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AHSB11.01 | Evaluate the real roots of algebraic and transcendental equations by Bisection method, False
position and Newton -Raphson method.

AHSB11.02 | Apply the nature of properties to Laplace transform and inverse Laplace transform of the
given function.

AHSB11.03 | Solving Laplace transforms of a given function using shifting theorems.

AHSB11.04 | Evaluate Laplace transforms using derivatives of a given function.
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AHSB11.06 | Apply Laplace transforms to periodic functions.
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AHSB11.13

Ability to curve fit data using several linear and non linear curves by method of least squares.
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Understand the nature of the Fourier integral.

AHSB11.15

Ability to compute the Fourier transforms of the given function.

AHSB11.16

Ability to compute the Fourier sine and cosine transforms of the function

AHSB11.17

Evaluate the inverse Fourier transform, Fourier sine and cosine transform of the given
function.

AHSB11.18

Evaluate finite and infinite Fourier transforms

AHSB11.19

Understand the concept of Fourier transforms to the real-world problems of circuit analysis,
control system design

AHSB11.20

Apply numerical methods to obtain approximate solutions to Taylors, Eulers, Modified Eulers

AHSB11.21

Runge-Kutta methods of ordinary differential equations.

AHSB11.22

Understand the concept of order and degree with reference to partial differential equation

AHSB11.23

Formulate and solve partial differential equations by elimination of arbitrary constants and
functions

AHSB11.24

Understand partial differential equation for solving linear equations by Lagrange method.

AHSB11.25

Apply the partial differential equation for solving non-linear equations by Charpit’s method

AHSB11.26

Apply method of separation of variables, Solving the heat equation and wave equation in
subject to boundary conditions

AHSB11.27

Understand the concept of partial differential equations to the real-world problems of
electromagnetic and fluid dynamics

SYLLABUS

Module-1 | ROOT FINDING TECHNIQUES AND LAPLACE TRANSFORMS Classes: 09

ROOT FINDING TECHNIQUES:Root finding techniques: Solving algebraic and Transcendental
equations by bisection method, Method of false position, Newton-Raphson method.

LAPLACE TRANSFORMS:Definition of Laplace transform, Linearity property, Piecewise continuous
function, existence of Laplace transform, Function of exponential order, First and second shifting
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Divided by t, Laplace transform of periodic functions.

Module-11 | INTERPOLATION AND INVERSE LAPLACE TRANSFORMS Classes: 09

INTERPOLATION:Interpolation: Finite differences, Forward differences, Backward differences and
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Interpolation of unequal intervals: Lagrange’s interpolation.

INVERSE LAPLACE TRANSFORMS:Inverse Laplace transform: Definition of Inverse Laplace
transform, Linearity property, First and second shifting theorems, Change of scale property, Multiplied by
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s, divided by s; Convolution theorem and applications.

Module-111| CURVE FITTING AND FOURIER TRANSFORMS Classes: 09

CURVE FITTING: Fitting a straight line; Second degree curves; Exponential curve, Power curve by
method of least squares.
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transforms; Fourier sine and cosine transform, Properties, Inverse transforms, Finite Fourier transforms.

Module.1y | NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL Classes: 09
EQUATIONS '

STEP BY STEP METHOD:Taylor’s series method; Euler’s method, Modified Euler’s method for first
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MULTI STEP METHOD: Runge-Kutta method for first order differential equations.

Module-V | PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS Classes: 09

PARTIAL DIFFERENTIAL EQUATIONS: Formation of partial differential equations by elimination
of arbitrary constants and arbitrary functions, Solutions of first order linear equation by Lagrange method
and nonlinear by Charpit method

APPLICATIONS: Method of separation of variables; One dimensional heat and wave equations under
initial and boundary conditions.
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MODULE-I
ROOT FINDING TECHNIQUES AND LAPLACE TRANSFORMS

Solutions of Algebraic and Transcendental equations:

1) Polynomial function: A function f (x) is said to be a polynomial function

if f(x) isapolynomial in x.

ie, f(x)=apx"+a;x" 1+ ta,x ta,

where , # 0, the co-efficients a,,a, a, are real constants and nis a
non-negative integer.

Algebraic function: A function which is a sum (or) difference (or) product of
two polynomials is called an algebraic function. Otherwise, the function is called
a transcendental (or) non-algebraic function.

Eg: f(x)=cie*+ce™*=0

3
f(x)=e5x—x7+3=0

Root of an equation: A number « is called a root of an equation f (x) =0 if

f (o) =0. We also say that « is a zero of the function.

Note: The roots of an equation are the abscissae of the points where the graph
y = f (x) cuts the x-axis.

Methods to find the roots of f (x) =0

Direct method: We know the solution of the polynomial equations such as linear
equation ax + b =0, and quadratic equation ax®?+bx+c =0 ,using direct methods or
analytical methods. Analytical methods for the solution of cubic and quadratic equations
are also available.

Bisection_method: Bisection method is a simple iteration method to solve an equation. This
method is also known as Bolzono method of successive bisection. Some times it is referred to as

half-interval method. Suppose we know an equation of the form f ( )= 0




has exactly one real root between two real numbers X, X, .The number is choosen such

that f(x,) and f (x,)will have opposite sign. Let us bisect the interval [x,, X ] into two
half intervals and find the mid point x, = xOerxl .If f(x,)=0 then X, is a root.

If f(x)and f(x,) have same sign then the root lies between X, and x,. The interval is

taken as[xo, x,]. Otherwise the root lies in the interval [x,,x,].

PROBLEMS

1). Find a root of the equation x®—-5x+1=0 using the bisection method in 5 —
stages

_ .3 _ f(0)>0
Sol Let f(x) = x> —5x + 1. We note thatf(l) <0
-. One root lies between 0 and 1

Consider X, =0 and x =1

By Bisection method the next approximation is

X, + 1
XZZOT)%:E(O_’_]'):O'S
= f(x,)=f(0:5)=-1.375<04and f(0)>0

We have the root lies between 0 and 0.5

Now x, = O+20'5 ~0.25

We find f(x,)=-0.234375<0 and f(0)>0

Since f(0)>0, we conclude that root lies between X, and x,
The third approximation of the root is

Xy =200 = %(0 +0.25) = 0.125

We have f(x,)=0.37495>0

Since f(x,)>0and f(x;)<0, the root lies between

X, =0.125 and x,=0.25




Considering the 4™ approximation of the roots

x, =% % _ 10105, 025)=0.1875
22

f(%)=0.06910>0, since f(x)>0 and f(x,)<0 the root must lie

between x; = 0.18758 and x3 = 0.25

Here the fifth approximation of the root is

1
X, :E(XS +X;)

-1 (0.1875+0.25)
2

=0.21875

We are asked to do up to 5 stages

We stop here 0.21875 is taken as an approximate value of the root and it

lies between 0 and 1

2) Find a root of the equation x®—4x—-9=0 using bisection method in four

stages

Sol Let f(x)=x>—-4x-9

We note that f(2)<0and f(3)>0
. One root lies between 2 and 3
Consider X, =2 and x, =3

By Bisection method x, = % er 425

Calculating f (x,)=f(2.5)=-3.375<0
. The root lies between x, and x;

2.5+3 — 275

The second approximation is x3 = %(x1 +x,) =
Now f(x3) = f(2.75) = 0.7969 > 0
-. The root lies between X, and X,

Thus the third approximation to the root is

X, =%(x2 +X%,)=2.625




Again f(x,)=f(2.625)=-1.421<0
. The root lies between X, and X,

Fourth approximation isxs = %(x3 +x4) = %(2.75 + 2.625) = 2.6875
False Position Method ( Requla — Falsi Method)

In the false position method we will find the root of the equation f (x)=0 Consider two
initial approximate values X, and X, near the required root so that f (x,) and f(x,)

have different signs. This implies that a root lies between X, and x,. The curve f (x)

crosses x- axis only once at the
point X, lying between the points x, andx;. Consider the point A:(xo, f (xo)) and

B= (xi, f (xl)) on the graph and suppose they are connected by a straight line. Suppose

this line cuts x-axis atx,. We calculate the value of f (x,) at the point. If
f(x,) and f(x,) are of opposite signs, then the root lies between X, and x, and value

X, is replaced by X, Other wise the root lies between X, and X, and the value of X, is

replaced byx,. Another line is drawn by connecting the newly obtained pair of values.
Again the point here cuts the x-axis is a closer approximation to the root. This process is
repeated as many times as required to obtain the desired accuracy. It can be observed

that the points X,, X;, X, ,...obtained converge to the expected root of the equation
y="1(x)

. (x1, f (%))
(%9, f(xp))

(x1, f(x1)) (x0,/(x))




To Obtain the equation to find the next approximation to the root
Let A=(x,, f(x,))and B=(x, f(x)) be the points on the curve y=f(x) Then the

equation to the chord AB is y;f(x") — [/ xo)

X0 X1—X0

At the point C where the line AB crosses the x — axis, where f(x) =0ie, y =0

VR Ty
From (1), we get X=X, 0= (%) f (%)

X is given by (2) serves as an approximated value of the root, when the interval in which it
lies is small. If the new value of x is taken as X, then (2) becomes

Ay

('r()nf (x( »))

X

f (-\'] )

(x1.f(x))
By =f(x)

(_0)

X, =Xy —

o)t 0g) )

Now we decide whether the root lies between
X, and x, (or)x, and X,

We name that interval as (xi,xz) The line joining(xy, y1), (x3,y2) meets X —

axis at X, is given by x, = %F06) =% ()

f (Xz)_ f (Xl)
This will in general, be nearest to the exact root. We continue this procedure till
the root is found to the desired accuracy
The iteration process based on (3) is known as the method of false position
The successive intervals where the root lies, in the above procedure are named
as




(XO'Xl)’(Xj_IXz):(Xz,X3) etc
Where x; < x;41 andf(xo), f(x;4+1) are of opposite signs.
X F(%)=xf(x,)

f(x)—f(xy)

Also x;,, =

PROBLEMS:

1. By using Regula - Falsi method, find an approximate root of the equation
x* —x—10=0 that lies between 1.8 and 2. Carry out three approximations

Sol. Letustake f(x)=x"-x-10 and X,=1.8,%x, =2
Then f(x,)=f(1.8)=—1.3<0and f(x)="f(2)=4>0
Since f(x,) and f(x,)are of opposite signs,the equation f (x)=0 hasa

root between X, and X,
The first order approximation of this root is
_ X =X
X, = X, 0= f () f (%)
2-1.8
4413
=1.849

=1.8 x(—l.3)

We find that f(x,)=-0.161so that f(x,) and f(x,) are of opposite signs.
Hence the root lies between X, and X, and the second order approximation of

the root is

o

~18490| 2159
0.159

}x(—0159)

=1.8548
we find that f(x;)= f (1.8548)
=-0.019

So that f(x;) and f(x,) are of the same sign. Hence, the root does not lie

between X, and X,.But f(x;) and f(x,) are of opposite signs. So the root




lies between X, and x, and the third order approximate value of the root is

X1—X3

e lren e A

2 —1.8548

= 1.8557
This gives the approximate value of x.

2. Find out the roots of the equation x* —x—4 =0 using False position method

Sol. Let f(x)=x"-x—4=0
Then f(0)=—4, f (1)=—4, f (2)=2
Since f (1) and f(2 ) have opposite signs the root lies between 1 and 2
X F (%) =% F (%)
f (Xl)_ f (Xo)
(1x2)—2(-4)
2—-(-4)

2+8_10_1666
6 6

By False position method x, =

X, =

f (1.666)=(1.666)° —1.666—4
=-1.042
Now, the root lies between 1.666 and 2
« - 1.666x2—2x (—1.042)
: 2-(-1.042)
f (1.780) = (1.780)3 -1.780-4
=-0.1402
Now, the root lies between 1.780 and 2
. _1780x2-2x(-0.1402)
! 2-(-0.1402)
f(1.794)= (1.794)3 -1.794-4
=-0.0201
Now, the root lies between 1.794 and 2

=1.780

=1.794




‘= 1.794x 2 — 2><(—0.0201)
° 2-(-0.0201)
f (1.796) = (1.796)3 -1.796 -4 =-0.0027
Now, the root lies between 1.796 and 2

. _L796x2-2x(-0.0027)
° 2-(-0.0027)

=1.796

=1.796 The root is 1.796

Newton- Raphson Method:-

The Newton- Raphson method is a powerful and elegant method to find the root of
an equation. This method is generally used to improve the results obtained by the previous
methods.

Let X, be an approximate root of f(x)=0 and let X, =X, +h be the correct root
which implies that f (Xi) =0 . We wuse Taylor’s theorem and expand
f(%)=f(x+h)=0

= f(x)+hf'(x)=0

Substituting this in X, ,we get

X =X, +h

.. X, is a better approximation than X;

Successive approximations are given by

f(x;)

X2, X3 wen ee wee - X g WhETe x;401 = x; T o)




Problems:

Apply Newton — Raphson method to find an approximate root, correct to three
decimal places, of the equation x* —3x—5=0, which lies near x =2

Here f(x)=x"-3x-5=0 and f*(x)=3(x"-1)

. The Newton — Raphson iterative formula

% -3%-5_ 2x°+5

Ji=0,12....(2)

%a =N 3(x2-1)  3(x*-1)

To find the root near x =2, we take X, =2 then (1) gives

3
2X,"+5 _ 16+5 :§:2'3333

T3(x 1) 3(4-1) 9
_ 2¢'+5 _ 2x(2.3333)+5
3(x°-1) 3[(2:3333)" -1

=2.2806

2

2x3+5 2x(2.2806)° +5
B33 -1 3[(2.2806)2 — 1]
2 x(2.2790)%3 +5
= 3[(2.2790)%2 — 1]
Since X; and X, are identical up to 3 places of decimal, we take X, =2.279 as the

= 2.2790

X4 = 2.2790

required root, correct to three places of the decimal

LAPLACE TRANSFORMS
Introduction




In mathematics the Laplace transform is an integral transform named after its discoverer Pierre-
Simon Laplace . It takes a function of a positive real variable t (often time) to a function of a
complex variable s (frequency).The Laplace transform is very similar to the Fourier transform.
While the Fourier transform of a function is a complex function of a real variable (frequency),
the Laplace transform of a function is a complex function of a complex variable. Laplace
transforms are usually restricted to functions of t with t > 0. A consequence of this restriction is
that the Laplace transform of a function is a holomorphic function of the variable s. Unlike the
Fourier transform, the Laplace transform of a distribution is generally a well-behaved function.
Also techniques of complex variables can be used directly to study Laplace transforms. As a
holomorphic function, the Laplace transform has a power series representation. This power series
expresses a function as a linear superposition of moments of the function. This perspective has
applications in probability theory.

Introduction
Let f(t) be a given function which is defined for all positive values of t, if

F(s) = J e™f(t) dt
0

exists, then F(s) is called Laplace transform of f(t) and is denoted by

L{f®)} = F(s) = J e f(t) dt
0

The inverse transform, or inverse of L{f(t)} or F(s), is

f(t) = L{FE)}

where s is real or complex value.



https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Integral_transform
https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Holomorphic_function
https://en.wikipedia.org/wiki/Distribution_(mathematics)
https://en.wikipedia.org/wiki/Well-behaved
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Probability_theory

Laplace Transform of Basic Functions
I R ST 1 —st|® _ 1
1.L[1]_J.Oe dt=——e | ==

_St ag-s " I'a+1)
2.L [t°]=[ "t dt—j() —MIUE‘O‘ e

e—(s—a)t | @

—(s—a)|0 B

3.L [e*]= J':eate’“dt =

a
2

i 1 . S .
4.L [e™]=——=1L [cosat+isinat] =— T .
s—ia s’+a’ s’+a

2

L [cosat]:%,and L [sinat] = —
s“+a s“+a

at _ ,-at
5.1 [sinhat]=L [©—° j-it 1
2 2's—a s+a
e +e™ 1
L [coshat]=L [——]== ( +
2 2’ s—-a s+a

1. Linearity
L [afit)+bg(t))= :[af (t) +bg(t)]e “dt =af 0°° f(t)e dt+bf 0°° g(t)e'dt = aF (s) + bG(s)

EX: Find the Laplace transform of cos’t.

2
Solution : L[cos’ t] = L[M] =1(1 > ): > 2+2
2 2 S(s” +4)

+
s s?4+2°

2. Shifting

(a) L[ (t—a)u(t—a)] = j : f(t—a)u(t —a)e 'dt = j: f(t—a)e

Let r =t—a, then
L[f(t-a)u(t—a)] = j " f(r)e gy — g j " f(r)e ST dr = 65 (s)
0 0

(b) F(s—a) = j : f (t)e gt — j 0°°[eat f (O)e"dt = L[e f (t)]

0, t<4
2t t>4

EX:What is the Laplace transform of the function f (t) = {




Solution: f(t)=2t’u(t-4)

L [f(t)]=L {2[(t-4)*+12(t—4)*+48(t-4)+64]u(t—4)}

| |
:2e‘43(3' +12x%+48xi2+%j:4e‘45(3+2+ﬁ+g)

s s s s st s* s s

3. Scaling

L [f(a]=] :’ f (at)e dt

Let T = at, then

L [f(a]=[ f(e sd 2 =1["f (e “dr==F()
0 a a°o a a
EX:Find the Laplace transform of cos2t.

