .1000000

o l N

Fractional bit

Whole part +sign of

the number Decimal point

A commonly used notation for DSP implementations is Q15. In the Q15 representation, the least
significant 15 bits represent the fractional part of a number. In a processor where 16 bits are used to
represent numbers, the Q15 notation uses the MSB to represent the sign of the number and the rest of
the bits represent the value of the number.

In general, the value of a 16-bit Q15 number N represented as:

bisiieinn... bibg)
N=-bis+ bia2'+............ +bp2 "
Range:-1to 1- 2

-15

Multiplication of numbers represented using the Q-notation is important for DSP implementations.
Figure 5.1(a) shows typical cases encountered in such implementations.

N1 e _
Signed Bmary
MMultipher —————— N3
N2 '
NI1(16 bit) N2(16 bit) N3(16 bit)
Q0 Q0 Q0
Q0 Q15 Q15
Q15 Q15 Q30

Figure 5.1Multiplication of numbers represented using (J-notation

Program to multiply two Q15 numbers
i,e NIxN2=NI1*N2

Where
N1 &N2 are 16-bit numbers in Q15 notation
N1xN2 is the 16-bit result in Q15 notation

.mmregs : memory mapped registers

.data : sequential locations
NI1: .word 4000h : N1=0.5 (Q15 numbers)
N2: word 2000h : N2=0.25 (Q15 numbers)
NIxN2 .space 10h : space for NIxN2

text

ref _c_int00

.Sect ““.vectors ™’
RESET: b _c_int00 : reset vector

nop
nop
_int00

STM #NI1L.AR2 :AR2 points to N1
LD *AR2+, T :T reg=N1
MPY F=AR2+, A :A= N1 #*N2 in Q30 notation

ADD #1,14. A :round the result

STH A,1. *AR2 :save N1 #*N2 as Q15 number
NOP

NOP

.end

EIR Filters:
A finite impulse response (FIR) filter of order N can be described by the difference equation.
m=MN-1

yln] = D h(m)=(n-m)
m=nuo

The expanded form is y(n)=h(N-1)x(n-(N-1))+h(N-2)x(n-(N-2))+ ...h(1)x(n-1)+h(0)x(n)

n —Q--Df Delay \—0—)@—0 P ooe Delay
: \4 v v
Xy (X)ehy (X)eh; Xy,

\ 4 v \ A v
»\y—ui)—»m >:y >\y—> Yo

Figure 5.2 A FIR filter implementation block diagram

The implementation requires signal delay for each sample to compute the next output,

y(n+1), is given as y(n+1)=h(N-1)x(n-(N-2))+h(N-2)x(n-(N-3))+ ...h(1)x(n)+h(0)x(n+1) Figure 5.3
shows the memory organization for the implementation of the filter. The filter Coefficients and the
signal samples are stored in two circular buffers each of a size equal to the filter. AR2 is used to point
to the samples and AR3 to the coefficients. In order to start with the last product, the pointer register
AR2 must be initialized to access the signal sample x(2-(N-1)), and the pointer register AR3 to access
the filter coefficient h(N-1). As each product is computed and added to the previous result, the pointers
advance circularly. At the end of the computation, the signal sample pointer is at the oldest sample,
which is replaced with the newest sample to proceed with the next output computation.

x{n+1)
AR2 x(n-(N-1)) AR3 h{ n-1)
r l _2
3 x{n-N-2)) ‘ h(n-2)
: . | :
: : : :
: : . ;
: x(n) t h{0)

MAC

Jve

Figure 5.3 Organization of signal samples and filter coefficients in circular buffers for a
FIR filter implementation.

Program to implement an FIR filter:

It implements the following equation;
y(n)=h(N-1)x(n-(N-1))+h(N-2)x(n-(N-2))+ ...h(1)x(n-1)+h(0)x(n)
Where N = Number of filter coefficients = 16.

h(N-1), h(N-2),...h(0) etc are filter coefficients (q15numbers) .
The coefficients are available in file: coeff_fir.dat.
X(n-(N-1)),x(n-(N-2),...x(n) are signal samples(integers).

The input x(n) is received from the data file: data_in.dat.

The computed output y(n) is placed in a data buffer.

DSP Algorithm and Architecture

InSamples
OutSamples
SampleCnt

FirCoeff
Nml

_c_int00:

loop:

.mmregs
.def _c_int00
.sect "samples"

.include "data_in.dat" : Allocate space for x(n)s
.bss y, 200,1 : Allocate space for y(n)s
.set 200 : Number of samples to
filter
.bss CoefBuf, 16, 1 : Memory for coeff circular
buffer
.bss SampleBuf, 16, 1 : Memory for sample circular buffer
sect "FirCoeff" : Filter coeff (seq locations)
.include "coff _fir.dat*
set 15 :N-1
text

STM #OutSamples, AR6 : clear o/p sample buffer

RPT #SampleCnt

ST #0, *AR6+

STM #InSamples, ARS : ARS points to InSamples buffer

STM #OutSamples, AR6 :; AR6 points to OutSample buffer

STM #SampleCnt, AR4 : AR4 = Number of samples to

filter
CALL fir_init : Init for filter calculations
SSBX SXM : Select sign extension mode
LD *ARS+A : A = next input sample (integer)
CALL fir_filter ; Call Filter Routine
STH A, 1.*AR6+ : Store filtered sample (integer)

BANZ loop.*AR4- : Repeat till all samples filtered
nop
nop
nop

FIR Filter Initialization Routine

: This routine sets AR2 as the pointer for the sample circular buffer
: AR3 as the pointer for coefficient circular buffer.

; BK = Number of filter taps - 1.

; ARO = 1 = circular buffer pointer increment

fir_init:
ST #CoefBuf AR3 1 AR3 is the CB Coeff Pointer
ST #SampleBuf,AR2 : AR2 is the CB sample pointer
STM #Nml,BK : BK = number of filter taps
RPT #Nml
MVPD #FirCoeff, *AR3+% : Place coeff in circular buffer
RPT #Nml - 1 : Clear circular sample buffer
ST #0h,*AR2+ %
STM #1,AR0 : AR0 = 1 = CB pointer increment
RET
nop
nop
nop

FIR Filter Routine

; Enter with A=the current sample x(n)-an integer, AR2 pointing to the location for the current sample
x(n),andAR3pointingtothegl5coefficienth(N-1). Exit with A =y(n) as q15 number.

fir filter:

STL A, *AR240% : Place x(n)in the sample buffer
RPTZ A, #Nml A =0

MAC *AR3+0% *AR2+0% A : A =filtered sum (q15)
RET

nop

nop

nop

end

IR Filters:
An infinite impulse response (1IR) filter is represented by a transfer function, which is a ratio of two
polynomials in z. To implement such a filter, the difference equation representing the transfer function
can be derived and implemented using multiply and add operations. To show such an implementation,
we consider a second order transfer function given by

H (=) = by+bz "' +b,z7?

l—a,z"'—a,z7?

5
2(n) —={(F) wim 2

€23
|
=

w (n —2)

VI

Figure5.4 Block diagram of second order IR filter

z(n) + ey win— 1)+ ayw(n —2)

yn) = bwhn)+hwin-1)+bhwin-2)

s
=
—r
I

Program for 1IR
filter:

The transfer function is

H(z) = [b0 + b1.z**(-1)+ b2.z*(-2)J[1- al.z**(-1)- a2.z**(-2)]

Which is equivalent to the equations:

w(n) = x(n) + al.w(n-1) + a2.w(n-2)

y(n) = b0.w(n) + bl.w(n-1) + b2.w(n-2)

Where w(n), w(n-1), and w(n-2) are the intermediate variables used in computations (integers).al, a2,
b0, bl, and b2 are the filter coefficients (g15 numbers). x(n) is the input sample (integer). Input
samples are placed in the buffer, In Samples, from a data file, data_in.dat y(n) is the computed output
(integer). The output samples are placed in a buffer, Out Samples.

.mmregs
.def _c_int00
.sect "'samples"

InSamples .include ""data_in.dat" : Allocate space for x(n)s
OutSamples .bss y,200,1 : Allocate buffer for y(n)s
SampleCnt .set 200 : Number of samples to filter

: Intermediate variables (sequential locations)

wn .word 0 :initial w(n)
wnml .word 0 :initial w(n-1) =0
wnm2 .word 0 :initial w(n-2)=0

.sect ""coeff""
: Filter coefficients (sequential locations)

b0 .word 3431 : b0 =0.104
b1 .word -3356 :bl =-0.102
b2 word 3431 : b2 =0.104
al word -32767 :al =-1
a2 .word 20072 :a2=0.612

text
_¢_int00:

STM #OutSamples, AR6 : Clear output sample buffer

RPT #SampleCnt

ST #0, *AR6+

STM #InSamples, ARS : ARS points to InSamples buffer
STM #OutSamples, AR6 : AR6 points to OutSample buffer

STM #SampleCnt, AR4 : AR4 = Number of samples to filter

loop:
LD *ARS+,15.A : A = next input sample (q15)
CALL iir_filter : Call Filter Routine
STH A.1.*AR6+ : Store filtered sample (integer)
BANZ loop.*AR4- : Repeat till all samples filtered
nop
nop

nop

IIR Filter Subroutine

; Enter with A = x(n) as q15 number
; Exit with A = y(n) as q15 number
: Uses AR2 and AR3

iir_filter:

1)

SSBX SXM : Select sign extension mode
:w(n)=x(n)+ al.w(n-1)+ a2.w(n-2)

STM #a2,AR2 : AR2 points to a2
STM #wnm2, AR3 : AR3 points to w(n-2)
MAC *AR2-,*AR3- A : A = x(n)+ a2.w(n-2)

: AR2 points to al & AR3 to w(n-
MAC #*AR2-,*AR3- A : A =x(n)+ al.w(n-1)+ a2.w(n-2)

: AR2 points to b2 & AR3 to w(n)
STH A,1,*AR3 : Save w(n)

:¥(n)=b0.w(n)+ blL.w(n-1)+ b2.w(n-2)

LD #0,A ;A=10
STM #wnm2,AR3 : AR3 points to w(n-2)
MAC #*AR2-,*AR3- A 1A =b2.w(n-2)

: AR2 points to bl & AR3 to w(n-1)
DELAY *AR3 :w(n-1) -> w(n-2)
MAC *AR2-,#*AR3- A : A =bLw(n-1)+ b2.w(n-2)

: AR2 points to b0 & AR3 to w(n)
DELAY *AR3 : w(n) -> w(n-1)

MAC *AR2.*AR3.A : A = b0.win)+ bl.win-1)+ b2.w(n-2)

RET

Nop
Nop
Nop
.end

: Return

Interpolation Filters:

An interpolation filter is used to increase the sampling rate. The interpolation process involves
inserting samples between the incoming samples to create additional samples to increase the sampling
rate for the output. One way to implement an interpolation filter is to first insert zeros between
samples of the original sample sequence. The zero-inserted sequence is then passed through an
appropriate lowpass digital FIR filter to generate the interpolated sequence. The interpolation process

is depicted in Figure 5.5

Incsert L ow poss wimd
w1 L-15 Ay - filter —
Zeros
SoMpling LA L

Frequency £

Figure 5.5 :The interpolation process

Example:
X(n)=[0246810] ;input sequence
Xzin)=[0020406080100] ;Zzero inserted sequence
h(n) =[0.510.5] .impulse sequence
Yn)=[001234567891050] ;interpolated sequence y(n)

The kind of interpolation carried out in the examples is called linear interpolation because the
convolving sequence h(n) is derived based on linear interpolation of samples. Further, in this case, the
h(n) selected is just a second-order filter and therefore uses just two adjacent samples to interpolate a
sample. A higher-order filter can be used to base interpolation on more input samples. To implement
an ideal interpolation. Figure 5.6 shows how an interpolating filter using a 15-tap FIR filter and an
interpolation factor of 5 can be implemented. In this example, each incoming samples is followed by
four zeros to increase the number of samples by a factor of 5.