Solution : - L [cost]=—;
s°+1
S

~L [cosZt]:1 2 - ZS
2

4, Derivative

(a) Derivative of original function

L [f(t))= j : f/(t)edt = f(t)e™ —(—s)j: f(t)edt

.
(1) If f(t) is continuous, equation (2.1) reduces to

L [f (t)I=—f(0)+sF(s)=sF(s)-A(0)
(2) If f(t) is not continuous at t=a, equation reduces to

a-

LIF(e)=f (e ™|,

o0

+ f(t)e™ s sF(s) =[f(a")e*"—f(0)]+[0—f(a")e *"]+sF(s)

=sF(s)—f(0)—e*"[fla")-fla")]

(3) Similarly, if f(t) is not continuous at t=ay, a,, ***,***,a,, equation reduces to

L[F(01=SF(8) ~ F(0) Y e ™[ (a)) - f(a)]




If f(t), £(t), f'(t), ---,f("_l)(t) are continuous, and f(")(t) is piecewise continuous, and
all of them are exponential order functions, then

L [f"(t)]=s"F(s) - is"‘i f (-9 (0)

(b) Derivative of transformed function

dF(s) d

s sl f(t)eStdt:.[ow%[f(t)eSt]dtzjow(—t)f(t)eStdt:L [(~t) f (1)]

[Deduction] d;zn(s) _L (0" F (0]

EX: Find the Laplace transform of te'.

Solution : L (e‘):L:L (te‘)=—i( 1 j: 1 .
s-1 ds\s-1) (s-1)

t?, 0<t<

EX: f(t) :{0

Lfind L [£/(0)].

Solution : f (t) =t*[u(t) —u(t —1)]
2!

L [f@®]I=L [t°u(®]-L [tzu(t—l)]ZS3

L {[(t-1) +1u(t -1}

:SES_ L {[(t-1)% +2(t-1) + Ju(t -1}

—e’s(%+2i2+1)
S s° s

2

SS
L [f'()]=sF(s)- f(0)—e”[f(1")- f(17)]

12 e (i -0-et0 D=2 e (212

S S S S S S

5. Integration

(a) Integral of original function




L ([, f(mdd=] [ f(x)dee dt
:_i[ ’StJ‘ f(t)dt —J':f(t)eS‘dt}:%F(s)
=L [j;j;...j;f(t)dtdt---dt]:s—nF(s)

(b) Integration of Laplace transform

f F(s)ds = L“’ jo‘” f (t)e dtds = j: ff je‘“dsdt

st

=[ 1o a :jj@e“dt L [@]

:>J'Soojj---jjF(s)dsds---ds =L [tin f ()]

—t

EX: Find (a) L

Solution : (a)L [1- e“]___i
s s+1

0

L ygs=ins—In(s+D)" =i
s s+1 ° s+1,

1-e'.

S s+1
—In—=Ih—=
s+1 S

S(—— T)ds

s+1 s+1|” _J-
s 's+1 s

In—
S

_slns—+1 + wids_[ Ins—+1+ln(s+1)}
S |, ‘s s+l S S

=[(s+1)In(s+1) -slIns]” =sIns—(s+1)In(s +1)

sin kte

EX: Find (2) [ CEOIN sinx




Solution : (a)j smkte dt=1L [M]

‘» L [Sin kt] = 2—k2
+

sinkt e
e

L s|”
=tan*>

sin x sm X

(b)J' > Zdx —2]

—st

=2lim dt
k—1
s—0

Ioosm kte
0

_2I|m Z_tant2) =
M - tan” ) ==

s—>0

6. Convolution theorem

L [_[;f(r)g(t—r)dr]=_[:_[;f(r)g(t—r)dre‘“dt

= .[:.[:J f (T)g(t - T)eistdtd‘t = J.: f (T)jj g(t _ T)e—stdth
Let u =t -, du =dt, then

L [f ; f(g(t-dd =] " (o) “g(u)e " Iduds

= [ f(x)ede[ "g(u)e*du = F(s)G(s)

EX: Find the Laplace transform of _[ ;et“ sin2tdr.

Solution : - L [e‘]:il,L [sin2t] =
S_

s*+4
oL [Iote“‘sin 2tdt]=L [e' *sin2t]=L [e']-L [sin2t]

12 2
s—1 s*+4 (s-1)(s*+4)




7. Periodic Function: f (t + T) =f ()

L IH®1=], f0ede= e “dt+ [ f(@e "dt+
2T T .
and [t (et = [ f(u+T)e Ddu=e || 1 ueau

Similarly,

T sty 25T (7 —su
IZTf(t)e dt=e jof(u)e du

SLFO]=@re re ™ o) (et

1

_ T —st
= jo f (t)e dt

EX: Find the Laplace transform of f (t) :Et, O<t<p, f(t+p)=1f(1).
p

1

Solution: L [f(t)]=
[f]=— =

jpkte‘stdt
°p

__ 1 %[_is (te | - e an)

1—e®

p
. S —(te™ + Ee’“)

-e")

8. Initial Value Theorem:

L [f'(t)]=sF(s)- f(0) = lim j: f'(t)e*'dt =lim sF(s) — f (0) = 0 = lim sF(s) — f (0)
we get initial value theorem Itlrrg f(t) =limsF(s)

Deduce general initial value theorem : lim Q) = lim F(s)
t—0 g(t) s—® G(S)

9. Final Value Theorem:




L [f'(t)]=sF(s)-f(0)= Islgg J': f'(t)e*dt =IS|23 sF(s)- f(0) =
!m f(t)— f(0) = IS'LT(]) sF(s) — f(0) = final value theorem : !m f(t)= IS'LTJ sF(s)

General final value theorem : lim f(t) =lim F(s)
oo g(t) 0 G(Ss)

EX: Find L [jotﬂdx].
X

Solution : Let f (t) :j;wdx = f'(t) =%nt’ f(0)=0
X

L [tF'(t)]=L [sint]=—
s°+1
d |
o O
1
s?+1

1

d
- [sF(s) - (0] = el

d
:E[sF(s)]z—

sF(s)[] [ tan 's+C

From the initial value theorem, we get
Iting f(t) =limsF(s)

0=-24+C .C==

2 2

sF(s) = g— tants = tant
S

F(s) “Liantd
S S

EX: Find L the dx]
X




Solution: Let f (t) = [
XX

—t
dx = f’(t):—eT,!im f(t)=0

LI @)=L [etl=-—

d 1
——[sF(s)- f(0)]=———
ds[ (s) - 1(0)] sil
d 1
—[sF(s)]=——
ds[ )] s+1
sF(s)=In(s+1)+C
From the final value theorem : !im f(t)= Iirrg sF(s)

0=0+C=C=0 and F(s) = N+

tsin x e " . N : :
Note: jo—dx, and _[t ——dx are called sine, and exponential integral function, respectively.
X X

Module-11

INTERPOLATION AND INVERSE LAPLACE TRANSFORMS

INTERPOLATION

Introduction:-

If we consider the statement y = f (X)X, < X< X, we understand that we can
find the value of y, corresponding to every value of x in the range X, < X<X_ . If
the function f (X) is single valued and continuous and is known explicitly then the

values of f(X) for certain values of x like X;,X,, x_can be calculated. The
problem now is if we are given the set of tabular values
XX, X
Y'Y %
Satisfying the relation y = f (X) and the explicit definition of f (X) is not
known, then it is possible to find a simple function say f(x) such that f(x) and ¢(x)

agree at the set of tabulated points. This process to finding ¢(X) is called interpolation. If ¢(X)




is a polynomial then the process is called polynomial interpolation and ¢(x) is called
interpolating polynomial. In our study we are concerned with polynomial interpolation

Errors in Polynomial Interpolation:-

Suppose the function y(X) which is defined at the points
(%,Y;)i=0,1,2,3———-n is continuous and differentiable (n+1) times let ¢, (x) be
polynomial of degree not exceeding n such that ¢, (X )=Y,,i=12—-—n—(1) be the

approximation of y(x) using this ¢, (Xi) for other value of x, not defined by (1) the error is

to be determined
since  y(X)—¢,(x)=0 for x—xg,x,
y(x)=4,(x)=Lz,.(x)

equation (2) holds for any intermediate value of x such as x = x", x, < X" <X,

y
Clearly L= T(xl)

—(4)

We construct a function F(X) such that F(x)=F(x,)=F(x'). Then F(x) vanishes
(n+2) times in the interval [XO,Xn]. Then by repeated application of Rolle’s theorem.
Fl(X)must be zero (n+1) times, F(X) must be zero n times in the interval [ X;, X, | .
Also F"™(x)=0 once in this interval. suppose this point is x=& , X, <&<X,

differentiate (5) (n+1) times with respect to x and putting x =&, we get

n+l _ 1= H : : L=
y"™*(£)—L(n+1)!=0 which implies that (n+1)!

Comparing (4) and (6) , we get




Which can be written as y ( )—¢n(x):( D)
n+1)!

This given the required expression X, <& < X, for error

Finite Differences:-
1.Introduction:-
In this chapter, we introduce what are called the forward, backward and

central differences of a function y = f (). These differences and three standard examples

of finite differences and play a fundamental role in the study of differential calculus, which
is an essential part of numerical applied mathematics
2.Forward Differences:-

Consider a function y=f(X) of an independent variable x. let
Yo ¥1: Y,,-..Y, be the values of y corresponding to the values X, X,X,...X. of X

are called the first forward

Here, the symbol A is called the forward difference operator
The first forward differences of the first forward differences are called second forward

differences and are denoted by A%y,,A%y,...... that is
A? Yo =AYy, —Ay,
APy, = Ay, - Ay,
In general A’y =Ay  —Ay r=0,12 similarly, the n™ forward differences are
defined by the formula.
A"y =A""y  —A"'y r=0,12
While using this formula for n=1, use the notation A’y =y and we have

A"y, =0vn=12..... and r =0,2, the symbol A" is referred as the n"™ forward
difference operator.
3. Forward Difference Table:-
The forward differences are usually arranged in tabular columns as shown in
the following table called a forward difference table
Values Values First Second Third Fourth
of X ofy differences differences differences differences

Xo yO

A3/0 =YY%




A? Y= AYZ - Ayl

Y5 A%y, =AY, - AY,

Ya =Ys—Ys

Example finite forward difference table for y =X’
1

4. Backward Differences:-

As mentioned earlier, let Y,,Y, be the values of a function y=f(x)

corresponding to the wvalues X,,X,X, of x respectively. Then,
VY =Y =Y. VY, =Y, = Y1, VY, = Y, = Y,,.... are called the first backward differences
In general Vy, =Yy, -Y,,,r=12,3

The symbol V is called the backward difference operator, like the operator A, this
operator is also a linear operator




Comparing expression (1) above with the expression (1) of section we immediately
note that Vy, =Vy, ,,r=0,1,2

The first backward differences of the first background differences are called second
differences and are denoted by V?y,,V?y, ——-V? ————ie.,..

V2Y, =Vy, =V, VY, = Vy, -
In general V?y, =Vy,—Vy,,,r=23...—>(3) similarly, the n™ backward

differences are defined by the formulaV"y, =V"y, =V"y _,r=n,n+1....—>(4) While

using this formula, for n = 1 we employ the notation V°y =y
If y=f(X) isa constant function , then y = c is a constant, for all x, and we

get V"y, =0Vvn the symbol V" is referred to as the n™ backward difference operator
5. Backward Difference Table:-

X y Vy V2y Viy

X Yo

VY,

Y vy,

VY,

Y, vy,

VY

Y

6. Central Differences:-
With Yy, ¥y, Y,....Y, as the values of a function y= f(x) corresponding to the
values X, X,.....X;.... Of X, we define the first central differences

OYyy210Ya5,0Ys, ———— as follows
Yo = Y1~ Y0:0Y32 = Yo = Y105, = Y3 =Y, ————
5yr—1/2 =Y Ya— (1)
The symbol J is called the central differences operator. This operator is a linear
operator

Comparing expressions (1) above with expressions earlier used on forward and
backward differences we get

OYyo =AY, =VY,,0Yy, =AY, =




The first central differences of the first central differences are called the second
central differences and are denoted by &%y,,5°Y,...

Thus 52y1 =0y, _5Y1/2’52y2 =05, =04,
52 yn = §yn+l/2 _5yn7112 - (3)

Higher order central differences are similarly defined. In general the n™ central
differences are given by

i) forodd n:s8"y, ,, ="y, ="y, r=12....—(4)
i)  foreven n:&"y, =6""Yy,,,, — 8" Y, 4, F =12....—(5)
while employing for formula (4) for n=1, we use the notation 5°y, =y,
If y is a constant function, that is if y=c a constant, then
o'y, =0 for all n>1
7. Central Difference Table

Xo Yo sy 5’y

OYy,

X Y1

5y2/2

Y,

Y

Xy Y

Example: Given f(-2)=12, f(-1)=16, f (0)=15, f (1)=18, f (2)=20 from the central

difference table and write down the values of 8Y,,,58%y, and 8°y,,, by taking x, =0
Sol.  The central difference table is

X y="f(X)

sy

5%y

5%y

o'y

-2

12

-1

16

15

18




20

Symbolic Relations and Separation of symbols:
We will define more operators and symbols in addition to A, V and ¢ already
defined and establish difference formulae by symbolic methods

Definition:- The averaging operator u is defined by the equation uy, = %[ym,2 +Y, o]

Definition:- The shift operator E is defined by the equation Ey, =, ., . This shows that the
effect of E is to shift the functional value y, to the next higher value vy,,,. A second
operation with E gives E*y, =E(Ey,)=E(Y,.,) =Y.,
Generalizing E"Y" =y, ,
Relationship Between A and E
We have
AYo =Y. = Yo
=Ey, - Y, =(E-1)Y,
= A=E-y(or)E=1+A

Some more relations
A%y, =(E-1)'y, =(E*-3E° +3E -1}y,
=Y, =3y, +3¥:— Yo
Definition
Inverse operator E™ is definedas E'y, =, ,
Ingeneral E™"y, =y,
We can easily establish the following relations
i) V=1-E*
i) o=EY*—E™

iii) u :%(E”2 +E™?)

iv) A=VE =E"?

V) i’ El+%52

Definition The operator D is defined as Dy(x) = %[y(x)]

Relation Between The Operators D And E




2
Using Taylor’s series we have, y(x+ h) = y(x)+ hy* (X)+% yH (X) +h—

This can be written in symbolic form

h’D*> h°D® hD
ny_{1+hD+ T + 3 +————}§ =e".y,

We obtain in the relation E =e"™ — (3)

If f(x) is a polynomial of degree n and the values of x are equally spaced then

A" f (x) is constant

Let f(x)=a,x"+ax""+ +a, ,X+a_ where a,,a,a,....a, are constants and

. If h is the step- length, we know the formula for the first forward difference

Af (x)=f(x+h)-f (x):[ao(x+h)n+a1(x+h)n71+————+an_1(x+h)+an}

n n-1
—[aX" +ax"t +————+a, x+a, |

-1
=8 Hx” +n.x"*h ﬁLMxn‘z.h2 +———}— x”}r

2!

2!

all{x”‘l +(n-1)x"2h +wxn—s.hz +___}_ Xn_l}r

+a, ,h
=a,nhx"* +b,X"? +b X" +————+b _Xx+b_,
Where b,,h,,......, , are constants. Here this polynomial is of degree (n—1), thus,

the first difference of a polynomial of n™ degree is a polynomial of degree (n-1)
Now

APf (x)=A[ Af (x) ]
= A[aonh.x”’l +b, X"+, X"+ ————+b X +D, ,
= aonh[(x+ h)"™ - x”‘l}tb2 [(x+ h)"* - x”‘z} +———+b,_,[(x+h)=x]
= a,n" A" 4 X" 4+ +C,_ X+C, ,
Where c,....c, , are constants. This polynomial is of degree (n—2)
Thus, the second difference of a polynomial of degree n is a polynomial of degree (n —2)

continuing like this we get A" f (X) = aon(n —1)(n —2) 2.1h"=a" (n!)




.. which is constant

As A"f (x) is a constant, it follows that A™ f (x)=0,A"*f (x) =0,

The converse of above result is also true that is, if A" f (x) is tabulated at equal

spaced intervals and is a constant, then the function f(x) is a polynomial of

degree n
Example:-
1. Form the forward difference table and write down the values of Af (10),

A?f (10),A°f (15) and A*y(15)

10 15 20

Y Ay

19.97

1.54

2151

0.96

20 22.47

1.05

25 23.52

1.13

30 24.65

1.24

35 25.89
We note that the values of x are equally spaced with step- length h =5

Note: - .. X, =10,%x, =15———-X, =35 and
Yo = (% )=19.97




From table
Af (10) = Ay, =1.54
A*f (10) = A%y, =-0.58
A*f (15) =A%y, =-0.01
A*f(15) =A%y, =0.04
Evaluate
(i)Acosx
(ii)A%sin(px+q)
(iii) A"e™*®
Let h be the interval of differencing
(i)Acosx =cos(x+h)—cosx

] ( hj. h
=-2sin| X+— |sin—
2 2

(ii)Asin(px+q)=sin[ p(x+h)+q]-sin(px+q)

ph) . ph
=2Cc0S| pX+q+— [sih—
(p q 2) :

:Zsinp—hsin(£+ px+q+p—hj
2 2 2

A? sin(px+q):Zsinp?hA{sin(pijq)Jr%(;H ph)}

= {Zsin p?hT sin{ PX +q +%(7r+ ph)}
(i) Ag™* = g0nd _goe
— (@) (ea“‘l)
A2 = A[A(ea“b )} - A[(eah ~1)(e™ )]
=(e” —1)2 Ae™™")

— (eah _1)2 ea><+b

Proceeding on, we get A" (e***) =(e" —1)n e®*P

Using the method of separation of symbols show that

n(n-1)

Anlle—n = /’lx—n - nlLlX—l + —IuX—Z +——- _+(_1)n ILIX—H

To prove this result, we start with the right hand side. Thus




n
uX—nux—-1+ ———+=
n(n-1

2

n(n-1

= uXx—NE " ux+

:[1—nE‘1+

2
e,

=é—:,uX=A”E"”,uX
=A"u, . which is left hand side

Find the missing term in the following data

X 0 1 2

y 1 3 9

Why this value is not equal to 3*. Explain
Consider A'y, =0
= 4y, —4Y; +5Y, —4y; +Y, =0
Substitute given values we get
81-4y,+54-12+1=0=y,=31
From the given data we can conclude that the given function is y=3". To find vy, ,
we have to assume that y is a polynomial function, which is not so. Thus we are not
getting y=3>=27
Newton’s Forward Interpolation Formula:-
Let y = f (x) be a polynomial of degree n and taken in the following form

y="f(X)=by+b (x=%)+by (x—=%)(x=%)+by (X=X, ) (X=X ) (X=X, ) +———
+b (X=X ) (x=x ) ————(x=%,4) > (1)

This polynomial passes through all the points [xi;yi] for i = 0 to n. there
fore, we can obtain the y,'s by substituting the corresponding X;'s as

at x=Xx,,Y, =0,

at x=x,Y, =hy+b (% — X))

at X=X, Y, =by +b, (%, =%, )+b, (X, =% ) (X, =% ) > (1)
Let ‘h’ be the length of interval such that X;'S represent

Xos %o + 1, %, +2h, X, +3h————X, +xh




This implies x, — X, =h, x, =%, —2h, %, —X, =3h————x, —x, =nh —(2)
From (1) and (2), we get

Yo =hy

yl =b0 +b1h

y, =by +b,2h+b,(2h)h

Y, =b, +b,3h+b, (3h)(2h) +b, (3h)(2h)h

Y, =b, +b, (nh)+b, (nh)(n-1)h+—-——+b, (nh)[(n-1)h][(n-2)h]—>(3)
Solving the above equations for b,,b,;,b,....o, , we get b, =y,
b1: y1_bo — Yi—Yo _ Ayo

h h h
bzzwz _ _(yl_yO)Zh

2h? 2"Yo h
yz_yo_zyl_zyo _ y2_2y1+yo _Azyo

2h? ~ 2n 2K
A

= e

Similarly, we can see that

Ay, A%y,
31p Y 4lp?
Ay,

Ly="f(x)= yO+T(x—x0)+§_

b3

Ay,
o () (1) (x -,

LAY
n'h"

(X=%)(x=%)===(x=%,;) >(3)

If we use the relationship X =X, + ph = x—X, = ph, where p=0,1,2,
Then




X=X =X—(X,+h)=(x=%,)—h
=ph-h=(p-1)h

X=X, =X—(x +h)=(x=x)-h
=(p-1)h-h=(p-2)h

Equation (3) becomes

p(p-1)(p-2)
3!

-1
y="f(x)=f(x+ph)=y,+ pAmW%
p(p-1)(p-2)-———(p—(n-1))
n!
Newton’s Backward Interpolation Formula:-
If we consider

Yo (X) =8+, (X=X, )+a, (X=X, ) (X—= X,y )+ (X=X, ) (X=X, ) (X=X, ) +————(X—X)
and impose the condition that y and y, (x) should agree at the tabulated points

A%y, +————+

A%y, +

A"y, —(4)

X, X, =1,
We obtain

Yo (X) =Y, +pVy, + VY, +———

p(p+1)
2i

p(p+1)----[p+(n-1)]

" vy, +————(6)

Where p =2

h
This uses tabular values of the left of y, . Thus this formula is useful formula is useful
for interpolation near the end of the table values

Formula for Error in Polynomial Interpolation:-
If y=f(x) is the exact curve and y =4, (x) is the interpolating curve, then

the error
in polynomial interpolation is given by

error - 1 (1), (1) - U RSB g ) )

for any x, where X, <x<Xx, and X, <& <X,




The error in Newton’s forward interpolation formula is given by

f(x)-¢,(x)= p(p_l)(?n_fl))! (P=1) prt (¢)

Where p = 2=

The error in Newton’s backward interpolation formula is given by
f (X)_¢n (X) — p( p +1)( ?:f])-)l ( p+ I‘l) hn+1yn+1f (g)Where p=

Examples:-

1. Find the melting point of the alloy containing 54% of lead, using appropriate
interpolation formula

Percentage of

lead(p)

Temperature (Q°c)

50 60 70 80

Sol.  The difference table is
X Y

50 205

60 225

70 248

80 274

Let temperature = f (x)
X, + ph=24,x,=50,h =10
50+ p(10)=54 (or) p=0.4

By Newton’s forward interpolation formula

P(P-1) 2\, P(P=D)(P-2)
2! ’ n!

0.4)(0.4-1)(04-2)

f (X, + ph)=1y, + pAy, + APy, +———

f(54)=205+0.4(20)+0'4(02':1_1)(3)+( T (0)

=205+8-0.36
=212.64
Melting point = 212.64

X=X

n




Using Newton’s forward interpolation formula, and the given table of values

X 1.1 1.3 1.5 1.7 1.9

f(x) 0.21

Obtain the value of f (x) when x=1.4

y=f(x)

If we take X, =1.3 then y, =0.69,

Ay, =0.56,A%y, =0.08,A%, =0,L=0.2,x=1.3
1

X, + ph=1.4(or)1.3+p(0.2)=1.4,p= >

Using Newton’s interpolation formula

1(1_ j
f(14) =069+ =x0.56+ 222 /0,08
2 21

=0.69+0.28-0.01=0.96




3. The population of a town in the decimal census was given below. Estimate the population
for the 1895

Year
X

Population
ofy

Sol.  Putting L =10, x, =1891,x =1895 in the formula X = x, + ph we obtain p=2/5=0.4

X Y A AZ A3 A4

46

1931 101

y(1895) =46 +(0.4)(20) + (0-4)(04-1)

~(-5)

. (0.4—1)0.4(0.4— 2) (2)
6
(0.4)(0.4 —1)(0.4 — 2)(0.4 —3)
" 24
= 54.45 thousands

Gauss’s Interpolation Formula:- We take X, as one of the specified of x that lies around

the middle of the difference table and denote X, —rh by x—r and the corresponding value




of y by y—r . Then the middle part of the forward difference table will appear as shown in
the next page

Ay A’y Aty A’y

Ay,

Ay 4

Ay,

Ay,

i Ay,

Y Ay,

Ys Ay,

Ya Ay,

Ay, = Ay, +A%Y,
APy, =A%y + A%y,
Ny, =Ny, +A%y
Ay, =

Ay =AY, +A%Y,
A’y =Ny, +A%Y,
Ny, =Ny, +A%Y,
Ay =AYy, + A%,

By using the expressions (1) and (2), we now obtain two versions of the following Newton’s

forward interpolation formula

p(p-1)

2!
L P(P-1)(P-2)(P-3)

Y, =[Yo + P(AY,)+

A4




Here y, is the value of y at X=X, =X, + ph
Gauss Forward Interpolation Formula:-

Substituting for A%y,,A%Y,,.... from (1)in the formula (3), we get

-1
Yo =¥+ p(Ayo)+%(A2yl+A3yl)

p(p-1)(P-2)(p-3)

41

. p(p—l3)!(p—2)A3yl

“‘A4y_1+ A4y_1+A5y_1+____]

Yo =0Yo + p(Ayo)+—p(z!_1)(A2y_l)+ p(p+2( 2D iy

L P(P+Y)(P-1)(P-2)
41

(A4y71)+____]
Substituting A*y_, from (2), this becomes

p(p-1)

| A%y +

Y, =[Yo + P(Ay, )+

2
+(|0+1)(|0—41!)|<>(|0—2)(A4
Note:- we observe from the difference table that

AY, =8Y,,, A’y , =5%Y,, A’y , =8°Y,,, A’y , =5%Y, and so on. Accordingly the
formula
(4) can be written in the notation of central differences as given below

Yo)

-1
Yo =[Yo+ PSYy, + p(; )

+1)(p-1 -2
LP)(P=Y)p(P=2) &
41
Gauss’s Backward Interpolation formula:-
Let us substitute for Ay,,A%y,, A%y,

+1 -1
sty + LI 5oy

obtain

p(p-1)

2!

(p-1)p(p-2)
3l

Vo =[¥o+p(Ay,+A%Y, )+ Yi)+ (A%y +A%Y, )+

(P-1)(pP-2)p(P-3)




=[y,+p(Ay,)+

p+1)p p+1)p(p-1
yp=wm+MAMJ+L—§l—AW4+( )a( NAW4+AW4)

p+1)p(p-1)(p-2
APDP(P-2) ey
41
Lagrange’s Interpolation Formula:-
Let X5, %, X,,.... X, be the (n+1) values of x which are not necessarily

equally spaced. Let y,, Y, Y, y, be the corresponding values of y = f (x) let the
polynomial of degree n for the function y = f (x) passing through the (n+1) points

(%, F(%)): (% f (xl))————(xn, i (xn)) be in the following form
y=1f(x)=2a(x=%)(x-x)
3, (X=%)(x=x)
Where a,,a,,a,.... a" are constants
Since the polynomial passes through (x,, f (%,)). (%, f(x))
The constants can be determined by substituting one of the values of
for x in the above equation
Putting x =X, in (1) we get, f(x,)=2a,(x—%)(% =% ) (% —X,)
_ f (%)
T TR ()% X,)
Putting x =X, in (1) we get, f(x)=a,(x—=%,)(%—=%,)————(X%—X,)
f ()
X% =%) (% =%)- (% = %,)
Similarly substituting x =X, in (1), we get
f(x,)
(% = %) (% =% ) veens (X, = X, )
Continuing in this manner and putting X=X, in (1) we
f(x)
(0 =10) (%= %) ====(%, =%,

:alz(

=a, =

get a, =

Substituting the values of a,,a,,a,....a,, we get

) (pZ—-l;l) p(Azy_1)+ (pt)p(p-1) A’y +(p+1) (p-1)p-2) (A4y_1)+————]

! 3! . 41
Substituting for A%y , and A%y, from (2) this becomes



Examples:-
1. Using Lagrange’s formula calculate f (3) from the following table

X |0 1 2 4 5 6

f(x) 1 |14 |15 |5 |6 |19

Sol. Given x,=0,x, =1 X,=2,X=4,X=6,X,=5
f(%)=1f(x)=14,f(x,)=15f(x)=5f(x,)=6, f (x)=19

From langrange’s interpolation formula




—

w

_0)
—0)
£—Ex14—|—§><15+§><5—g><6—|—Ex19
240 60 48 48 60 40

=0.05-4.2+11.25+3.75-1.8+0.95
=10
f(x;)=10

—~
(ep]

1) Find f (3.5) using lagrange method of 2" and 3" order degree polynomials.

x1 2 3 4
f(x) 1 2 9 28
By lagrange’s interpolation formula

X—X,)

(% =)

(=331 (x)!

For n=4 we have




@eEg
=0.0625+(-0.625)+8.4375+8.75
=16.625
f (X) _ (X_Z)(X__;)(X_Ll) (1)+ (X—l)(x;3)(x—4)(2)
4 (x—l)(>(<_—22))(x—4) (9)+ (X—l)(X;Z)(X—B) (28)

(x*-5x+6)(x—4)

= = +(X* —4x+3)(x—4)+ (x—4)(9)+

3 2 _ 3 2 _ 3 2 _
_X 9x +626x 24+x3—8x2+9x—12+x X ;14x 8(9)+x 6x° +11x 6(28)

(x2—3x+2)

(x2—3x+2)

(x-3)(28)

[—x3 FOX2 — 26X+ 24+ 6X° —48X% +114x — 72— 27x3 +189%% — 378X + 216 + 308X + 28x° —168x> —168]
B 6

3 10y2
_& 186X +18X:> f (x)=x>—3x"+3x

- £(35)=(35)"-3(3.5)" +3(3.5) =16.625

Example:
Find y(25), given that y,0 = 24,y24 = 32, Y23 = 35y3, =40 using Guass forward

difference Formula:

Solution: Given

X 20 28 |32
y 24 35 |40

By Gauss Forward difference formula

-1 -1)(p—-2
yp:[y0+p(AyO)_F%(AZyl_’_A%/l)_'_ p(p ?))'(p )Asy

p(P-1)(P-2)(p-3)
41

-1

Aﬂ'yfl + Asy—l +—— __]

+A'Y  +

We take x= 24 as origin.
Xo=24,h=4,x=25p=x-Xo/ h, p=25-24/4=25




Gauss Forward difference table is
X y

20 24

24 32

28 35

32 40 Ay, =5 A’y,=2 A’y =7

By gauss Forward interpolation Formula
We y(25) = 32 +.25(3) + (X2 (=5) +
+.46875 - .2734 = 32.945
Y (25) = 32.945.
Example:
Use Gauss Backward interpolation formula to find f(32) given that f(25) = .2707, f(30)
=.3027, f(35) = .3386 f(40) = .3794.
Solution: let xo = 35 and difference table is

(zs+4)cif)625—1)(7) =32+.75

X y Ay
25 2707
30 3027
35 3386
40 3794

From the table yo = 0.3386
2

AY. - 0.0359 A

_ 3

=0.0049, AV = 0.0010, xp = 32 p = Xp- Xo/h = 32-35/5 = -.6
By Gauss Backward difference formula
f(32) = .3386 + (-.6)(.0359) + (-.6)(-.6+1)(.0049)/2 + (-.6)(.36-1)(0.00010)/6 = .3165

INVERSE LAPLACE TRANSFORMS
I. Inversion from Basic Properties

1. Linearity

@L G e




2s+1

Solution :(a)L *1[ ]_ 71[28 S 1

727 224
_4(s+1) _ S
b)L ™ =L T[4
ML 5=

2. Shifting

Ex.2. ]
o 2s+3

@t _[2 c2se 2] Ot T2

Solution: (a) L -t j-L &
(@) [ s? 23+2] [(s+1)2+1:I
1 ]
L J———]=e"sint
[(s+1)2+1]

and L [f(t—a)u(t—a)]=e*F(s)

L

1= 2c052t+%sin2t

4 .
Y + 32 _42] = 4 cosh 4t + sinh 4t

e*TES

_ A-(t-7) i _ —(t-7) o;
— | =€ sin(t—m)u(t—m) =—e sintu(t—m=

2(s+ §)

3., 1,
(3+§) _(E)

3

25+3 ]:Zezcosh£

(b) L _l[m]_ L [

3. Scaling

Ex.3.|

4s
L * )
[1652 - 4:I

4s 1=L 7 4s —cosh2 1t_lcosh—
4 4 2

Solution:L * — 1=
[1652 -4 (4s)? 22]

4. Derivative

Ex. 4. |
(@)L

1 ap. S+a
m] (b)L [In b]




. d ) 208
=L [tsinot]=—— =
s+ [ ] ds(82+0)2) (s* + ©%)?

20
Froy O
(s +0°) -’ 1 ®

1=20[ 5

(s2 + m?)? 21’ (5P +0°)’

solution: (a)L [sinwt] =

Let F(t)=tsinot=1L [F'(t)]=s-

2

L [F'0)]=20———— =20]
(s +®°)

2

]

3
Z 2L [sinet]- 20
(s + o)
1 1 . ,
T10l) = o L [2sinwt—F'(t)]
1
(s’ + %)

L

2]=2i3 [2sinet—F'(t)] = ! (sinot — wtcos wt)

20°
(b)Let L [f(6)]=In>"2 = In(s+a)—In(s+b)
s+b

L [tf (t)]:—i[ln(s+a)—ln(s+b)]:i—i= L [e™—-e™]
ds s+b s+a

-bt _ ,-at
S ()= %

5. Integration

@L =Y oL ity
s° 's+1 s+b

. ard 51 -1 1 - L
Solution : (a)L [S—Z(m)]—L [s(s+1) s2(s +1)

=" -D+[ (e -Ddt=—(e* -1 - (et -1 -t=2-2" -t

1= j;e-tdt—j;jote-‘dtdt

()L " —e™]=— -
s+b s+a
—bt_ —at - ©
L [u]zj (L_L)dszmib _|p3*ta
t s 'S+b s+a s+a s+b
-bt _ ,-at
L _1[|ns+a]:e e
s+b t

S

6. Convolution

Ex. 6.
(L 7

S 2].

1 4
51 (b)L [m

(s* + @)




Solution : (@)L [sinwt] = — ® 5 1sinmt]:
ST+ ® S

-1 1 _ 1 t . .
[m] = —ZIOSIn otsino(t—t)dt
1 (tl
== IoE [cos(wT — wt + ®T) — cos(mT + ot — wT)]dt
t

2
(Q))

_ 1 |:i3in(20)’t—(1)t)—‘ECOSO)t:|
® 0

1

=— {[i (sin ot —sin(—ot)] —tcos wt} = is (sin ot — ot cos wt)
20 ® 20

L [Lsinotl=——— L [cosot]=——>—
() ST+ ST+ ®
S

1t .
m] = —Iosm »tcos ot — 1)dr

L [

= lL:%[Sin((m + ot — ot) + sin(ot — ot + ot)]dt

t

0

= iIt[sin ot +sin(2ot — wt)]dt = i Tsin ot + _—lCOS(Zwr — o)
2()) 0 2(0 2Q)

= i{t sin ot — 1 [cos ot — cos(—wt)]} = Lsin ot
20 20
1. Partial Fraction

If F(s)[ w where deg[P(s)]<deg[Q(s)]
Q(s)

1.Q(s)[1 0 with unrepeated factorss(1a;

PO A L A LA

Q(s) s-a, s-—a, s—a,

A = Im[e (s -a)]=Pla) fim & 2

~P(a)lim -~ = P@)

=%Q'(s) Q'(a,)

P(s) _P(a)/Q'(a)  P(@,)/Q'(a,) . P(a,)/Q'(a,)
Q(s) s—a, s—a, s—a,

L POyl P@) o, P@) o P@) e
Q(s)” Q'(a) Q'(a,) Q'(a,)




s+1
s*+s%—6s"
s+1 _ s+1 :ﬁ+i+i
$?+s-6s s(s—2)(s+3) s s—-2 s+3
A1=|ims—+1:_l
0 (s—2)(s+3) 6
s+1 3

=lim =—
A s>25(s+3) 10

s+1 -2

— 1im __4
H3s(s 2) 15
13 -2
s+1 6, 10 , 15 __1+ieZt_£e—3t

L T = =
[s3+52—6s] s s—2 s+3 6 10 15

Solution :

2. Q(s)[ 0 with repeated factors € lay)"
P(s) __ C, _ Coy __ + C,
Q(s) (s—a)" (s—a) S —a

gis; (S ak) Cm +Cm—1(s - ak) +Cm—2(s _ak)2 +.“+C1(S _ak)mA

P(s) m
C,=I -a,
lmk[Q()(s 2,)"]

P(S) (o, o
gw%%Q(ﬁ a)" 1}

P(s) maa 1
SaﬁE{Q()(—ao]}E

d™ [P(s)( 3

a5 Lo(s) a,)" 1}

= lim{_ (m o

L PO e, T o e
Q(s) (m-1t" " (m-2)!