The interpolated samples are computed using a program similar to the one used for a FIR filter
implementation. One drawback of using the implementation strategy depicted in Figure 5.7 is that
there are many multiplies in which one of the multiplying elements is zero. Such multiplies need not
be included in computation if the computation is rearranged to take advantage of this fact. One such
scheme, based on generating what are called poly-phase sub-filters, is available for reducing the
computation. For a case where the number of filter coefficients N is a multiple of the interpolating
factor L, the scheme implements the interpolation filter using the equation.

Figure 5.7 shows a scheme that uses poly-phase sub-filters to implement the interpolating filter
using the 15-tap FIR filter and an interpolation factor of 5. In this implementation, the 15 filter taps are
arranged as shown and divided into five 3-tap sub filters. The input samples x(n), x(n-1) and x(n-2) are
used five times to generate the five output samples. This implementation requires 15 multiplies as
opposed to 75 in the direct implementation of Figure 5.7.

Pl e |

=T

00o00¥D0og
bl
3
|
u
W

ro—=

]

aadapgy

m e — 100
=D m—117
=EZCm—1E7
_—=Tre— 1=
EETM— 14

AR

[]
=l
=l
P33
g e
[Ea=—l]
(=0
e T
[=]
=]
Mol
Pelil=
L =]
(o = B)
gl At

/

(N

e U3

Figure 5.6 interpolating filter using a 15-tap FIR filter and an interpolation factor of 5

i

eCP+]2

1

w2
>Cm—12

xCn—29

Deloy

R - - —p-

Al

nea
neld4d

{3
nead
135

2y
7>
nclas

rcld
(gl =¥
gl & b

read
(gl 4=b]
rclod

yim+4)

yim+3)

yim+2d

yim+13

yim>

Figure5.7: A scheme that uses poly-phase sub-filters to implement the interpolating filter
Using the 15-tap FIR filter and an interpolation factor of5

NIL-1

yv(im+ i) = Z WKL + i)x(n—K)
X=0

Where i=0,1,2,.... (L-1) and m =nL.

Decimation Filters:
A decimation filter is used to decrease the sampling rate. The decrease in sampling rate can be

achieved by simply dropping samples. For instance, if every other

sample of a sampled sequence is dropped, the sampling the rate of the resulting sequence will be half
that of the original sequence. The problem with dropping samples is that the new sequence may violate
the sampling theorem, which requires that the sampling frequency must be greater than two times the
highest frequency contents of the signal.

To circumvent the problem of violating the sampling theorem, the signal to be decimated is first
filtered using a low pass filter. The cutoff frequency of the filter is chosen so that it is less than half the
final sampling frequency. The filtered signal can be

decimated by dropping samples. In fact, the samples that are to be dropped need not be computed at
all. Thus, the implementation of a decimator is just a FIR filter implementation in which some of the
outputs are not calculated.

Figure 5.8 shows a block diagram of a decimation filter. Digital decimation can be
implemented as depicted in Figure 5.9 for an example of a decimation filter with decimation factor of
3. It uses a low pass FIR filter with 5 taps. The computation is similar to that of a FIR filter. However,
after computing each output sample, the signal array is delayed by three sample intervals by bringing
the next three samples into the circular buffer to replace the three oldest samples.

Low poss Down
{n) ()
K0 Digitol o m Sanpler ——=
Filter
Sompling £ R/L
Frequency £

Figure 5.8: The decimation process

v(m)=yv(nlL)= Z W K)x(nL—K):
k=0
Wheren=0,12,.....
L=decimation factor
N=filter size

>33 +3D
SCCTINEG D
e CS il

'

ARE > C3rm—42 AR <4
r’ =C32Brm—2323 r hE3D
| >x(3Bn—23 | P
| >x(3mM—1> | ncl1>
L =C 3> L O
‘ MaC
yimd

Figure 5.9: Implementation of decimation filter

Implementation of decimation filter

It implements the following equation:

y(m) = h(4)x(3n-4) + h(3)x(3n-3) + h(2)x(3n-2) + h(1)x(3n-1) + h(0)x(3n) followed by the equation
y(m+1) = h(4)x(3n-1) + h(3)x(3n) + h(2)x(3n+1) + h(1)x(3n+2) + h(0)x(3n+3)

and so on for a decimation factor of 3 and a filter length of 5.

.mmregs
.def _c_int00

.sect ""'samples"

InSamples .include "data_in.dat" : Allocate space for x(n)s

OutSamples .bss y.80.1 : Allocate space for y(n)s

SampleCnt .set 240 : Number of samples to decimate
sect "FirCoeff" : Filter coeff (sequential)

FirCoeff .include "coeff_dec.dat**

Nml .set 4 : Number of filter taps - 1

.bss CoefBuf, 5,1 : Memory for coeff circular buffer

.bss SampleBuf, 5,
text
_c_int00:

STM #OutSamples, AR6

RPT #SampleCnt
ST #0, *AR6+

STM #InSamples, ARS
STM #OutSamples, AR6
AR4

STM #SampleCnt,

CALL dec_init
loop:

CALL dec _filter

STH A,1,*AR6+

BANZ loop.*AR4-

nop

nop

nop

1 : Memory for sample circular buffer

: Clear output sample buffer

: ARS points to InSamples buffer

: ARG points to OutSample buffer
: AR4 = Number of samples to filter
: Init for filter calculations

; Call Filter Routine
: Store filtered sample (integer)
: Repeat till all samples filtered

Decimation Filter Initialization Routine

This routine sets AR2 as the pointer for the sample circular buffer, and AR3 as the

pointer for coefficient circular buffer.