,1[34 — ]
s?(s-1(s-2)(s-3) ~

7s% +13s? + 4512




$'-75°418s°+4s-12_C, C A A |, A
s’ (s—1D(s-2)(s-3) s* s s-1 s-2 s-3
st 78 +13s? +45-12 12
C, =lim = =
-0 (s=1)(s-2)(s—3) -6
. d 8" —7s®+13s® +45-12
C,=lim— 1
s=0ds  (s—=1)(s-2)(s-3)
_AED(E)(=3) — (H12)[(=2)(=3) + (=1)(=3) + (-1)(=2)] _ —24+12x11 _
[(-D(-2)(-3)I* 6*
. s*-7s* +13s* +4s-12 -1
A =lim > =—
s—1 s°(s—2)(s-3) 2
. s'—7s*+13s° +4s-12 8
A, =lim > =—
-2 s°(s-1)(s-3) -4
s*-7s®+13s°+4s-12 9 1
A, =lim > =—==
58 s*(s-1)(s-2) 18 2
L ,1[54—753+1352+4s—12
s?(s—=1)(s-2)(s-3)

Solution:

3

1= ot 43— Ltet _2e? 4 Llen
2 2

3. Q(s)[] 0 with unrepeated factor 61 [13+(1, where [ >0

P(s) _ As+B
Q(s) (s—a)*+p’

%[(S—a)z +B*]=As+B

Jim (s - o) + BTy = Al + i)+ B

R+il =(Aa+p)+IiAB

where R and | are the real and imaginary partsof Iimé% [(s —a)* +B*]}, respectively

(s)

, Where we can get Aand B, and

Aa+B=R
then,
{ AB =

L _1[@]=L _1[A(S—OL)+(AOL+B) Ao + B

Q(s) (s—a)° +p°

]:e‘“(AcosBH sinBtj

Ex. 9.

SZ
L ¢ )
[54 +4]




2 SZ 52

. S
Solution : = =
s*+4  (s?)+2-8%242°-2-5°.2 (s°+2)°—(2s)?
_ s° __As+B, | As+B
(s +25+2)(s*=25+2) (s+1°+1 (s-1?+1

2
. S
li

S*)TH (3_1)2 +1
8-8i . 1
3—2:(_A1+Bl)+IA1:A1:_Z7Bl:0

2

. —2i :
:A1(—1+')+51:>m:(—A1+51)+'A1

. . 2i .
lerﬂim: A2(1+|)+Bz 2m:(A2 +Bz)+|A2
1

8 +8i .
5 = (A B) i, = A = 7B, =0

SZ

s* +4

L [——]=L

-t
=e—(—cost+sint)+%(cost+sint)

4. Q(s)[! 0 with repeated complex factor [6[1 [13+(] F, where [1 >0
P(s) _ As+B N Cs+D
Q(s) [(s—o)* +B°T  (s—a)” +P’

@[(S—a)z +B?]* = As+ B+ (Cs+ D)[(s— a)® +P’]
Q(s)

Jim (S (s -a)' + BT} = Al +iB) + B

R, +il, = (Ao + B) +1AB = {

Aa+B =R

' where Aand B can be obtained
AB=1,

Jim (s~ BT = A+ [C(a+iB) + D] lim S5 -a) -]
R, +il, = A+[C(a+ip) + D]2ip = (A—2CB*) +i(2apC + 2BD)

A 2Cp° =R, , where we get C and D, hence
20C + 28D = 1,
L _1[w] L _l{A(s —a) +2(Aoc2+ZB)}+ L _1[C(s —-a) +2(C J; D)]
Q(s) [(s—a)” +p°] (s—a)” +P

- e“‘{[gsin Bt + (Ao + B)Z—;s(sin Bt — Bt cos pt)] + [C cos Bt + (Cor + D)%sin Bt}




180 —33%+65—-4
[ ]
(s?—2s+2)* *
s®—3s° +6s—4 As + B cs+D
= +
(s°-25+2)*  [(s-D*+1P (s-1*+1
lim (s®—3s® +6s+4) = A(l+i)+B

S—L+i

2i:(A+B)+iA:>A:2 B=-2

Solution :

I|m—(s —3s® +6s+4)= A+[c(1+|)+D] I|m —[(s 1)? +1]

s—>1+i (s
0=A+(c+ic+D)2i=(A-2c)+2i(c+D)
c=1,D=-1
s®—3s? +65—4 s—1

4 oap 2(s-1) 4
s 78 Yot leopead

= et(Z-%sint+cost) =e'(tsint + cost)

IV. Differentiation with Respect to a Number

1
L y——1.
[(sz+(o2)2]
1 —-2m

Solution : i( ) = 71[—( 7 2)] il

—-20
do "s* + o’ (Sz+ooz) (s° + ®?)?
1 d 1

d . 1 . t
— = J]=—1L [—-]=—(=sinot) = ——sin ot + —cos ot
(Sz+(02)2] do [Sz+c02] dco((n o) P
1
(s* + »°)?

]

—2oL [

L [

1= 13 (sin ot — wt cos wt)
20

V. Method of Differential Equation

L e ].




Vs

R v — } +;
o5 T as T4l
we get the equation 4sy” +2y' -y =0= 4L [% (t*y)]+2L [-ty]-L [y]=0

Solution:y=e"" = y'=—

4i(t2y)—2ty—y=0:4t2y'+(6t—1)y=0:d—y+Gt_zldt=o
dt y 4t

3 1 S
In —Int+—==c¢ =ct 2e #
Yyttt

1
;) 11
=2 =£,and L [ty]=L [ct 2e 4]
52 Js

e 11 s

while L [ty]= -y’ = —— = L [ct 2e 41]:2—

C2s

Applygeneral final value theorem lim

t—o0

1 1
Ly=————e#
24/nt®?

Applied to Solve Differential Equations
I. Ordinary Differential Equations with Constant Coefficients

yyey = g(x), y(0) =1, y* (0) = 0, where g(x) ={1 Oexss

3 X>3




Solution : g(x) = u(x) + 2u(x — 3)

[ﬁv—sﬂm—y(m}+ﬁv—ymn+v=%+2es

) 1 e735
(S“+s+1)Y =s+1+=+2
S S
s+1 1 2e%
2 + 2 + 2
s“+s+1 s(s“+s+1) s(s“+s+1)
s+1 1 s+1

1 s+1
= (T )42 (e
s°+s+1 (s sz+s+1) (s s +5+1

s+ fy+1 J3
s+l V32 LA e_5(003£x+isin£x)
s?+s5+1 , A3, s2+s+1 2 J3 2

(S+E) +(7)

y(x) =u(x) +2u(x - 3){1 - exzs[cosg(x -3)+ %sin ?(x -3)1}

Ex. 2. ]
Y () -2y () +5y' () =0, y(0) =0, y' (0) =1, y(%) 1.

Solution : [s%Y —s®y(0) —sy'(0) — y'"' (0)] - 2[s*Y —sy(0) — y'(0)] +5[sY — y(0)] =0
y'(0)=c
S+c—2 N Ps+Q
(s-1)%+2°

-2

T s(s°-25+5)
S+Cc—-2
55052 _2s4+5 5

_A
S
_C

A=Ilim

PAL+2i)+Q = lim s+c-2 =—1+Cﬁ.-2l =c+3+4—2ci
s—1+2i 1+ 2i 5 5

p_2-C

c-2 +3
t)=—+¢ —c052t+—sm2t
V() === +e'( o Sin2)

T c-2 =~2-c1 c+3 1
—)=1=1= +e8

Y(8) c (5 \/— 10 \/—)
y(t) =1+ e'(-cos 2t +sin 2t)




Module-111
CURVE FITTING AND FOURIER TRANSFORMS

Suppose that a data is given in two variables x & y the problem of finding an analytical
expression of the form y = f (x) which fits the given data is called curve fitting

Let (X,,Y,),(X,,Y,) (X,,Y,) be the observed set of values in an experiment and
y = f(x) be the given relation x&y,Let E ,E,,.....E, are the error of approximations
then we have
B =y, —f(x)
E,=y,— (%)
E,=Y,—f(X)
E,=vy,— f(x,) where f(x),f(x,) f (x,) are called the expected values of
y corresponding to X=X, X=X,
are called the observed values of y corresponding to
E, between expected values of y and

observed values of y are called the errors, of all curves approximating a given set of points,
the curve for which
E=E’+E,/+...E,* is a minimum is called the best fitting curve (or) the least

square curve
This is called the method of least squares (or) principles of least squares

1. FITTING OF A STRAIGHT LINE:-
Let the straight line be y=a+bx —(1)

Let the straight line (1) passes through the data points

(%0 Y1) (%00 Yo )X, Vo )i (X0 Y5 ) i =12..0

So we have yi =a+bxi —(2)

The error between the observed values and expected values of y =yi is defined
as Ei=y,—(a+bxi)i=12 (3)

The sum of squares of these error is

E= Zn: Ei? = Zn:[yi —(a+bxi)]2 now for E to be minimum
i=1

i=1

§=O,E=0
oa ob

These equations will give normal equations




Zn: yi=na+ bzn: Xi

i=1 i=1

Zn:xiyi = azn:xi +bzn: Xi?
i=1 i=1 i=1

The normal equations can also be written as
D y=na+b) x
D oxy=a) x+bY x*

Solving these equation for a, b substituting in (1) we get required line of best fit
to the given data.

NON LINEAR CURVE FITTING
PARABOLA:-

Let the equation of the parabola to be fit
The parabola (1) passes through the data points

(% 1) (%0 Y2) (Xr Yo ) i€ (X0 1 )3
We have yi =a+bx +cx* —(2)
y =a+bx+cx? —(1)

The error Ei between the observed an expected value of y =y, is defined as

Ei=yi—(a+bxi+cxi’),i=123...n—>(3)

The sum of the squares of these error is
E=s, Ei’ =g, (yi-a-bxi—cxi?) —(4)
For E to be minimum, we have

B _ o B _ o E_
oa ob

oc
The normal equations can also be written as

gy = na+bex+cex?
exy = aex+bex® +cex® use Y instead of &

ex’y =aex® +bex® +cex*

Solving these equations for a, b, ¢ and satisfying (1) we get required parabola of
best fit

POWER CURVE:-




The power curve is given by y =ax® — (1)

Taking logarithms on both sides

log,,’ = log,,*+blog,,”

(or)y=A+bX —(2)

where y =log,,”, A=log,,* and X =log,,*

Equation (2) is a linear equation in X &y

.. The normal equations are given by

gy =nA+beX

exy = AsX +beX?  use Xsymbol

From these equations, the values A and b can be calculated then a = antilog (A)
substitute a & b in (1) to get the required curve of best fit
EXPONENTIAL CURVE :- (1)y =ae™ (2)y=ab"

y=ae” —(1)
Taking logarithms on both sides
log,, y =log,, a+bxlog,, e

(or)y=A+BX —(2)
Where y=log,, y,A=log,,a&B=blog,,e

Equation (2) is a linear equation in X and Y
So the normal equation are given by
2Y =nA+ BxX

Txy = AZX + BZX?

Solving the equation for A & B, we can find

a=antilogA&b= B
log,, e

Substituting the values of a and b so obtained in (1) we get

The curve of best fir to the given data.
2. y=ab* —>(1)

Taking log on both sides




log,, y =log,,a+xlog,, b (or)Y = A+ Bx

Y =log,, y,A=log,,a,B =log,, b
The normal equation (2) are given by
2y =nA+BZX
Txy = AZX + BEZX?
Solving these equations for A and B we can find a =antilog A b =antilog B
Substituting aand b in (1)
1. By the method of least squares, find the straight line that best fits the following

data

X 1 2 3 4 5
Y 14 27 40 55 68

y =a+bx

Ans.  The values of &x,&Y,&x> and xy are calculated as follows

. . —
i yi xi xiyi

14 1 14
27 4 54
40 9

55 16
68 25

Replace xi,yi by x,Y, anduse X instead of &
exi =15;eyi =204, &xi’ =55 and exiyi =748
The normal equations are
gy =na+bex — (1)
exy =aex+bex? —(2)

204 =15a+5b
748 =55a+15b

Solving we get a=0,b=13.6
Substituting these values a & b we get
y =0+13.6x =y =13.6x

2. Fitasecond degree parabola to the following data




X
Y

y = a-+bx+cx?
Ans. Equation of parabola y =a+bx+cx* —(1)

Normal equations ey = na+bex+cex’
exXy = asX+bex® +cex’

ex’y =aex’ +bex’ +cex’ —(2)

y

Xy

2

2

Xy

1

0

0

5

5

5

10

20

40

22

66

198

27

38

152

16

608

64

256

ex=10,5y =76, Xy = 243, x> =30, X’y =851, &x® =100, ex* = 354
Normal equations

76 =5a+10b+30c

243 =10a+30b+100c

851 =30a+100b +354c

Solving a=1.42,b=0.26,c =2.221

Substitute in (1) = y=1.42+0.26x +2.221x*

3. Fitacurve y=ax" to the following data
X 1 2 3 4

Y 2.98 4.26 5.21 6.10

Ans.  Let the equation of the curve be y=ax" — (1)
Taking log on both sides




logy =loga+blogx
y=A+bX —(2)
y=logy,A=loga, X =logx
gy =nA+beX

exy = Aex+bex? —(3)

X X =log x y y=logy Xy
1 0 2.98 0.4742 0

2 0.3010 4.26 0.6294 0.1894
3 0.4771 521 0.7168 0.3420
4 0.6021 6.10 0.7853 0.4728
5 0.6990 6.80 0.8325 0.5819

eX = 2.8574,8y = 4.3133,exy = 2.2671,ex* =1.7749
4.3313=6A+2.8574b
2.2671=2.8574A+1.7749b
solving A=0.4739 b=0.5143
a=antilog(A)=2.978
Sy =2.978.X%%%

4. Fitacurve y=ab*—(1)

X 2 3 4

Y 144 172.8 | 207.4

logy =loga+xlogh — (1)
y=A+xB—(2)
y=logy,A=loga,B =logh
2y =nA+Bex

exy = Aex+Bex? > (3)

Y =logy
2.1584
2.2375

2.3168




11.9795

14.8494

Equation of parabola y =a+bx+cx* —(1)

Normal equations ey = na+bex +cex’

exy =asX+bex’ +cex’ &  ex’y =aex? +bex’ +cext —(2)

2

y Xy X2 X’y x® x*

1 0 0 0 0 0

1.8 1.8 1.8 1 1

1.3 2.6 5.2 8 16

2.5 7.5 . 27 81

6.3 . 64

Yxi= 10, Yy =12.9, ¥ x? =30, ¥ x> = 100, ¥ x;* = 354, ¥ xi%yi = 130.3

Z X; Vi, = 37.1
Normal equations

5a+10b+30c=12.9
10a + 30b +100c =37.1

30a + 100b +354¢ = 130.3

Solving a=1.42b=-1.07 c=.55
Substitute in (1) y = 1.42- 1.07x+.55x°

FOURIER TRANSFORMS

Introduction
The Fourier transform named after Joseph Fourier, is a mathematical transformation

employed to transform signals between time (or spatial) domain and frequency domain,
which has many applications in physics and engineering. It is reversible, being able to



http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Transformation_%28function%29
http://en.wikipedia.org/wiki/Time_domain
http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Engineering

transform from either domain to the other. The term itself refers to both the transform
operation and to the function it produces.

In the case of a periodic function over time (for example, a continuous but not necessarily
sinusoidal musical sound), the Fourier transform can be simplified to the calculation of a
discrete set of complex amplitudes, called Fourier series coefficients. They represent the
frequency spectrum of the original time-domain signal. Also, when a time-domain function
is sampled to facilitate storage or computer-processing, it is still possible to recreate a
version of the original Fourier transform according to the Poisson summation formula, also
known as discrete-time Fourier transform. See also Fourier analysis and List of Fourier-
related transforms.

Integral Transform
The integral transform of a function f(x) is given by

b
= j f (X)k (s, X)dx
I [f(x)]or F(s) @
Where K(s, x) is a known function called kernel of the transform
s is called the parameter of the transform
f(x) is called the inverse transform of F(s)

Fourier transform
k(s,x) =e™
F[f(x)]=F(s)= j f (x)e™ dx

Laplace transform
k(s,x)=e™

L[f(X)]=F(s)= T f (x)e > dx

Henkel transform
k(s, x) =xJ,(sx)

HLT ()] = H(s) =T f(X)xJ, (sx)dx

Mellin transform
k(s,x)=x""

ML f(x)]=M(s) = T f(x)x*dx

DIRICHLET’S CONDITION
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A function f(x) is said to satisfy Dirichlet’s conditions in the interval (a,b) if

1. f(x) defined and is single valued function except possibly at a finite number of points
in the interval (a,b)

2. f(x) and f(x) are piecewise continuous in (a,b)
Fourier integral theorem

If f(x) is a given function defined in (-1,I) and satisfies the Dirichlet conditions then

f(x)= ;T T f(t) cosA(t—x)dtdr

0 —0

Proof:

f(x) = &, D a, cos(@) +>'b, sin(%)
2 n=1 L n=1 L
where
1 L
8 =7 jL f(t)dt

15 nmX
a. =— | f(t)cos(—)dt
. L_jL() )

(1719,

15 .
b, == jL F(sin(= ) dt

Substituting the values in f(x)

1% = nm

f(x) == [ FOIL+2)" cos(—)(t—x)]dt
L~ ) L

But cosine functions are even functions

- nrc - nrc
> cos(T)(t— X)=1+2)" cos(T)(t— X)
N=—0 n=1

Substituting equation (2) in (1)




F(x) = % | f(t)% 3 cos(n—:)(t— X)dt

nm_»
L

n&a%ﬂi cos(nrn)(t— X) = ];cos At—=x)dA = ZIcos At—x)dA
F(x) = 2—1n T f(t)[ZTcos A(t—x)d AJdt
f(x)= %]0' ]2 f(t) cosA(t—x)d Adt

Fourier Sine Integral

If f (t) is an odd function
f(x) = Ejsin kxjf(t)sin Adtda
o 0

Fourier Cosine Integral

If f (t) is an even function

f(x)= 2 _[ COS xxjf (t) cos AtdtdA
n 0 0

Problems

x| <1

X Sin A COSAX
|x|>1

1, .. °
Expressf(x):{0 as a Fourier integral. Hence evaluate _[
! 0

sinA

and also find the value OfIT
0




f(x) = f(t) cosA(t—x)dAadt

f(x) = cosA(t—x)dAdt

f(x) = sin A cos A xdA

a|F alFr 3|k
Ot 8 Ot==—m§ O=—m3

>) >)||\) »'a'—"‘é'—oS

“sinAcos
A

Xdn =Z

x| =1

smkcosxx

|;x Ik=

|
(0]
x=0
|
(0]

D a2
Using Fourier Integral show that e™ cosx = EI XA *2 coSAXdA
T

07‘ +2

f(x) =e *cosx

f (x) =3jcosxx[jf(t)cosxtdt]dx
TEO (0}

f(x) = chos kx[‘fe’t costcosA tdt]d A
TCO (0}

f(x) = %Icos kx[j e '(cos(A +1) t+cos(A —1)tdt]d A
(0] (0}

1% 1 1
f(x) = —J‘coskx[(kJrl)z R —1d2

f(x) = EI cos axdAa

Tco

FOURIER TRANSFORMS
The complex form of Fourier integral of any function f(x) is in the form

_ 1 T —ikxOo irt
f(x)_z—n__[oe _jwf(t)e dtda




Replacing A bys
F(x) = 2_1n [ e7=ds [ f(t)edt

Let

F(s) = Tf(t)ei“dt

f(x) = i T F(s)e ™ds

Here F(s) is called Fourier transform of f(x) and f(x) is called inverse Fourier transform of
F(s)
Alternative Definitions

FLTO)=FO)= = [ 008, 100 = = i F(9e=ds

F(s) = T f (x)e"™dx, f (x) =i? F(s)e™ds

—00

Fourier Cosine Transform
Infinite

FLf®]I=F(s)= \/%T f (t) cos stdt

f(x)= \/Z_T F.[f (t)]cossxds
T 0
Finite
FtO]=F.(s) = \E [t cos(")ct

(00=7Fe©@+ /23 F.(9)c0s("")

Fourier Sine Transform
Infinite




FITO1=F(5)= \ET f (t)sin stdt

f(x)= FT F[f (t)]sinsxds
T
Finite
FLf@]=Fy(s) = \E J fOsin" et
(0= T2 F(o)sin)

Alternative Definitions:

1.F.(s)= jf (x)cossxdx, f(x) = % j F (S) cossxds
0 0

2.F(s)= Tf (x)sinsxdx,f(x) = %TFS(S)sin sxds

Properties of Fourier Transforms
Linear Property: Flaf, (x) + bf,(x)]=aF, (s) + bF, (s)

Flaf, (x) + bf, (x)] = % [ 1,09+ b, (et

n —0
% [ fl(x)ei“dt+% [ f200e™at
Flaf, (x) + bf,(x)] =aF (s) + bF,(s)

Flaf, (x) + bf,(x)]=

Shifting Theorem: (a) F[f(x—a)] =™ F(s)
(b) F[e"™ f(x)] = F(s+a)




F[f(x—a)] = ﬁ T f(t—a)e™dt

t—-a=1z
dt=dz

o0

1 J’ f(2)ee™dz

J2n
1
J2n

F[f(x—a)] = " F(s)

Flf(x—a)]=

['e]

FIf(x—a)] =™ j f(2)e™dz

F[eiax f(X)] — iSteiatdt

L
E_j@f(t)e

F[eiaX f(X)] — i(a+S)tdt

L
Ejoof(t)e

F[e"™ f(x)] = F(s+a)

Change of scale property: Hf(ax)] = % F(g)(a > 0)

F[f(ax)] = % T f (at)e it
at=z

dt="1dz
a

F[f(ax)] = %% T f(z)ei(5jzdz

FIf(ax)] = gF(g)

d"F

Multiplication Property: F[x"f(x)] = (—i)" dnn
S




FIf(x)] = % j F(t)edt

dS f j £ (H)e™dt

L j €2 £ (et

continuing
d"F "

ds" f
FIX"f(x)]= ()" d

j £ f (H)e™dt

Modulation Theorem: F[f(x) cosax] = %[F(s +a) + F(s—a)], F[s]=F[f(x)]

FIf(x)] = T f (t) cosat e™'dt

FIf(x)] = j f(t){ } et

FIF(O] :%{% f(t)el(s+a)tdt b f J‘f(t)en(s a)tdt}

F[f(x) cosax] = %[ F(s+a)+F(s—a)]

Problems
Ll <1

Find the Fourier transform of f(x) =
1 0 =40 Jx>1

tsinx
Hence evaluate | ——dx
X




F[f (x)] = Tf(x)e‘sxdx

FIf (X)] = j1.eiSde

AfO01=|

-1

F[f (X)] _ e i—se _ 2SI;]S

F(x) = % [ Fisge-=ds

1 % _sins _
f(x)= 2— e ¥ds
() 21‘[-[ S

1 ¢sins
f(X)== | —e™ds
(x) H_j@ .

1|x|<1
0,|x|>1

i sins 0% s {
IT:

_y2
Find the Fourier transform of f(x) ={1 0X|X||);|f1

T XCOSX—sinx X
Hence evaluate I—Scos—dx
5 X 2




FIf (X)] = .T f(x)e™dx

FIf (x)] = j(l— x?)e™ dx

. 1
|sx eISX isx

F[f (x)] = |1~ x)——2x 28

(isY " (isy],

F[f (X)] _ 2(eis n S—is }_ 2[eis _-e?’—is j
—S —IS

FIf(x)] = (s coss—sins)

f(x) = E j Fls]e "™ds

1 57 -4 . s
f(x)=ﬁjs—3(scoss—sms)e ds

—o0

iﬂz;—f (scoss—sins)e ™ ds = {1

=1/2

t 4
i —-(scoss—sins)e e ¥ds =
21 - s

SC0SS—sins
( 5 )[cos——lsm—]ds——3—n
S 2 8
(scoss—sins) 311

5 —ds———
S 2 16

x?,|x| <1
0,[x|>1

Find the Fourier transform of e** .Hence deduce that e’

reciprocal in respect of Fourier transform

%is self-




FIE(x)]= [ f(x)e™dx
FIfF ()] = [ e e™dx
F[f (X)] _ [ efaz(xzfisx/az)dx

F[f (X)] _ [ e—aZ(x—isx/2a2)2e—szl4a2 dx

Q0

t=a(x—isx/2a%)
dx=dt/a

T YR

FIFOO]= [ e e

—00

—s%/4a%

FIF(x)] = ——— [ e at

a

U0 Py

FIF (0] = g e

a’=1/2
F[e—XZ/Z] _ 2He—sz/2

X212

Hence e '“is self-reciprocal in respect of Fourier transform

4 Find the Fourier cosine transforme ™",




Sol:

F )= _[ e cossxdx = |
0

a_ —J' xe ™ sins xdx = 1_|'(—2xe‘xz)sins xdx
ds 9 2y
ﬂ=_—S.fe‘xzcossxdx:_—SI

ds 2 2

ﬂ:_—Sds

I 2

integratingonbosthsides
- —s? 2

logl = [ —=ds+logc=—+logc = log(ce™ "

gl=[—-ds+loge=—--+logc= log(ce ™)

I — Ce7$2/4

—X

2 2
e cossxdx =ce '

=0

CzTe_xde =§
0

VIﬁ —s2/4

2
cosSSxXdx = Te

—X

e

Find the Fourier sine transforme ™ .Hence show that

o0

X sin mx ITe™
J. —dx = ,m>0
o 1+Xx 2

X being positive in the interval (0, )

e =g

2

F(e™)=|e™sinsxdx =
-([ 1+s

2 % ]
f(x)=—|F.(e7)sinsxds
(x) Hgs( )

S

e sinsxds
+$

f(x)=]o

w [ S
exzjl ~sinsxds
+S

0

Replace x by m




s .
I sinsmds

17 1+s

) IT _
I >sinsmds = —e m
+5S

= sinmxds = Ee’m
1+X 2 7

|
|

X,0<x<1
Find the Fourier cosine transformf (x) ={2—-x,1<x< 2.
0,x>2

F.(F()) = [ £(x) cossxdx

1 2 )
F.(f(x)) = jx cossxdx + _[ (2—x)cossxdx + IO. cossxdx
0 1 2

sins coss 1 sins €0S2s COSS
Fc(f(x))=(—+—2——2)+(— -— > j
S S S S S S
2coss 1 cos2s
s s?

F.(f(x)) =

If the Fourier sine transform of f(x) = L(COTS)?H then find f(x).
n

f(x):%ia(n)sin X

1-cosnIl
F(n)=——707"—
(nIT)
= 1-cosnIl .
> ————sinnx
= (nII)

2 &1-cosnll .
—E ———sinnx
4 n?

f(x):%

f(x)=




MODULE -1V

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

The important methods of solving ordinary differential equations of first order numerically
are as follows
1) Taylors series method
2) Euler’s method
3) Modified Euler’s method of successive approximations
4) Runge- kutta method
To describe various numerical methods for the solution of ordinary differential eqn’s,we
consider the general 1% order differential eqn
dy/dx=f(x,y) 1)
with the initial condition y(Xo)=Yo
The methods will yield the solution in one of the two forms:
i) A series for y in terms of powers of x,from which the value of y can be obtained by
direct substitution.
ii ) A set of tabulated values of y corresponding to different values of x
The methods of Taylor and picard belong to class(i)
The methods of Euler, Runge - kutta method, Adams, Milne etc, belong to class (ii)

TAYLOR’S SERIES METHOD
To find the numerical solution of the differential equation

Yt y)>)
dx

With the initial condition y(x,) =Y, >(2)

y(X) can be expanded about the point X, in a Taylor’s series in powers of (X—X;) as

220y L) ) L= X°) Y'(%) >@3)

Inequ3, Y(X,) is known from I.C equ2. The remaining coefﬁments Y'(%), Y (%), y" (%)

y(x) = y(x) + Y (%) +

etc are obtained by successively differentiating equl and evaluating at X;. Substituting these values in
equ3, Y(X)at any point can be calculated from equ3. Provided h=Xx— X, is small.
When X, = 0, then Taylor’s series equ3 can be written as
X2 X
y(¥) =y(0)+xy(0)+75y"(0) + " "

1. Using Taylor’s expansion evaluate the integral of y'—2y=23e*,y(0)=0, ata) x=0.2

b) compare the numerical solution obtained with exact solution .




Sol:  Given equation can be written as 2y +3e* =Yy',y(0)=0

Differentiating repeatedly w.r.t to ‘x” and evaluating at X =0

y'(x) =2y +3e*,y'(0) = 2y(0) +3e° = 2(0) +3(1) =3

y"(x) =2y’ +3e*,y"(0) =2y’'(0) +3e° =2(3) +3=9

y"(X) = 2.y"(x) +3e*,y"(0) = 2y"(0) +3e° =2(9) +3=21

yY (x) = 2.y"(x) +3e*, y"(0) = 2(21) + 3e° = 45

y'(xX) =2.y" +3e*,y'(0) = 2(45) +3e° =90+3 =93
In general, Y™ (x) =2.y™(x)+3e* or y™V(0) = 2.y (0)+3e°
The Taylor’s series expansion of Y(X) about X, =0 is

X2 X3 4

y(x) = y(0)+xy'(0) T y"(0) e

Substituting the values of y(0), y'(0), y"(0), y"(0),

5

m X " X mn
y (0)+$y (0)+§y 0)+....

y(x):0+3x+gx2+2—1x3+—
9 2 7 3
X)=3X+—-X"+—X"+—
y(x) S X+
Now put X=0.1 inequl

y(0.1) = 3(0.1) +§(o.1)2 +g(o.1)3 +%(o.1)4 +%(0.1)5 —0.34869

Now put X=0.2 inequl

y(0.2) =3(0.2) +g(o.2)2 +£(0.2)3 +%(o.2)4 +2—; (0.2)° =0.811244

y(0.3) =3(0.3) +%(o.3)2 +£(o.3)3 +§(0.3)4 +2—é (0.3)° =1.41657075

Analytical Solution:

d
The exact solution of the equ d—y =2y +3e* with y(0) =0 can be found as follows
X

%—Zy =3e* Whichisalineariny.
dx

Here P=-2,Q=3¢"




pdx —2dx _
ILF = j =j —e?
e e

General solution is y.e™* = ISeX.e‘Zxdx +c=-3e"+cC
o y=-3e"+ce”wherex=0,y=0 0=-3+c=c=3
The particular solution is y=3e** —3e* or y(x)=3e* —3e*
Put x=0.1in the above particular solution,
y =3.% —3e*! =0.34869
Similarly put x=0.2
y =3e%* —3e%? =0.811265
putx=0.3
y =3e%° —3e* =1.416577
2. Using Taylor’s series method, solve the equation % =x?+y? for x=0.4 given that

y=0when x=0

Sol:  Given that %:x%y2 and y=0 when x=0 i.e. y(0)=0
X

Here y, =0, x,=0
Differentiating repeatedly w.r.t ‘x” and evaluating at X =0
Y (X)=x"+y%y(0)=0+y*(0)=0+0=0
y'(x) =2x+Y".2y,y"(0) =2(0)+ y'(0)2.y =0
y"(X) =2+2yy"+2y".y', y"(0) = 2+ 2.y(0).y"(0) + 2.y'(0)* = 2
y"(x)=2.y.y"+2.y"y'+4.y"y', y"'(0) =0
The Taylor’s series for f(x) about X, =0 is
X2 X N
y(x) =y(0)+xy'(0) + Y + V'@ + Y Q)+
Substituting the values of y(0), y'(O), y”(O),

3 3
y(x) =0+ x(0) +0+23i|+0+ %+ (Higher order terms are neglected)




(0.4)° _0.064

- y(0.4) = =0.02133

3. Solve y' =x—Yy?, y(0) =1 using Taylor’s series method and compute y(0.1),y(0.2)
Sol:  Giventhat y' =x-y?,y(0)=1

Here y, =1, x,=0

Differentiating repeatedly w.r.t ‘x’ and evaluating at x=0

y'(x)=x-y?,y(0)=0-y(0)*=0-1=-1

y'(x)=1-2y.y", y"(0) =1-2.y(0)y'(0) =1-2(-1) =3

y"(x) =1-2yy'—2(y")*, y"(0) =-2.y(0).y"(0) - 2.(y'(0))* =—6—-2=-8
y"(x)=-2.y.y" =2.y"y'=4.y"y', y"'(0) =-2.y(0).y"(0) - 6.y"(0).y'(0) =16 +18 =34

The Taylor’s series for f(x) about Xo = 0 is
y(x) =y(0) + = y H(0) + .\/11(0) yl“(O) +.
Substituting the value of y(0), y*(0), y“(O),. -
3 , 83 34 4,4

X)=1-X+=X"-=X"+ —X +.....
y(x) 2 6 24

y(x):1—x+gx2-ﬁx3+ et . >(1)
now put x =0.1in (1)
y(0.1)=1— 01+_(o1) + 3 (01) " ;(0.1)4+.....

=0.91380333 ~ 0.91381

Similarly put x = 0.2 in (1)

3 o2 4 s, 1T
02)=1-02+=(0.2)°- = (0.2°+ =—(0.2*+.....
y(0.2) 5 (02)7- 2027+ —(02)

= 0.8516.

4. Solve y* = - ¥, Y(0) = 1, using Taylor’s series method and compute y(0.1),
y(0.2), y(0.3) and y(0.4) (correct to 4 decimal places).

Sol. Giventhaty'=x?—yandy(0)=1

Here Xo =0, yo =1 or y =1 when x=0




Differentiating repeatedly w.r.t ‘x’ and evaluating at X = 0.
Y'x)=x*-y, y'(0)=0-1=-1

y'=2x-y,  y'(0)=20)-y(0)=0-(1)=1
y'eg=2-yL  yO=2-y"(0)=2-1=1,
YW = -y, yV(0) = -y" (0) = -1.

The Taylor’s servies for f(x) about xo= 0 is

y(x) = y(0) + %y'(O) + %y“(@ + %y‘“(@ + %y”@) ¥

substituting the values of y(0), y*(0), y*(0), y**%(0),

<y

X3
1)+ =
W+ %

Y=L rx () + @ X

2 X3 X4

X
X)=1-X+—+ —-—+
Yed 2 6 24

Now put x = 0.1 in (1),
01)° (0.1)° (0.1)
y(0.1)=1—0.1+( ) +( ) ( ) +
6 24
=1-0.1+0.005+ 0.01666 — 0.0000416 -0.905125 ~ 0.9051

(4 decimal places)

Now put x = 0.2 in eq (1),
(02)° , (02)' (02)'
2 6 64
=1-0.2+0.02 +0.001333 - 0.000025
=1.021333 - 0.200025
=0.821308 ~ 0.8213 (4 decimals)
Similarly y(0.3) =0.7492 and y (0.4) = 0.6897 (4 decimal places).

y(0.2)=1-02+

5. Solve % -1 =xy and y(0) = 1 using Taylor’s series method and compute y(0.1).
X
. dy , _ _
Sol. Given that vl 1=xyandy(0)=1
X

Herej—y=1+xyandy0:1,xo=0.
X




Differentiating repeatedly w.r.t ‘x’ and evaluating at xo =0
Y'(x)=1+xy, y'(0)=1+0(1) = 1.

y'(X) =xy+y, y"(0) = 0+1=1

y') =xy” +y'+y, y"'(0) = 0.(2) +21/(2) =2
YY) =xy" +yl+ 2yt y"(0) = 0+3(1) =3.
Y () =xy" +y" 2yt y'(0)=0+2+2(3)=8

The Taylor series for f(x) about Xo = 0 is

y(x) = y(0)+xy(0)+ y” (0) + y'”(O) y'V(0)+ y Y(0)+.....