BK = Number of filter taps. ; ARO = 1 = circular buffer pointer increment.

dec_init :
ST #CoefBuf,AR3
ST #SampleBuf,AR2
STM #Nml.BK
RPT #Nml
MVPD #FirCoeff, *AR3+%
RPT #Nml
ST #0h,*AR2+%
STM #1.,AR0;
RET
nop
nop
nop

FIR Filter Routine

Enter with A = x(n), AR2 pointing to the circular sample buffer, and AR3 to the circular

coeff buffer. ARO = 1.
Exit with A =y (n) as g15 number.

: AR3 is the CB Coeff Pointer
: AR2 is the CB sample pointer
: BK = number of filter taps

: Place coeff in circular buffer
: Clear circular sample buffer

: ARO = 1 = CB pointer increment
: Return

dec_filter :

LD *ARS+A : Place next 3 input samples
STL A, *AR2+0% : into the signal buffer

LD *ARS+.A

STL A, *AR2+0%

LD *ARS+.A

STL A, *A R2+0%
RPTZ A, #Nml ;. A =0
MAC #*AR3+0% *AR2+0% A : A = filtered signal
RET : Return
nop
nop
nop
.end

Problems:

1. What values are represented by the 16-bit fixed point number N=4000h in
Q15 & Q7 notations?
Solution:
Q15 notation: 0.100 0000 0000 0000 (N=0.5)
Q7 notation: 0100 0000 0.000 0000 (N=+128)

Implementation of FET algorithms

Introduction: The N point Discrete Fourier Transform (DFT) of x(n) is a discrete
signal of length N is given by eq(6.1)

N-1

X(_k)=z.\'(n)W_¢” ; k=0..N-1 (6.1)

n=0

Wy" =e*®"" is the twiddle factor

The Inverse DFT (IDFT) is given by eq(2)
1 N-1 ;

xin)=—> X)W, n=0.N-1 6.2

(N Z L (6.2)

k=0

By referring to eq (6.1) and eq (6.2), the difference between DFT & IDFT are seen to be

the sign of the argument for the exponent and multiplication factor, 1/N. The computational
complexity in computing DFT / | DFT is thus same (except for the additional multiplication factor in
IDFT). The computational complexity in computing each X(k) and all the x(k) is shown in table 6.1.

Table 6.1: computational complexity in DFT/ IDFT
Computation of each term,|N complex numberN-1 complex number
X (k) or x(n) multiplications additions
Computation of all theN2 complex numberN(N-1) complex
terms X (k) or x(n) multiplications number additions
Complexity is of the order of N°

In a typical Signal Processing System, shown in fig 6.1 signal is processed using DSP in the DFT
domain. After processing, IDFT is taken to get the signal in its original domain. Though certain
amount of time is required for forward and inverse transform, it is because of the advantages of
transformed domain manipulation, the signal processing is carried out in DFT domain. The
transformed domain manipulations are sometimes simpler. They are also more useful and powerful
than time domain manipulation. For example, convolution in time domain requires one of the signals
to be folded, shifted and multiplied by another signal, cumulatively. Instead, when the signals to be
convolved are transformed to DFT domain, the two DFT are multiplied and inverse transform is taken.
Thus, it simplifies the process of convolution.

x(n) y(n)
| DFT DSP | ,| IDFT |

L J

Fig 6.1: DSP System

An FFT Algorithm for DFT Computation: As DFT / IDFT are part of signal processing
system, there is a need for fast computation of DFT / IDFT. There are algorithms available for
fast computation of DFT/ IDFT. There are referred to as Fast Fourier Transform (FFT)
algorithms. There are two FFT algorithms: Decimation-In-Time
FFT (DITFFT) and Decimation-In-Frequency FFT (DIFFFT). The computational complexity of both
the algorithms are of the order of log2(N). From the hardware / software implementation viewpoint the
algorithms have similar structure throughout the
computation. In-place computation is possible reducing the requirement of large memory locations.
The features of FFT are tabulated in the table 6.2.

Table 6.2: Features of FFT

Features DITFFT DIFFFT
Sequence which is{Time domain sequence DFT sequence
decimated by factor 2
[nput sequence Bit reversed order Proper order
Output sequence Proper order Bit reversed order

Consider an example of computation of 2 point DFT. The signal flow graph of 2 point DITFFT

Computation is shown in fig 6.2. The input / output relations is as in eq (6.3) which are arrived at from
eq(6.1).

X (0)= x(OW, + x(HW," = x(0)+ x(1)

(6.3)

X (1)=x(0O)W, + x(hW, = x(0)—x(1)
x(0) , > X(0)
x(1) > > > X(1)

-1
Fig 6.2: Signal Flow graph for N=2

Similarly, the Butterfly structure in general for DITFFT algorithm is shown in fig. 6.3. The signal flow
graph for N=8 point DITFFT is shown in fig. 4. The relation between input and output of any Butterfly
structure is shown in eq (6.4) and eq(6.5).

AH -I-j A| A'H +i A’|

Br +j By W 'y

- . -

4
Fig 6. 3: Butterfly structure for N point DITFFT Computation

B'H +i B,|

x(0) > \ / » X(0)
x(2) =>< / -1\ > X(2)
X(6) » ‘=I &23 _1: » X(3)
x(1) > \ / > X(4)
X(5) .-.>._-1~< » X(5)

1(3 > >§,< >
) >< /_1\ X(6)

X(7) » » > > »
-1 W2, -1 a X(7)

Stage 1 Stage 2 Stage 3

Fig 6.4. Signal flow graph of 8 point DITFFT Computation
A, +jJA = A, +jA, + (B, + B, W, + jW/) (6.4)
B, +jB, = A, +jA —(B, +jB, W, + jW/) (6.5)

Separating the real and imaginary parts, the four equations to be realized in implementation of
DITFFT Butterfly structure are as in eq(6.6).