Substituting the values of y(0) , y'(0) , y"(O) e

y(x>:1+x+X7 +%(2) X—(3)+ &)

~>@)

Now put x = 0.1 in equ (1),
(0.1)° N (0.1)° N (0.1)* N (0.2)°

01)=1+0.1+
y(01) 3 8 15

=1+0.1+0.005 + 0.000333 + 0.0000125 + 0.0000006
=1.1053461

6. Given the differential equ y* = x* + y?, y(0) = 1.0btain y(0.25), and y(0.5) by
Taylor’s

Series method.
Ans: 1.3333, 1.81667

7. Solve y1 = Xy2 +y, y(0) =1 using Taylor’s series method and compute y(0.1) and
y(0.2).

Ans: 1.111, 1.248.




Note: We know that the Taylor’s expansion of y(x) about the point xq in a power of (x
— Xo)IS.

v =y + E28) o+ CI iy ¢ CI gy 5
Or

(X_Xo) yl + (X_Xo)2 yII + (X_Xo)3 y||| +

Y(X) = Yo+ T o o 0 3 0

If we let X — Xo = h. (i.e. X = Xo + h = X;) we can write the Taylor’s series as
2 3 4

—_ —_ h | h 1l 11
Y(X) = y(X1) = Yo + R +§ Yo * 31 o 4!

h h2 3 v
i.e.y1:y0+ ﬁ yO + —

v
Yo T

h
| 1 11 \%
o Yo * ENl Yo a1 — Y T
Similarly expanding y(x) in a Taylor’s series about x = x1. We will get.
h? h_3 Il h4
21 y1 + 3l i+ I

Similarly expanding y(x) in a Taylor’s series about x = x, We will get.

h
yz:y1+—y

_ +h_ |_|_h_2 I h®
Y3=Y2 1 Y, ol y, + yz

4
h,y£V+

In general, Taylor’s expansion of y(x) at a point X=X, IS

h | hz 1 h h4 \Y
yn+1:yn+ﬁyn+§yn _yn _!yn
8. Solve y'= X-y2, y(0) = 1 using Taylor’s series method and evaluate y(0.1), y(0.2).
Sol: Giveny'=x-y* ()
and y(0)=1 2>(2)
Here Xo =0, yo=1.
Differentiating (1) w.r.t ‘x’, we get.
y'=1-2yy'>(@3)
y' =20y + ()Y > (4)
yV=-2ly. y+y v+ 2yl Yy ()
=23y y'+y .y




Putxo =0, yo=11n (1),(3),(4) and (5),
We get
y, =0-1=-1,
Yo =1-2(1) (-1) =3,
Yo' =-2[(-1)%) + (1) 3)] = -8
yo =-2[3(-1) (3) + (1) (-8)] = -2(-9 -8) = 34.
Take h=0.1
Stepl: By Taylor’s series, we have

— h | hz Il h3 11 h4 v
Yi=Yot ﬁyo"'ayo +ayo +Zy0 RERTEES 9(6)
on substituting the values of yo, v, , y,' , etc in equ (6) we get

, O 8+ (0.2)"
6 24

=1-0.1+0.015-0.00133 +0.00014 + ...
=0.91381

(3)

(0'21)2 G4+ ...

yO.1) =y =1+ OT'l(-l) +

Step2: Let us find y(0.2), we start with (x1,y1) as the starting value.
Here x; =Xo+ h=0+0.1=0.1and y; = 0.91381
Put these values of x; and y; in (1),(3),(4) and (5),we get
yl =x1- y? =0.1-(0.91381)* = 0.1 - 0.8350487 = -0.735

y,' =1-2y;-y; =1-2(0.91381) (-0.735) =1+ 1.3433 =2.3433

v =20y )2 +y1-y!'] = - 2[(-0.735)% + (0.91381) (2.3433)] = -5.363112

v, =-2[3.y) v +y1y"]=-2[3.(-0.735) (2.3433) + (0.91381) (-5.363112)]

= -2[(-5.16697) — 4.9] =20.133953

By Taylor’s series expansion,

h3 11 h4 v
TR TR AR

— h | h2 ]
Y2=y1 t ﬁyl +§yl +

~y(0.2) = y, = 0.91381 + (0.1) (-0.735) + () (2.3433) +




(0" 5363119y + OV’
6 24

y(0.2) = 0.91381 — 0.0735 + 0.0117 — 0.00089 + 0.00008
=0.8512

9. Tabulate y(0.1), y(0.2) and y(0.3) using Taylor’s series method given that yl=y?+x
andy(0) =1

Sol: Given y' = y* + x >(1)
and y(0)=1 2>(2)
Here Xo =0, yo = 1.

(20.133953) + ...

Differentiating (1) w.r.t ‘x’, we get

y' =2y-y'+1 >(@3)

y" =2ly- vyt + ()] >(4)

yUo=2y y" ey yte2yty]
=2[y- y" +3y'y"] >(5)
Putxo=0,yo=11in (1), (3), (4) and (5), we get
Yo =(1)°+0=1
Yo =2(1) (1) +1=3,
Yo' =2((1) (3) + (1)°) =8
Yo =2[(1)(8) +3(1)(3)]
=34
Take h=0.1.
Stepl: By Taylor’s series expansion, we have

- — h | h2 I h3 1 h4 v
y(xl)_yl_y0+ﬁyo+§yo +§y0 +$y0 + ... 9(6)

on substituting the values of y,, v, , v, €tc in (6),we get

(0.1)2 (0.1)° (0.2)*
3)+ —2 (8)+ 34)+ ...
> 3) 5 (8) 24 (34)
=1+ 0.1 +0.015 + 0.001333 + 0.000416

y1 = 1.116749

y(0.1) =y,=1+(0.1)(2) +




Step2: Let us find y(0.2),we start with (x3,y;) as the starting values
Herex; =Xo+h=0+0.1=0.1and y; = 1.116749
Putting these values in (1),(3),(4) and (5), we get

y! = yZ+xq = (1.116749) + 0.1 = 1.3471283

y' =2y, y! +1=2(10116749) (1.3471283) + 1 = 4.0088
v =20y y!' + (y!)?) =2((1.116749) (4.0088) + (1.3471283)%] = 12.5831

yY =2y yM" 46y vy =2(1.116749) (12.5831) + 6(1.3471283) (4.0088) =
60.50653

By Taylor’s expansion

y(Xz)=yz=y1+Ey' h—y h—y'” h—y
wt oottt ottt

y(0.2) =y, = 1.116749 + (0.1) (1.3471283) + (0 ) 4.0088) + & 61) (12.5831)

L O 1) (60.50653)

y»=1.116749 + 0.13471283 + 0.020044 + 0.002097 + 0.000252
=1.27385
y(0.2) = 1.27385
Step3: Let us find y(0.3),we start with (X,y>) as the starting value.
Here X, =x;+h=0.1+0.1=0.2and y, =1.27385
Putting these values of x, and y» in eq (1), (3), (4) and (5), we get
ys = y2 +x,=(1.27385)* + 0.2 = 1.82269
Yy, =2y, y; +1=2(1.27385) (1.82269) + 1 = 5.64366
yi =20y, v+ (y))?] = 2[(1.27385) (5.64366) + (1.82269)7]
= 14.37835 + 6.64439 = 21.02274
yV =2y, + yM +6y) -y =2(1.27385) (21.00274) + 6(1.82269) (5.64366)
= 53.559635 + 61.719856 = 115.27949

By Taylor’s expansion,




y(X)=y=y+Ey'+h—2y”+h—3y'”+h—4y'v+
A TR TR TRV TR

2 3
y(0.3) = y5 = 1.27385 + (0.1) (1.82269) + .1 (5.64366) + %(21.02274)
4
CEY
24
= 1.27385 + 0.182269 + 0.02821 + 0.0035037 + 0.00048033
= 1.48831

y(0.3) = 1.48831

(115.27949)

10. Solve ylz X2 — Y, Y(0) = 1 using Taylor’s series method and evaluate
y(0.1),y(0.2),y(0.3) and y(0.4) (correct to 4 decimal places)
Sol:  Giveny'=x*—y >(1)

andy(0) =1 2>(2)
Here xo=0,yp =1
Differentiating (1) w.r.t ‘x’, we get
y'=2x-y'>(3)
yIII =2 yII 9(4)
yIV — _yIII 9(5)
put Xo =0, yo=1in (1),(3),(4) and (5), we get
Vo= X -Yo=0-1=-1,
Yo =2Xo- ¥, =2(0)-(-1)=1
N=2-y) =2-1=1,

Yo' =-y) =-1 Take h=0.1

Stepl: by Taylor’s series expansion

-\ = ﬂ I h_z I h_3 1 h_4 v >(6
y(X1) =y1= VYo + TRARETIR CRTE CHRrE (R (6)

On substituting the values of yo, y,, Y, etcin (6), we get

y(0.1) =y: =1+ (0.1) (-1) + %(1) , (0. 1) + (0.)*

6 24

-1)+....




=1-0.1 + 0.005 + 0.01666 — 0.0000416
=0.905125 ~ 0.9051 (4 decimal place).
Step2: Let us find y(0.2) we start with (x1,y:) as the starting values
Herex=%xo+h=0+0.1=0.1and y; = 0.905125,
Putting these values of x; and y; in (1), (3), (4) and (5), we get
y! = x? -y; = (0.1)° — 0.905125 = -0.895125
1= 2%, -y} =2(0.1) — (-0.895125) = 1.095125,
y"=2- y!' =2-1.095125 = 0.90475,

yV =~y =-0.904875,

By Taylor’s series expansion,

2

Y(X2) =y, =y1 + h A P
1! 21

3 4
A +h—y +h—y'V+....
oottt ot

y(0.2) =y, =0.905125 + (0.1)(-0.895125) + + w (1.09125)

: (0'61)3 (1.095125) + (02'1)4

y(0.2) =y, = 0.905125 — 0.0895125 + 0.00547562 + 0.000150812 — 0.0000377
=0.8212351 ~ 0.8212 (4 decimal places)

Step3: Let us find y(0.3), we start with (x,,y>) as the starting value
Here x; =x; + h=0.1+ 0.1 =0.2 and y, = 0.8212351
Putting these values of x, and y, in (1),(3),(4), and (5) we get
yl = x2 -y, = (0.2)° —0.8212351= 0.04 — 0.8212351 = - 0.7812351

(-0.904875)+....

y!'=2x; -y =2(0.2) + (0.7812351) = 1.1812351,
y"=2- y' =2-1. 1812351 = 0.818765,

y, =-y)" =-0.818765,

By Taylor’s series expansion,

2
11l

y(x)=y=y+hy'+h—y“+h—3y +h—4y'v+
A TR VIR TRV TEC




y(0.3) = y3 = 0. 8212351 + (0.1)(-0.7812351) +

(0.2)?
2

0.1)° 1)

(1.1812351) + %(0.818765) + % (-0.818765)+....

y(0.3) = y3 = 0. 8212351~ 0.07812351+ 0.005906 + 0.000136 — 0.0000034
= 0.749150 ~ 0.7492 (4 decimal places)

Step4: Let us find y(0.4), we start with (xs,y3) as the starting value
Here X3 =x; + h=0.2+ 0.1 = 0.3 and y; = 0.749150
Putting these values of x3 and y3 in (1),(3),(4), and (5) we get
y! = x2 - y3 = (0.3)? — 0.749150= -0.65915,
y!'=2xs- y =2(0.3) + (0.65915) = 1.25915,
ya'=2- y) =2-1.25915 = 0.74085,
v =-y" =-0.74085,

By Taylor’s series expansion,

V)= Ye=yat -yl L Vs MLV

AR AT R TIECRE TRV TR
(0.1)2
V(0.4) = ys = 0. 749150 + (0.1)(-0.65915) + -~ >~ (1.25915) +

6 24

y(0.4) =y, =0. 749150 — 0.065915+ 0.0062926+ 0.000123475 — 0.0000030
= 0.6896514 ~ 0.6896 (4 decimal places)

11. Solve y' = x*—y, y(0) = 1using T.S.M and evaluate y(0.1),y(0.2),y(0.3) and y(0.4) (correct to
4 decimal place ) 0.9051, 0.8212, 07492, 0.6896

12. Given the differentiating equation y* = x* + y?, y(0) = 1. Obtain y(0.25) and y(0.5) by T.S.M.
Ans: 1.3333, 1.81667

13. Solve y* = xy? +y, y(0) = 1 using Taylor’s series method and evaluate y(0.1) and y(0.2)
Ans: 1.111, 1.248.




EULER’S METHOD
It is the simplest one-step method and it is less accurate. Hence it has a limited application.

Consider the differential equation j_y = f(x,y) ->(1)
X

With y(Xo) = Yo=2(2)
Consider the first two terms of the Taylor’s expansion of y(x) at x = X
Y(X) = Y(Xo) + (X —Xo) Y'(Xo) 2@3)
from equation (1) y*(Xo) = f(Xo,y(X0)) = f(Xo,Yo)
Substituting in equation (3)
2 Y(X) = Y(Xo) + (X — Xo) f(Xo,Yo)
At X = X1, Y(X1) = Y(Xo) + (X1 — Xo) f(Xo,Yo)
Y1 =Yoo+ hf(Xo,Yo) whereh=x;—Xp
Similarly at x =Xz, Y2 =y1 + h f(X1,y1),

Proceeding as above, Yn+1 = Yn + h f(Xn,Yn)

This is known as Euler’s Method

. Using Euler’s method solve for x =2 from j—y = 3x* + 1,y(1) = 2,taking step size (I) h

X
=0.5and (I1) h=0.25

Sol:  here f(x,y) =3x*+1, X0 = 1,yp=2
Euler’s algorithm is yps1 = Yo + h f(Xn,yn), n=0,1,2,3,.....
h=0.5 SX1=X+h=1+05=15
Takingn=0in (1), we have Xo=X1+h=15+05=2
y1= Yo+ h f(Xo,Yo)
y1=y(0.5)=2+(0.5)f(1,2) =2+ (05) (3+1)=2+(0.5)(4)
Here x;=Xo+h=1+05=15

~y(l5)=4=vy,
Takingn=1in (1),we have

Y2= Y1+ h f(xg,y1)




ie.y(x) =y, =4+ (0.5) f(1.54) =4+ (0.5)[3(1.5)2 +1]=7.875
Herex,=x4+h=15+05=2

- y(2) =7.875
h=0.25 S X1=1.25, %, =150, X3 =1.75, x4, =2
Takingn=0in (1), we have

y1= Yo+ h f(Xo,Yo)
e, yx)=yi=2+(0.25)f(12) =2+ (0.25) 3+ 1) =3

y(X2) = y2=y1 + hf(xs,y1)

i.e. y(x2) =y, =3+(0.25) f(1.25,3)
=3+ (0.25)[3(1.25)* + 1]
=4.42188

Herex, =x; +h=125+0.25=15

~y(1.5) =5.42188
Taking n =2 in (1), we have
e, y(xs) =ys=hf(xzy»)
=5.42188 + (0.25) f(1.5,2)
=5.42188 + (0.25) [3(1.5)* + 1]
= 6.35938

Here x3=x, +h=15+0.25=1.75
- y(1.75) =7. 35938
Taking n =4 in (1),we have
Y(Xs) = Ya=ys + h f(x3,y3)
i.e. y(Xq) = y4 = 7.35938 + (0.25) f(1.75,2)

= 7.35938 + (0.25)[3(1.75)% + 1]

= 8.90626




Note that the difference in values of y(2) in both cases
(i.e. when h = 0.5 and when h = 0.25).The accuracy is improved significantly when h is
reduced to 0.25 (Example significantly of the equ is y = x>+ x and with this y(2) = y, = 10

2. Solve by Euler’s method,y’ = x +y, y(0) = 1 and find y(0.3) taking step size h = 0.1.
compare the result obtained by this method with the result obtained by analytical
solution

Sol:  y1=11=y(0.1),
y2=y(0.2) =1.22
ys =y(0.3) = 1.362
Particular solution is y = 2* — (x + 1)
Hence y(0.1) = 1.11034, y(0.2) = 1.3428, y(0.3) = 1.5997

We shall tabulate the result as follows

X 0.1 0.2 0.3

Eulery 1.1 1.22 1.362

Eulery 1 1.11034 1.3428 1.3997

The
value of y deviate from the execute value as x increases. This indicate that the method is not
accurate

3. Solve by Euler’s method y* +y = 0 given y(0) = 1 and find y(0.04) taking step size

h=0.01 Ans:  0.9606

4. Using Euler’s method, solve y at x = 0.1 from y' = x+ y +xy, y()) = 1 taking step
size h =0.025.

. Given that jy =xy ,y(0) = 1 determine y(0.1),using Euler’s method. h=0.1

ol

The given differentiating equation is j—y: xy, y(0) =1
X

a=0

Here f(x,y) = xy,Xo=0and yp =1




Since h is not given much better accuracy is obtained by breaking up the interval (0,0.1)
in to five steps.

Euler’s algorithm is yp+1 = Yo + h f(Xn,Yn)
. From (1) form = 0, we have
y1= Yo +h (x0,y0)
=1+ (0.02) f(0,1)
=1+ (0.02) (0)
=1
Next we have X; =X+ h =0+ 0.02 =0.02
. From (1), form = 1,we have
Y2 =Y1+hf(xs,y1)
=1+ (0.02) f(0.02,1)
=1+ (0.02) (0.02)
=1.0004
Next we have x, = x; + h=0.02 + 0.02 =0.04
. From (1), form = 2,we have
Yz = Y2+ h f(x2,y2)
=1.004 + (0.02) (0.04) (1.0004)
=1.0012
Next we have X3 =X, + h =0.04 + 0.02 =0.06
-.From (1), form = 3,we have
Ya=Ys +h f(Xs,ys)
=1.0012 + (0.02) (0.06) (1.00012)
=1.0024.
Next we have x4 =x3 + h=0.06 + 0.02 =0.08
.From (1), form = 4,we have
Y5 = Ya + h f(Xq,ys)
=1.0024 + (0.02) (0.08) (1.00024)
=1.0040.




Next we have x5 = x4 + h=0.08 + 0.02 =0.1
When X = Xs, y~Ys
.y =1.0040 when x = 0.1

6. Solve by Euler’s method y* = 2y given y(1) = 2 and find y(2).
X

7. Given that :—y =3+ Yy, Y(0) = 4.Find y(0.25) and y(0.5) using Euler’s method

X

Sol: given % =3x?+yand y(1) = 2.
Here f(x,y) = 3x* +y, Xo = (1), Yo = 4
Consider h =0.25
Euler’s algorithm is yn+1 = Yo + h f(Xn,Yn) 2>()
. From (1), for n = 0, we have
Y1 = Yo + h f(Xo,Yo)
=2+ (0.25)[0 + 4]
=2+1
=3
Next we have X; =Xo+h=0+0.25=0.25
When X = Xy, Y1~y
-y =3 when x =0.25
. From (1), for n = 1, we have
Y2 =y1 + hf(xy,y1)
=3+ (0.25)[3.(0.25)* + 3]
=3.7968
Next we have x, =x; +h=0.25+0.25=0.5
When X =Xz, Yy~ V>
-y =3.7968 when x = 0.5.

Solve first order diff equation 3— = u, y(0) = 1 and estimate y(0.1) using
X Y+X

Euler’s method (5 steps) Ans: 1.0928

Use Euler’s method to find approximate value of solution of j— —y-x+5atx=2-1
X

and 2-2with initial contention y(0.2) = 1

Modified Euler’s method




Working rule :
i)Modified Euler’s method

if) When i=1 y°_, can be calculated from Euler’s method
iii) K=0, 1 gives number of iteration. 1 =1,2...
gives number of times, a particular iteration k is repeated
Suppose consider dy/dx=f(x, y) (1) with y(Xo) =Yo
To find y(x1) =y; at Xx=X3=Xo+h

Now take k=0 in modified Euler’s method

We get v, =y, +h/2[f (% ¥o)+ (%, yl(i‘l))}
Taking i=1, 2, 3...k+1 in egn (3), we get
yl(o) =y,+h/ Z[f (%o, Yo )] (By Euler’s method)

yl(l) =Y +h/2|:f (XO’ y0)+ f (Xl' yl(0)>:|

y,@ = y0+h/2|:f (X1 Yo)+ f (val(l)ﬂ

|10 v0)+ T (%0 1.%) ]
If two successive values of y*), y* are sufficiently close to one another, we will take the

common value as y, = y(x,)=y(x +h)

We use the above procedure again
1) using modified Euler’s method find the approximate value of X when x=0.3

given that dy/dx=x+y and y(0)=1
sol:  Given dy/dx=x+yand y(0)=1
Here f(X,y)=x+y,% =0 and y,=1
Take h = 0.1 which is sufficiently small
Here x, =0,x, =X, +h=0.1,x,=x+h=0.2,x,=%,+h=0.3

The formula for modified Euler’s method is given by
yk+l(i) = yk + h / 2|: f (Xk + yk)+ f (Xk+l’ yk+1(i_1) )i| - (1)

Stepl: To find y;= y(x1) =y (0.1)
Taking k=0 in eqn(1)

Ve = Yo +012] £ 0 %0) (%, 57) | > (2)

when =1 ineqgn(2)




yl(i) = y0+h/2|:f (XO'y0)+ f (Xl’yl(O))]

First apply Euler’s method to calculate yio) =y

yl(O) =Y +hf (XOv yo)
= 1+(0.1)f(0.1)
=1+(0.1)
=1.10

now| x, =0,y, =1,% =0.1y,(0)=1.10 |

Ly =y, +O.1/2[f (Xor Yo )+ (x1 yl(o))}
= 1+0.1/2[(0,1) + (0.1,1.10)
= 1+0.1/2[(0+1)+(0.1+1.10)]
=111
When i=2 in egn (2)
W = yo+h72] £ (%,¥0)+ T (3,37

= 1+0.1/2[f(0.1)+f(0.1,1.11)]
=1+0.1/2[(0+1)+(0.1+1.11)]
=1.1105

g = y0+h/2|:f (%, Yo )+ f (val(z)ﬂ

=1+0.1/2[f(0,1)+(0.1, 1.1105)]
= 1+0.1/2[(0+1)+(0.1+1.1105)]
=1.1105

Since y,? =y,®

. y1=1.1105

Step:2  To find y; = y(x2) = y(0.2)

Taking k =1 inegn (1), we get

v,V =y, +h/ Z[f (%, y,)+ f (xz, yz(i’l))} —(3)

1=1,234,.....

Fori=1

0 <y (5 (1)




yz(o) is to be calculate from Euler’s method

yz(O) = y1+h f (X1r yl)
=1.1105+(0.1) f(0.1, 1.1105)
= 1.1105+(0.1)[0.1+1.1105]

=1.2316

.y, = 1.1105+0.1/2[ f (0.1,1.1105)+ f (0.2,1.2316) |

= 1.1105 +0.1/2[0.1+1.1105+0.2+1.2316]

=1.2426
w210 )]

= 1.1105 + 0.1/2[f(0.1 , 1.1105) , (0.2 . 1.2426)]
= 1.1105 + 0.1/2[1.2105 + 1.4426]
= 1.1105 + 0.1(1.3266)

=1.2432

VD =y /2 (k) + T (3,7

= 1.1105+0.1/2[f(0.1,1.1105)+f(0.2 , 1.2432)]
= 1.1105+0.1/2[1.2105+1.4432)]
= 1.1105 + 0.1(1.3268)

=1.2432
Since v, =y,
Hence y, = 1.2432

Step:3
To find y; = y(X3) =y y(0.3)

Taking k =2 in egn (1) we get




v.O v an/2l f v+ f i v DY S (04)
Fori=1,

Yo =Y, +h/2[f (X2 ¥2)+ f (X3’y3(0))}

ys(o) is to be evaluated from Euler’s method .

Y2 =y, +h f(%,,Y,)
= 1.2432 +(0.1) f(0.2 , 1.2432)
= 1.2432+(0.1)(1.4432)
=1.3875

oy Y =1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3, 1.3875)]

=1.2432 +0.1/2[1.4432+1.6875]
= 1.2432+0.1(1.5654)

=1.3997

Y2 =Y, +h/2[ (%, y,)+f (X3’y3(1)ﬂ

= 1.2432+0.1/2[1.4432+(0.3+1.3997)]
= 1.2432+ (0.1) (1.575)
= 1.4003

Vo =Yy #0120 v,)+ T (%3]

= 1.2432+0.1/2[(0.2 , 1.2432)+f(0.3 , 1.4003)]
= 1.2432 + 0.1(1.5718)

= 1.4004

¥, =y, +h/2[ F 0 ¥2)+ f (%, yﬁ)}




= 1.2432 + 0.1/2[1.4432+1.7004]
= 1.2432+(0.1)(1.5718)

= 1.4004
Since y,® =y,

Hence y, =1.4004 .. The value of y at x = 0.3 is 1.4004

2 . Find the solution of j— =x-y,y(0)=1latx=0.1,0.2,0.3,0.4 and 0.5 . Using modified
X

Euler’s method

Sol . Given 3— =x-yandy(0) =1
X

Here f(X,y) = x-y,Xo=0and yp =1

Consider h=0.1 so that

X=0.1,%x=0.2,x3=0.3,x4=0.4and x5=0.5
The formula for modified Euler’s method is given by

yk+1(i) =y, +h/2 f (Xk’ yk)+ X1 YK+1(i_l) —>(1)
Where k=01, 2, 3,..... i=1,2,3,.....

3. Find y(0.1) and y(0.2) using modified Euler’s formula given that dy/dx=x-y,y(0)=1
[consider h=0.1,y;=0.90523,y,=0.8214]

4. Given dy/dx = —xy?, y(0) =2compute y(0.2) in steps of 0.1
Using modified Euler’s method
[h=0.1, y1=1.9804, y,=1.9238]

5. Given y* = x+siny, y(0)=1 compute y(0.2) and y(0.4) with h=0.2 using modified Euler’s
method

[y1=1.2046, y,=1.4644]

Runge — Kutta Method




I. Second order R-K Formula

Yis1 = Yitl/2 (Ki+Ky),
Where K; = h (i, i)
Kz = h (Xj+h, yi+ki)
Fori=0,1,2

I1. Third order R-K Formula

Yis1 = Yit1/6 (K1 +4Ko+ Ky),
Where Ki =h (Xi, Vi)
Kz = h (xi+h/2, yo+ki/2)
Ks = h (xi+h, yi+2kz-k;)
Fori=0,1,2

I11. Fourth order R-K Formula

Yis1 = Yitl/6 (K1 +2Ko+ 2K3+Ky),
Where K; = h (i, i)

Kz = h (xi+h/2, yi+k,/2)

Ks = h (xi+h/2, yi+k,/2)

Ka = h (Xj+h, yitks)

Fori=0,1,2

1. Using Runge-Kutta method of second order, find y(2.5)from g—y =Xy ,¥(2)=2, h=
X X

0.25.
. G dy _ x+y
Sol: Given — y(2)=2.

dx X

Here f(X, y) = Xy ,X0=0,yo=2and h=0.25
X




X3 = Xgth = 2+0.25 = 2.25, X, = x3+h =2.25+0.25 = 2.5
By R-K method of second order,
Yiu = Y; +1/2(k,+k, ),k —hf (x, +h,y, +k,),i=0,1.... > (1)

Step -1:-

To find y(x1)i.e y(2.25) by second order R - K method taking i=0 in eqn(i)

We have y, = y0+%(k1+k2)

Where k= hf (Xo,Yo ), ko= hf (Xo+h,yo+k3)

f (Xo,¥0 )=f(2,2)=2+2/2=2

ki=hf (Xo,Yo0 )=0.25(2)=0.5

ko= hf (Xo+h,yo+k1)=(0.25)f(2.25,2.5)
=(0.25)(2.25+2.5/2.25)=0.528

- y1=y(2.25)=2+1/2(0.5+0.528)

=2.514

Step2:

To find y(x,) i.e., y(2.5)

i=1in (1)

x1=2.25,y,=2.514,and h=0.25

yo=y1+1/2(kitky)

where ki=h f((x1,y1 )=(0.25)f(2.25,2.514)

=(0.25)[2.25+2.514/2.25]=0.5293

k, =h f (X, +h, Y, +k )=(0.1) f (0.11-0.1) = (0.1)(-0.9) = —0.09

=(0.25)[2.5+2.514+0.5293/2.5]




=0.55433
y, =Y (2.5)=2.514+1/2(0.5293+0.55433)
=3.0558

..y =3.0558 when x = 2.5

Obtain the values of y at x=0.1,0.2 using R-K method of

(i)second order (ii)third order (iii)fourth order for the diff eqn y'+y=0,y(0)=1

Sol: Given dy/dx = -y, y(0)=1

f(xy) =-y, %=0,y0=1

Here f (X,y) =-y, X0=0,yo=1take h=0.1

S X1=Xeth =0.1,

Xo=X1+h =0.2

Second order:

stepl: To find y(x;) i.e y(0.1) or y;

by second-order R-K method,we have

Y1 = Yot 1/2(ki+ky)

where k;=hf(Xo,Y0)=(0.1) f(0,1) = (0.1)(-1)=- 0.1
ko= hf (xo+h, yo+ki)= (0.1) f (0.1, 1-0.1) = (0.1)(-0.9) = -0.09
y1=y(0.1)=1+1/2(-0.1-0.09)=1-0.095=0.905

..y =0.905 when x=0.1

Step2:

To find y, i.e y(xy) i.e y(0.2)

Here x; = 0.1, y1 = 0.905 and h=0.1

By second-order R-K method, we have




Y2 = Y(X2)= y1+1/2(Ki+ky)

Where k, =h f(x,y;)=(0.1)f(0.1,0.905)=(0.1)(-0.905)=-0.0905

k,=h f(x+h,y,+k)=(0.1) f (0.2,0.905-0.0905)
= (0.2) f (0.2,0.8145) = (0.1)(-0.8145)
= -0.08145

y>= y(0.2)=0.905+1/2(-0.0905-0.08145)
=0.905- 0.085975 = 0819025

Third order

Stepl:

To find y; i.e y(x1)=y(0.1)

By Third order Runge kutta method

Y, = Yo +1/6(k, +4k, +k;)

where k; = h f(Xo, yo) = (0.1) f(0.1) = (0.1) (-1) =-0.1

k,=hf(x+h/2,y,+k /2)=(0.1)f (0.1/2,1-0.1/2)=(0.1) f (0.05,0.95)
= (0.1)(~0.95) = -0.095

and ks = h f((xo+h,yo+2kz-k1)

(0.1) f(0.1,1+2(-0.095)+0.1)= -0.905

Hence y; = 1+1/6(-0.1+4(-0.095)-0.09) = 1+1/6 (-0.57) = 0.905
y1=0.905 i.e y(0.1)= 0.905

Step2:

To find y,,i.e y(X2)=y(0.2)

Here x;=0.1,y,=0.905and h=0.1

Again by 2" order R-K method




Yo = y1+1/6(k1+4k2+k3)
Where ky=h f(xy, y2) = (0.1)f (0.1,0.905)= -0.0905

ko = h f (xe+N/2,y1+ke/2)=(0.1)(0.1+0.2,0.905 - 0.0905)= -(0.1) f (0.15, 0.85975)= (0.1) (-
0.85975)

and k3 = h f((x1+h,y1+2k>-k1)=(0.1)f(0.2,0.905+2(0.08975)+0.0905= -0.082355
hence y, = 0.905+1/6(-0.0905+4(-0.085975)-0.082355)=0.818874

..y =0.905 when x = 0.1

And y =0.818874 when x =0.2

fourth order:

stepl:

X0=0,Y¥0=1,h=0.1 To find y; i.e y(x1)=y(0.1)

By 4" order R-K method, we have

Y1 = Yot+1/6(ky+2ko+2ks+k,)

Where ki=h f(Xo,Y0)=(0.1)f(0.1)=-0.1

ko= h f (Xo+h/2, yo+k1/2) = -0.095

and ks= h f((xo+h/2,yo+k2/2)=(0.1)f (0.1/2,1-0.095/2)
= (0.1)f(0.05,0.9525)

=-0.09525

and k= h f(Xg+h,yo+ks)

=(0.1) f(0.1,1-0.09525)=(0.1)f(0.1,0.90475)

=-0.090475

Hence y;=1+1/6(-0.1)+2(-0.095)+2(0.09525)-0.090475)
=1+1/6(-0.570975)+1-0.951625 = 0.9048375

Step2:

Tofindy,,ie., y(x,)=y(0.2),y, =0.9048375,ie., y(0.1) = 0.9048375




Here x; = 0.1, y;=0.9048375 and h = 0.1

Again by 4" order R-K method, we have

Y2 = y1+1/6(ky+2Ko+2Kk3+K,)

Where ky=h f(x1,y1)=(0.1)f(0.1,0.9048375)=-0.09048375

ko= hf (x1+h/2,y1+k;/2)=(0.1)f(0.1+0.1/2,0.9048375 -0.09048375 /2)=-0.08595956
and ka=hf(x,+h/2, y1+k»/2)=(0.1)f(0.15,0. 8618577)= -0.08618577

ks =h f(x1+h,y1+ks)=(0.1)f(0.2,0.86517)

=-0.08186517

Hence y, = 0.09048375+1/6(-0.09048375-2(0.08595956)-2(0.08618577)- 0.08186517
=0.9048375-0.0861065

=0.818731

y =0.9048375 when x =0.1 and y =0.818731

3. Apply the 4" order R-K method to find an approximate value of y when x=1.2 in steps

of 0.1,given that

y'=x*+y’y (1)=1.5

sol.  Given y'= x*+y?and y(1)=1.5
Here f(x,y)= x*+y* yo=1.5 and xo=1,h=0.1
So that x;=1.1 and x,=1.2

Stepl:

To find y1ie Y(X1)

by 4™ order R-K method we have

YIZYo 16 (Ku+2ko+2Kstke)

ki=hf(xo,Y0)=(0.1)f(1,1.5)=(0.1) [1%+(1.5)*]=0.325




ko= hf (Xo*+N/2,y0+K1/2)=(0.1)f(1+0.05,1.5+0.325)=0.3866

and Ks=hf((xo+h/2,yo+k2/2)=(0.1)f(1.05,1.5+0. 3866/2)=(0.1)[(1.05)%+(1.6933)]
=0.39698

k4=hf(xo*h,yo+ks)=(0.1)f(1.0,1.89698)

=0.48085

Hence

Y, :1.5+%|:0.325+2(0.3866)+2(0.39698)+0.48085]

=1.8955
Step2:
Tofindy, ie., y(x,)=y(1.2)

Here x;=0.1,y;=1.8955 and h=0.1

by 4™ order R-K method we have

Y2 = y1+1/6(ky+2ko+2ks+k,)

ky=hf(x1,y1)=(0.1)f(0.1,1.8955)=(0.1) [1?+(1.8955)*]=0.48029

ko= hf (xo+h/2,y1+k1/2)=(0.1)f(1.1+0.1,1.8937+0.4796) =0.58834

and ka=hf((x1+h/2,y1+k2/2)=(0.1)f(1.5,1.8937+0.58743) =(0.1)[(1.05)*+(1.6933)?]
=0.611715