(A, = A, + BW, - BW,/
Al = A, + BW, + BW,/
’\}:B; = A, —BW; + BW/
'.%B; = A: _B.fwf:‘. _BR wrf._

L (6.6)

Observe that with N=2"M, the number of stages in signal flow graph=M, number of multiplications =
(N/2)log2(N) and number of additions = (N/2)log2(N). Number of Butterfly Structures per stage =
N/2. They are identical and hence in-place computation is possible. Also reusability of hardware
designed for implementing Butterfly structure is

possible. However in case FFT is to be computed for a input sequence of length other than 2"M the
sequence is extended to N=2"M by appending additional zeros. The process will not alter the

information content of the signal. It improves frequency resolution. To make the point clear, consider
a sequence whose spectrum is shown in fig. 6.5.

4 Magnitude X(@)

» frequency

Fig 6.5: Spectrum of x(n)

The spectrum is sampled to get DFT with only N=10. The same is shown in fig 6.

The variations in the spectrum are not traced or caught by the DFT with N=10. For example, dip in the
spectrum near sample no. 2, between sample no.7 & 8 are not represented in DFT. By increasing
N=16, the DFT plot is shown in fig. 6.7. As depicted in fig 6.7, the approximation to the spectrum
with N=16 is better than with N=10. Thus, increasing N to a suitable value as required by an algorithm
improves frequency resolution.

4 Magnitude X(s)

N=10

I
I
|
1
|
|
1
1

R 4 5 6 7 10 frequency

Fig 6.6: DFT with N=10

o
w

4 Magnitude X(w) approximation N=10

: i ! I

. 8 g] ! i
. I !] i 0
. I g] i 0
. I g] i 0
, I g] i g
; g g ! i 0

1 s 1 1 1 i [2
1 7k A 5 6 7 8§ 9 10 frequency

Fig 6.7: N=16 point DFT of x(n)

Problem P6.1: What minimum size FFT must be used to compute a DFT of 40 points? What
must be done to samples before the chosen FFT is applied? What is the frequency resolution
achieved?

Solution:
Minimum size FFT for a 40 point sequence is 64 point FFT. Sequence is extended to 64 by appending
additional 24 zeros. The process improves frequency resolution from

ow=2r/40 to dw=2r/64 (P6.1)

An+jA > > Ar+jA

W'y
Bz +j B > > » BRr4jB

4

Overflow and Scaling: In any processing system, number of bits per data insignal
processing is fixed and it is limited by the DSP processor used. Limited number of bits leads to
overflow and it results in erroneous answer. InQ15 notation, the range of numbers that can be
represented is -1 to 1. If the value of a number exceeds these limits, there will be underflow /
overflow. Data is scaled down to avoid overflow.

However, it is an additional multiplication operation. Scaling operation is simplified by
selecting scaling factor of 2*-n. And scaling can be achieved by right shifting data by n bits. Scaling
factor is defined as the reciprocal of maximum possible number in the operation. Multiply all the
numbers at the beginning of the operation by scaling factor so that the maximum number to be
processed is not more than 1. In the case of DITFFT computation, consider for example,

A=A + BW; + BW
=A, + B cosf + B,sin# (6.7)

where & = 2akn/ N

To find the maximum possible value for LHS term, Differentiate and equate to zero

A :
= =—B, sinf + B, cos@ =0
dé
= B,sinf = B, cos ¥ (6.8)
= tan# =B, /B,
. B, : B,
. sinf=————— Similarly, cosf/=———
VB +B; B+ B

Substituting them in eq(6.7),

A, =A, ++/B; +B;

A =1+2=2414

I.max

Thus scaling factor is 1/2.414=0.414. A scaling factor of 0.4 is taken so that it can be implemented by
shifting the data by 2 positions to the right. The symbolic representation

of Butterfly Structure is shown in fig. 6.8. The complete signal flow graph with scaling factor is shown
in fig. 6.9.

AR +j A| A,F# +j A,I

—
1/4

r : y
Br +j By W Br+ B

—

Fig 6.8: Symbolic representation of Butterfly structure with scaling factor

L J

X(0)

O == o= | 174
x(4) 4 - : X(1)

L 4

! i
*fﬂ:] 1/ -d--tl - X(2)
4
x(6) WE _.:.__._:_ --l_- —_’ X(3)
1 1 | !
q-1-1--—>xaa
T e [T
x(5) ——| 4 | L= 1= X(5)
| 0
| 0
x@—f 1, | 2 | 4+— X
4
X(7) — W2 wW? — xm

Fig 6.9: Signal flow graph with Scaling

Bit-Reversed Index Generation: As noted in table 6.2, DITFFT algorithm requires input in
bit reversed order. The input sequence can be arranged in bit reverse order by reverse carry add
operation. Add half of DFT size (=N/2) to the present bit reversed ndex to get next bit reverse
index. And employ reverse carry propagation while adding bits from left to right. The original
index and bit reverse index for N=8 is listed in table 6.3

Table 6.3: Original & bit reverse indices
Original Index Bit Reversed Index

000 000

001 100

010 010

011 110

100 001

101 101

110 011

111 111

Consider an example of computing bit reverse index. The present bit reversed index be
110. The next bit reversed index is

There are addressing modes in DSP supporting bit reverse indexing, which do the computation of

reverse index.