Ks=hf(xi+h,y1+ks)=(0.1)f(1.2,1.8937+0.610728)

=0.77261

Hence y,=1.8937+1/6(0.4796+2(0.58834)+2(0.611715)+0.7726) =2.5043
.y =2.5043 where x=0.2

4. using R-K method, find y(0.2) for the egn dy/dx=y-x,y(0)=1,take h=0.2

Ans:1.15607




5.Given that y*=y-x,y(0)=2 find y(0.2) using R- K method take h=0.1

Ans: 2.4214

6. Apply the 4™ order R-K method to find y(0.2) and y(0.4) for one equation

10% =x*+y% y(0)=1takeh=0.1 Ans. 1.0207, 1.038
7. using R-K method, estimate y(0.2) and y(0.4) for the eqn dy/dx=y?-x*/ y*+x?,y(0)=1,h=0.2
Ans:1.19598,1.3751

8. use R-K method, to approximate y when x=0.2 given that y'=x+y,y(0)=1

Sol: Here f(x,y)=x+y,Yo=1,%X,=0

Since h is not given for better approximation of y

Take h=0.1

. %1=0.1, x,=0.2

Stepl

To find y; i.e y(x1)=y(0.1)

By R-K method,we have

Y1=Yot+1/6 (Ki+2Ko+2Ks+ky)

Where ki=hf(xo,Y0)=(0.1)f(0,1)=(0.1) (1)=0.1

ko= hf (Xo+h/2,yo+k1/2)=(0.1)f(0.05,1.05)=0.11

and ks=hf((xo+h/2,yo+k2/2)=(0.1)f(0.05,1+0. 11/2)=(0.1)[(0.05) +(4.0.11/2)]

=0.1105

ks=h f (Xo*+h,Yo+ks)=(0.1)f(0.1,1.1105)=(0.1)[0.1+1.1105]

=0.12105




Hence

-y, =y(0.1) =1+%(0.1+ 0.22+0.240+0.12105)

y=1.11034

Step2:

To find y i.e y(X2) = y(0.2)

Here x;=0-1, y;=1.11034 and h=0.1

Again By R-K method,we have

Yo=y1+1/6(K1+2ko+2ks+ky)

ki=h f(x1,y1)=(0.1)f(0.1,1.11034)=(0.1) [1.21034]=0.121034

ko= h f (x:+h/2, y1+k1/2)=(0.1)f(0.1+0.1/2,1.11034+0.121034/2)
=0.1320857

and ka=h f((x1+h/2,y1+k»/2)=(0.1)f(0.15,1.11034+0.1320857/2)
=0.1326382

ks=h f(x;+h,y;+k3)=(0.1)f(0.2,1.11034+0.1326382)
(0.1)(0.2+1.2429783)=0.1442978

Hence y,=1.11034+1/6(0.121034+0.2641714+0.2652764+0.1442978
=1.11034+0.1324631 =1.242803

.y =1.242803 when x=0.2

9.using Runge-kutta method of order 4,compute y(1.1) for the eqn y*=3x+y? y(1)=1.2 h = 0.05
Ans:1.7278

10. using Runge-kutta method of order 4,compute y(2.5) for the eqn dy/dx = x+y/X, y(2)=2
[hint h = 0.25(2 steps)]

Ans:3.058




MODULE -V

PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS
Introduction
The concept of a differential equation to include equations that involve partial derivatives, not
just ordinary ones. Solutions to such equations will involve functions not just of one variable,
but of several variables. Such equations arise naturally, for example, when one is working with
situations that involve positions in space that vary over time. To model such a situation, one
needs to use functions that have several variables to keep track of the spatial dimensions and an
additional variable for time.
Examples of some important PDEs:

2 2
1) ou =c? ou One-dimensional wave equation
ot? ox®

2
2 M =c? a—l; One-dimensional heat equation
ot OX

2 2
3) ou +a_u =0 Two-dimensional Laplace equation

aXZ ayZ

o’u  o%u . . . .
4) —+—=f(xYy) Two-dimensional Poisson equation

ox" oy
Partial differential equations: An equation involving partial derivatives of one dependent
variable with respective more than one independent variables.

Notations which we use in this unit;

__ 0z __ 0z _ 8%z _ 8%z _ 9%z

= = = =—" t=—=
p ox q ay’ x2'  oxay ' ay2’

Formation of partial differential equation:

A partial differential equation of given curve can be formed in two ways
1. By eliminating arbitrary constants
2. By eliminating arbitrary functions

Problems
Form a partial differential equation by eliminating a,b,c from




xZ yZ ZZ
2 pte=?!
2 2 2
Given & +75 +5 =1
Differentiating partially w.r.to x and y, we have
1 1 0z _
= (ZX) + = (ZZ)E—O

—@W+5@p=0__ (1)
And - (2x) + = (22)5=0

S +5@q=0____ (2)
Diff (1) partially w.r.to x, we have

Multiply this equation by x and then subtracting (1) from it

1 2
C—z(xzr+xp —pz) =0

Form a partial differential equation by eliminating the constants from
(x — a)? + (y — b)? = z>cot?u, where a is a parameter

Given (x — a)? + (y — b)? = z%cot?a (1)

Differentiating partially w.r.to x and y, we have
2 (x —a)+0 =2z pcot?a

(x — a) = Zpcot®a
And 0+2(y-b) = 2zqcot?a
(Y-b) = zqcot?a
Substituting the values of (x-a) and (y-b) in (1),we get
(zpcot?a)? + (zqcot?a)? = z%cot’a
(p? + q®)(cot?a)? = cot’a
p? + q% = tan’a

Form the partial differential equation by eliminatinga and b from
log (az-1)=x+ay+b
Given equation is
Log (az-1)=x+ay+b




Differentiating partially w.r.t. x and y ,we get
1

az—1
1

az—1

(ap)=1=ap=az—-1

(aq) =a=aq=alaz—-1)
(2)/(1) gives
%z a orap =q

Substituting (3) in (1), we get
q
=—.(z—1
9= (z—1)

i.e. pg=qz-p
p(@+1) =qz

Find the differential equation of all spheres whose centers lie on z-axis
with a given radius r.
The equation of the family of spheres having their centers on z-axis and having
radius r is
x2+y*+(z—c)? =12
Where ¢ and r are arbitrary constants
Differentiating this eqn partially w.r.t. x and y ,we get

2x+2(z—c)§—i=0:x+(z—c)p=0 1)

2y+2(z—c)2—i=0=>y+(z—c)q=0 (2)
From (1),(z — ¢) = —% (3)
From (2),(z — ¢) = —:—' (4)

From (3) and (4)

We get —==-2X

p q

ie. xg—yp=0

Linear partial differential equations of first order :
Lagrange’s linear equation: An equation of the form Pp + Qq =R is called Lagrange’s linear
equation.

dx _ dy

To solve Lagrange’s linear equation consider auxiliary equation T 0 R

Problems
1 solve (x2—y?2—yz)p+ (x> —y* —zx)q=z(x — y)
Sol Here
P=(x* —y* —y2),Q = (x* —y* —zx),R = z2(x — y)




The subsidiary equations are (Xz—j);—yz) = (XZ_‘;Z_ZX) =- (:iy)
Using 1,-1,0 and x,-y,0 as multipliers , we have
dz _ dx—-dy _  xdx-—ydy
2(x—y)  z(x-y)  (x2—y?)(x—y)
From the first two rations Of ,we have
dz= dx-dy
integrating , z=X-y-c; Or X-y-Z=¢;
now taking first and last ratios in (2) ,we get
dz xdx—ydy 2dz  2xdx — 2ydy
T T2 _yz O = 2 2
yA X“—y yA X“—y
Integrating ,2 log z = log(x? — y?) — logc,
X2 — y2
72

C

. . x2—y?
The required general solution is f(x -y—z 2_2) =0
Find the general solution of the first-order linear partial differential equation
with the constant coefficients: 4uy+u,=x’y
Sol  The auxiliary system of equations is
dx dy du
41 Xy
From here we get
ax_ d—lyor dx-4dy=0. Integrating both sides

we get x-4y=c. Also ax = d2U or x%y dx=4du
4 X%y

or x (%C) dx=4du or

1 (x®*—cx?) dx = du

Integrating both sides we get
3x* - 4cx®
192
3x* - 4cx®
192
After replacing ¢ by x-4y, we get the general solution
3x* - 4(x - 4y)x®
192

u=c,+

=f(c)+

u=f(x-4y)+




x* X3
=04 05+ 1

Find the general solution of the partial differential equation y?up + xuq = y*x
The auxiliary system of equations is
dx dy du

yiu  xu  xy?

Taking the first two members we have x%dx = yzdy which on integration
given x3-y® = ¢, Again taking the first and third members,

we have x dx = u du

which on integration given x*-u® = c,

Hence, the general solution is

FOC-y* x%-u?) =0

Find the general solution of the partial differential equation.

(6uj (au]
— | X+ y-u=0
OX oy
Sol Letp= ou q= ou
ox oy
The auxiliary system of equations is
dx dy du _dp _ dq
2px  2qy 2(p°x+9%) P-p° Q9-q
which we obtain from putting values of
oF oF oF oF
— 2 — 2 : — 2 b —_ 12 _ 2
ap pX aq ay,— o =P, >y l 8y
and multiplying by -1 throughout the auxiliary system. From first and 4™ expression
in (11.38) we get

2

2
dx = M From second and 5™ expression
9%

2

dy= q°dy+2qydq
ay

Using these values of dx and dy we get
p“dx+2pxdp _ g°dy +2qydg

p°X q’y
or % Edp_ ﬂ + @

X p y q

Taking integral of all terms we get




In|x| + 2In|p| = In]y|+2In|g|+Inc

or In|x| p? = Inylg°c

or p>x=cq®y, where c is an arbitrary constant.
Solving for p and q we get cq®y+g%y -u=0
(c+1)g’y=u

A (c+1Dy

) o(s)
By integrating this equation we obtain ((1+ c)u)y2 = (cx)y2 + (y)y2 +C,
This is a complete solution.

Solve p*+g°=1
The auxiliary system of equation is
dx _dy_ du_dp_dg
-2p 29 -2p°-29° O O
dx_dy__du _dp_dg
p a p°+q° 0 O
Using dp =0, we get p=c and g=+/1-c? , and these two combined with du
=pdx+qdy yield
u=cx+yv1-c? + ¢; which is a complete solution.

or

Using dx =p,wegetdu= ax where p=c
du Cc

. . X
Integrating the equation we getu = = +¢;
c

Also du = d_qy , where g = \/1-p2 —1-¢?

ordu= dy . Integrating this equation we get u = ! y +C;

V1-¢? 1-¢?
This cu = x+ccy and uv1-c? =y + cp+/1-¢?




Replacing cc; and ¢;+/1-c? by - o and -B respectively, and eliminating ¢, we
get
u? = (x-a)” + (y-p)?

9  Solveu*+pq-4=0
Sol  The auxiliary system of equations is
dx dy du _ dp

dq

d P 204 -2up -2ug
The last two equations yield p = aq.
Substituting in u?+pg — 4 = 0 gives

q= ilx/4-u2 andp=+a+4-u?
a
Then du = pdx+qdy yields

du=++v4-u? (adx+ldyj
a

or =iadx+1dy
4-u? a

Integrating we get sin"lg = i(adx + 1y + c]
a

(g
oru=+2sin|ax+—y+c
a

10  Solve p*(1-x*)-g*(4-y?) = 0
Sol  Letp®(1-x?) =q° (4-y?) = &°
o a a
Thisgivesp= —— andq= ——
V1-x? 4-y?
(neglecting the negative sign).
Substituting in du = pdx + q dy we have

du= de+ a
1-x? 4-y

Integration gives u = a (sin'x + sin'%j C.

Wave Equation




For the rest of this introduction to PDEs we will explore PDEs representing some of the basic
types of linear second order PDEs: heat conduction and wave propagation. These represent two
entirely different physical processes: the process of diffusion, and the process of oscillation,
respectively. The field of PDEs is extremely large, and there is still a considerable amount of
undiscovered territory in it, but these two basic types of PDEs represent the ones that are in some
sense, the best understood and most developed of all of the PDEs. Although there is no one way
to solve all PDEs explicitly, the main technique that we will use to solve these various PDES
represents one of the most important techniques used in the field of PDEs, namely separation of
variables (which we saw in a different form while studying ODEs). The essential manner of
using separation of variables is to try to break up a differential equation involving several partial
derivatives into a series of simpler, ordinary differential equations.

We start with the wave equation. This PDE governs a number of similarly related phenomena,
all involving oscillations. Situations described by the wave equation include acoustic waves,
such as vibrating guitar or violin strings, the vibrations of drums, waves in fluids, as well as
waves generated by electromagnetic fields, or any other physical situations involving
oscillations, such as vibrating power lines, or even suspension bridges in certain circumstances.
In short, this one type of PDE covers a lot of ground.

We begin by looking at the simplest example of a wave PDE, the one-dimensional wave

equation. To get at this PDE, we show how it arises as we try to model a simple vibrating string,
one that is held in place between two secure ends. For instance, consider plucking a guitar string
and watching (and listening) as it vibrates. As is typically the case with modeling, reality is quite
a bit more complex than we can deal with all at once, and so we need to make some simplifying
assumptions in order to get started.

First off, assume that the string is stretched so tightly that the only real force we need to consider
is that due to the string’s tension. This helps us out as we only have to deal with one force, i.e.
we can safely ignore the effects of gravity if the tension force is orders of magnitude greater than
that of gravity. Next we assume that the string is as uniform, or homogeneous, as possible, and
that it is perfectly elastic. This makes it possible to predict the motion of the string more readily
since we don’t need to keep track of kinks that might occur if the string wasn’t uniform. Finally,
we’ll assume that the vibrations are pretty minimal in relation to the overall length of the string,
i.e. in terms of displacement, the amount that the string bounces up and down is pretty small.
The reason this will help us out is that we can concentrate on the simple up and down motion of
the string, and not worry about any possible side to side motion that might occur.

Now consider a string of a certain length, I, that’s held in place at both ends. First off, what

exactly are we trying to do in “modeling the string’s vibrations”? What kind of function do we
want to solve for to keep track of the motion of string? What will it be a function of? Clearly if
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the string is vibrating, then its motion changes over time, so time is one variable we will want to
keep track of. To keep track of the actual motion of the string we will need to have a function
that tells us the shape of the string at any particular time. One way we can do this is by looking
for a function that tells us the vertical displacement (positive up, negative down) that exists at
any point along the string — how far away any particular point on the string is from the
undisturbed resting position of the string, which is just a straight line. Thus, we would like to
find a function u(x,t) of two variables. The variable x can measure distance along the string,
measured away from one chosen end of the string (i.e. x = 0 is one of the tied down endpoints of
the string), and t stands for time. The function u(x,t) then gives the vertical displacement of the
string at any point, x, along the string, at any particular time t.

As we have seen time and time again in calculus, a good way to start when we would like to
study a surface or a curve or arc is to break it up into a series of very small pieces. At the end of
our study of one little segment of the vibrating string, we will think about what happens as the
length of the little segment goes to zero, similar to the type of limiting process we’ve seen as we
progress from Riemann Sums to integrals.

Suppose we were to examine a very small length of the vibrating string as shown in figure 1:

0 a osax ] X

Now what? How can we figure out what is happening to the vibrating string? Our best hope is
to follow the standard path of modeling physical situations by studying all of the forces involved
and then turning to Newton’s classic equation F =ma. It’s not a surprise that this will help us,
as we have already pointed out that this equation is itself a differential equation (acceleration
being the second derivative of position with respect to time). Ultimately, all we will be doing is
substituting in the particulars of our situation into this basic differential equation.

Because of our first assumption, there is only one force to keep track of in our situation, that of
the string tension. Because of our second assumption, that the string is perfectly elastic with no
kinks, we can assume that the force due to the tension of the string is tangential to the ends of the
small string segment, and so we need to keep track of the string tension forces T,and T,at each
end of the string segment. Assuming that the string is only vibrating up and down means that the
horizontal components of the tension forces on each end of the small segment must perfectly
balance each other out. Thus
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(1) ‘ﬂ‘cow :‘fz‘cosﬂ:T

whereT is a string tension constant associated with the particular set-up (depending, for instance,
on how tightly strung the guitar string is). Then to keep track of all of the forces involved means

just summing up the vertical components of T,andT,. This is equal to
(2) ‘fz‘sinﬂ—‘fl‘sina

where we keep track of the fact that the forces are in opposite direction in our diagram with the
appropriate use of the minus sign. That’s it for “Force,” now on to “Mass” and “Acceleration.”
The mass of the string is simple, just 5Ax, where & is the mass per unit length of the string, and
Axis (approximately) the length of the little segment. Acceleration is the second derivative of
position with respect to time. Considering that the position of the string segment at a particular

time is just u(x,t), the function we’re trying to find, then the acceleration for the little segment

o%u

5 v (computed at some point between a and a + Ax). Putting all of this together, we find

that:

o%u
ot

(3) ‘fz‘sin ﬂ—‘fl‘sina = 5AX

Now what? It appears that we’ve got nowhere to go with this — this looks pretty unwieldy as it
stands. However, be sneaky... try dividing both sides by the various respective equal parts
written down in equation (1):

"I:Z‘sinﬂ ) "I:l‘sina _ &AX d%u
‘f,_‘cos,ﬁ “I:l‘cosa ST at?

(4)

or more simply:
OAX 0°u
5 tanf—-tana =——
(5) B T a0

Now, finally, note that tan ¢ is equal to the slope at the left-hand end of the string segment,

which is just Z—uevaluated ata, i.e. Z—u(a,t) and similarly tan gequals Z—u(a+Ax,t), s0 (5)
X X X

becomes...




ou
(6) ~ (a+Ax,t)

or better yet, dividing both sides by Ax ...

1 (ou ou
7 —| —(a+Ax,t)——
(