Implementation of FFT on TMS320C54xx: The main program flow for the implementation
of DITFFT is shown in fig. 6.10. The subroutines used are _clear to clear all the memory
locations reserved for the results. _bitrev stores the data sequence x (n) in bit reverse order.
_butterfly computes the four equations of computing real and imaginary parts of butterfly
structure. _spectrum computes the spectrum of x (n). The Butterfly subroutine is invoked 12

times and the other subroutines are invoked only once.

|| Start l'

w

Invoke clear

l

Invoke _bitrev

!

Set appropriate operands for butterfly

v

Invoke _ butterfly

Invoke _spectrum

end

Fig. 6.10: Main Program Flow

Dept.ECE, SIBIT

Page 140

The program is as follows

.mmregs

.def _c_int00

.data

: Reserve 8 locations for x(n)

x(n) ()15 notation decimal value
xn0 scword O . Dh 0.0
xnl word 16384 » 4000h 0.5
xn2 word 23170 : SAS2h 0.707
xn3 .word - 24576 : EOOOh -0.25
xnd swvord 12345 - 30390 0.3767
xns ~word 30000 : 7530h 0.9155
xno swvord 10940 ; 2ABChHh 0.334
xn7 sword 12345 : 3039h 0.3767

: Reserve 16 locations for X(k)

XOR
XN0OIm
XIR .
X1lIm
X2Z2R
X2Im
X3IR .
X3Im
XNAR
XN4Im
X5R
X5Im
Xo6R
Xoelm
XTR
X7Im

word O
sword O
word O

word O
Sword 0
Jword O
word O

word 0
word 0
sword 0
. word O
sword O
sword O
word O
sword O
word O

:real part of X(0) =0

:imaginary part of X(0) =0

: 8 locations for WOE to W38, twiddle factors

WOSR
WOSIm
WI18R
W18Im
W2ER
W28Im
W3R
W38Im

awvord 32767
Swvord O
aword 23170
awvord -23170
awvord O
swvord -32767
swvord 23170
swvord 23170

: 8 locations for Spectrum

S50
51
52
53
54
S5
S6
57

swvord
swvord
swvord
swvord
Sweord
Sweord
Sweord
sweord

cooocoooo

cos(0)=1
-sind(0)=0
scos(pifd)= 0.707
-sin(pifd)= -0.707
cos(pi/2)=0
-sin(pif2)= -1
scos(3pifd)= -0.707
-sin(3pifd)= -0.707

at 0

at fs/8
at 2fs/8
at 3fs/8
at 4fs/
at 5fs/8
at 6fs/8
at 7ts/8

:Frequency content
:Frequency content
:Frequency content
:Frequency content
:Frequency content
:Frequency content
:Frequency content
:Frequency content

stemporary locations

TEMPI1 word 0
TEMP2 word 0
:MAIN PROGRAM

. tlext

_c_intD0;

SSBX SXM ; set sign extension mode bit of ST1
CALL _clear
CALL _bitrev

Clear subroutine is shown in fig. 6.11. Sixteen locations meant for final results are cleared. AR2 is
used as pointer to the locations. Bit reverse subroutine is shown in fig. 6.12. Here, AR1 is used as
pointer to x(n). AR2 is used as pointer to X(k) locations. ARO is loaded with 8 and used in bit reverse
addressing. Instead of N/2 =4, it is loaded with N=8 because each X(k) requires two locations, one for
real part and the other for imaginary part. Thus, x(n) is stored in alternate locations, which are meant
for real part of X(k). AR3 is used to keep track of number of transfers.

._Clear: po— AR2 points to FFT data memory

STM #XO0OR, AR2 3
RPT#1S $-~comecncmvvs
ST #0,*AR2+ _ Re-19
RET i " }:
nop %« _ T~ | X(k)=0. AR2=AR2+1
no 1S

P . s

R RC=RC-1
~ .. ‘
e . i yes
“~| Return

Fig. 6.11: Clear subroutine

_bitrev:

AR1 points to xn0
§$m z;((%‘é ?\1!?2 __-| AR2 points to XOR
’ = Index=8, count=7
STM #8, ARO
STM #7, AR3
loop: Co :
. py x(n) to location of
LD *AR1+A --="1 X(k) in a bit reversed
STLA, *AR2+0B S
BANZ loop, ¥
*AR3- b W) | AR3-AR3-1 |
RET G
nop Yoy L,
\‘~~\\ ves
“~{ Return

Fig. 6.12: Bit Reverse Subroutine

Butterfly subroutine is invoked 12 times. Part of the subroutine is shown in fig. 6.13. Real part and
imaginary of A and B input data of butterfly structure is divided by 4 which

is the scaling factor. Real part of A data which is divided by 2 is stored in temp location. It is used
Page |143further in computation of eq (3) and eq (4) of butterfly. Division is carried out by shifting
the data to the right by two places. AR5 points to real part of A input data, AR2 points to real part of B
input data and AR3 points to real part of twiddle factor while

invoking the butterfly subroutine. After all the four equations are computed, the pointers

are in the same position as they were when the subroutine is invoked. Thus, the results

are stored such that in-place computation is achieved. Fig. 6.14 through 6.17 show the

butterfly subroutine for the computation of 4 equations.

MVMM AR1.ARS
STM#TEMP1.AR4
LD *ARS, -2 A |..--—
STL A. *AR5+

STLA, le*AR4+____,_--~—u-"

LD *ARS5,-2, A
STL A, *AR5-

STLA.1,*AR4-__ .

LD *AR2,-2, A
STL A, *AR2+

LD *AR2. -2, A
STL A, *AR2- }

Fig. 6.13:
AR5 AR2 ARS3
¥
(1}AR= AH + BHXWH— B|KW|
LD #0,A .-

MPY *AR2+, *AR3+ A -~
MAS *AR2-, *AR3, A
ADD *ARS, 15, A

ADD #1,14,A _~~~~__

STH A, 1,*AR5+ ~~._ ~~-

. Replace AR with AR/4
-1 Store Aﬁfzrin TEMP1
--» Heplace Aln‘}lwith Alm/4
e Store AImfFE in TEMP2
| PReplace SR with BR/A
-»> Replace E':Irm with Bl/4

Butterfly Subroutine

P A= BR x WR

hJ

A=BR x WR - Bl x WI

|

Make AR 32 bits and
A= AR + BRx WR - Bl x WI

) #
-
-
-

* Round & store

Fig. 6.14: Real part of A output of Butterfly

AR5 AR2 AR3

\ ¥
(2) Al=AI+ B xWgr+BaxW, v A= BR x WI
LD #01 A x,""a L4
MPY *AR2+,*AR3-, A~ 4 A=BIXWR+BRxW|
MAC *AR2-,*AR3, A _.---~"" T
ADD "ARS5,15,A ~-.___ Make Al 32 bits and
ADD #1,14, A._ ==~ A= Al + Bl xWR + BR x W
STHA, 1, *AR5-~~~__
el v

Tt Round & Store

Fig. 6.15: Imaginary part of A output of Butterfly

i(3) Br=Ar— (Br xWgr - B xW))| Load A with AR scaled by 2

LD *AR4+A =

b
From this, subtract new AR

SUB *ARS5+ A< -~ ---------—1

STL A, "AR2+ - --___ +
==-~-J Store lower 16 bits as BR

Fig. 6.16: Real part of B output of Butterfly

;{4] BI= AI— |:BI x WR +BR x W|:I

LD *AR4 -, A
SUB *ARS5-, A
STL A, *AR2-
RET
nop
nop

Fig. 6.17: Imaginary part of B output of Butterfly

Figure 6.18 depicts the part of the main program that invokes butterfly subroutine by supplying
appropriate inputs, A and B to the subroutine. The associated butterfly structure is also shown for
quick reference. Figures 6.19 and 6.20 depict the main program for the computation of 2nd and 3rd

stage of butterfly.

STM #X0R,AR1
STM #X1R,AR2
STM #W08R,AR3
CALL _buttertly

STM #X2R,AR1
STM #X3R,AR2
STM #W08R,AR3
CALL _butterfly

STM #X4R,AR1
STM #X5R,AR2
STM #W08R,AR3
CALL _butterfly

STM #X6R,AR1
STM #X7R,AR2
STM #W08R,AR3
CALL _butterfly

xn0] 0

Xnd —,

—, XOR

L, X1R

xn2 | 0

Xn6 _,

_, X2R

|, X3R

xnl -

Xn5

)

— X4R

_» X5R

XN3 —»

Xn7 —»

@

— X6R

—+ X7R

Fig. 6.18: First stage of Signal Flow graph of DITFFT

x(0) / X0 g -—-—--F7 X0 STM #X0R,AR1
]) STM #X2R,AR2
x(4) X — X1 STM #WO0SR,AR3
; CALL _butterfly
o £
x(6) . +. W X3
x(1) / —X4 STM #X1R,ARI1
Lt STM #X3R.AR2
X35 STM #W28R.AR3
CALL _butterfly
/ —X6
x(7) —X7
x(0) j 1 —X0
/ STM #X4R.AR1
4 :
ol 4 —X1 STM #X6R.AR2
STM #WO08R,AR3
—X2 CALL _butterfly
x(6) @&,
STM #X5R,AR1
x(1) 1 —X4— 7, TP o X4 STM #X7R,AR2
/ B : STM #W28R,AR3
4 B B — X5 CALL _butterfly
1 X6 X6
/)
x(7) 4 X7 W — X7

Fig. 6.19: Second stage of Signal Flow graph of DITFFT

— —— x0—] 1/4 »X(0)

”51 """ _1_ STM #X0R,AR1
l X1 —— STM #X4R AR2
! I CALL _butterfly
— p. |
: X2 .
|
1w X3 !
! STM #XIR,AR|
I oX(4) STM #X5R,AR?2
s _____ — X4— . STM #W 18R AR3
! X5 w! | X(5) CALL _butterfly
w2 X7
—_ X0 STM #X2R,AR|
14 = e e = ‘
. STM #X6R,AR?2
1 X1 STM #W28R,AR3
| CALL _butterfly
— X2mmmmd _
' I _ 1= » X(2)
—— w? _X3____J|'__: T > X(3)
|
: o, STM #X3R ARI
e o STM #X7R,AR2
| | x5 1o STM #W38R,AR3
1 o : CALL _butterfly
— | xe——1 W ” X
) X2 W T xn
w2 iy AlT)

Fig. 6.20: Third stage of Signal Flow graph of DITFFT

After the computation of X(k), spectrum is computed using the eq(6.8). The pointer AR1

is made to point to X(k). AR2 is made to point to location meant for spectrum. AR3 is loaded with
keeps track of number of computation to be performed. The initialization of

the pointer registers before invoking the spectrum subroutine is shown in fig. 6.21. The

subroutine is shown in fig. 6.22. Inthe subroutine, square of real and imaginary parts are computed
and they are added. The result is converted to Q15 notation and stored.

S(k)y=(X*(k)/ N
= (X ()X (k) N Make AR Dwooiht to MB)

¥
Make AR2 to point to

STM #X0R,AR1 .
/ spectrum location
STM #50,AR2

!

Set a counter to 7

x
K Invoke spectrum

subroutine

STM #07,AR3 =
CALL _spectrum

Fig. 6.21: Initialization for Spectrum Computation

_spectrum:
LD #0, A "

-

- "'| Clear both accumulators

LD #0, B y
SQUR*ARI+A| o=~ Square re
SQUR *AR1+B (<~ ~ & im parts. Add them
ADD B.A J,

N M Convert product

EE]_E::RIZ ;j;Rf to 16 bit Q15 notation

STH A, *AR2+ .o ¥

BANZ R —-I Divide by 8 & store
_spectrum,*AR3-

RET

nop

nop

Fig. 6.22: Subroutine for Spectrum Computation

Problems:
1. Derive equations to implement a Butterfly encountered in a DIFFFT implementation.
Solution:
Butterfly structure for DIFFFT:
The input / output relations are

Ay + jAj= Ay + jA + By + B,
By +jB = (Ag +jA —(Bg +iB)Wy + W)

Separating the real and imaginary parts,
A=A, + By & A=A + B,

By = (Ay — BOW. — (A, — B)W,

B, = (Ay—By)W, + (A, —B,)W,

2. How many add/subtract and multiply operations are needed to implement a general butterfly of
DITFFT?

Solution:

Referring to 4 equations required in implementing DITFFT Butterfly structure, Add//sub't'rac't
operatiorns 06 and Mu'tip'y operations 04

3. Derive the optimum scaling factor for the DIFFFT Butterfly structure.
Solution: The four equations of Butterfly structure are

Differentiating 4th relation and setting it to zero, (any equation may be considered)
OB,
rE}.f;; =(Ag — Bg)cos@— (A; — B;)sin@ =0

= (Ap — Bg)cos@ = (A, —B,)sin@
A, — B
- tangd =—*Hf K
A, = A, + B, A — B
A
B, = (A, — By)W, — (A, — B W/
B, (Ap — B W, + (A, —B))W, P6.5.1

; A, - B
sinf =— ("’ &) :
V(A =By +(A, - B,)

A -B
& cosf=— : = o -
\"‘AR_BR)-JF(';‘I_BI)-

" B;_nn\ = \"I“(AR_BR)*— (AI _BI)
=.J9 P6.5.3
Thus scaling factor is 0.707. To achieve multiplication by right shift, it is chosen as 0.5.

150

	INSTITUTE OF AERONAUTICAL ENGINEERING
	ELECTRONICS & COMMUNICATION ENGINEERING
	COURSE OBJECTIVES
	Need for DSP
	A Digital Signal Processing System
	The Sampling Process
	Discrete Time Sequences
	Discrete Fourier Transform and Fast Fourier Transform
	Linear Time Invariant Systems
	Convolution
	Z Transformation
	The System Function

	Digital Filters
	FIR Filters
	IIR Filters
	FIR Filter Design
	IIR Filter Design

	Decimation and Interpolation
	Fig 1.13 Interpolation Process
	Problems:

	2. Let x(n)= [0 3 6 9 12] be interpolated with L=3. If the filter coefficients of the filters are bk=[1/3 2/3 1 2/3 1/3], obtain the interpolated sequence
	Basic Architectural Features
	DSP Computational Building Blocks
	Multipliers
	Parallel Multipliers
	Multipliers for Signed Numbers
	Speed
	Bus Widths
	Shifters
	Barrel Shifters

	Multiply and Accumulate Unit
	Overflow and Underflow

	Shifters
	Guard bits
	Saturation Logic
	Arithmetic and Logic Unit
	Status Flags
	Overflow Management
	Register File
	Bus Architecture and Memory
	On-chip Memories

	Speed
	Size
	Organization of On-chip Memories

	Data Addressing Capabilities
	Immediate Addressing Mode
	Register Addressing Mode
	Direct Addressing Mode
	Indirect Addressing Mode

	Special Addressing Modes
	Circular Addressing Mode
	Bit Reversed Addressing Mode

	Current index= Previous index+ B (1/2(FFT Size))
	Address Generation Unit

	Fig 2.13 Address generation unit
	Programmability and program Execution
	Program Control
	Program Sequencer

	Solution:-
	y(n)= ∑h(i) x(n-i) n=0,1,2…

	UNIT-3
	Programmable Digital Signal Processors
	Introduction:
	Commercial Digital Signal-Processing Devices:
	Summary of the Architectural Features of three fixed-Points DSPs
	The architecture of TMS320C54xx digital signal processors:

	Bus Structure:
	Central Processing Unit (CPU):
	Internal Memory and Memory-Mapped Registers:
	Status registers (ST0,ST1):
	BRAF: Block repeat active flag
	CPL: Compiler mode
	INTM: Interrupt mode, it globally masks or enables all interrupts.
	OVM: Overflow mode.
	SXM: Sign extension mode.
	FRCT: Fractional mode.
	CMPT: Compatibility mode.
	ASM: Accumulator Shift Mode.
	Processor Mode Status Register (PMST):
	SMUL: Saturation on multiplication.
	SST: Saturation onstore.
	Data Addressing Modes of TMS320C54X Processors:

	Indirect Addressing:
	Bit-Reversed Addressing:
	Dual-Operand Addressing:
	Memory-Mapped Register Addressing:
	3.4.7 Stack Addressing:
	Memory Space of TMS320C54xx Processors
	Program Control
	Problems:
	Solutio n:
	Solution:
	Instruction and programming
	4.1.1 Arithmetic Instructions:

	Branch Instructions
	Repeat Instructions
	On chip peripherals:
	It has two general purpose I/O pins:
	Software programmable wait state generator:
	Hardware Timer
	Host port interface (HPI):
	Clock Generator:
	Serial I/O Ports:
	Interrupts of TMS320C54xx Processors:
	Pipeline operation of TMS320C54xx Processors:
	Unit 4

	UNIT-5
	Implementation of Basic DSP Algorithms
	Introduction:
	The Q-notation:
	FIR Filters:
	Program to implement an FIR filter:
	FIR Filter Routine
	IIR Filters:
	Program for IIR filter:
	Interpolation Filters:
	Decimation Filters:
	Implementation of decimation filter
	Decimation Filter Initialization Routine
	FIR Filter Routine (1)
	Problems:

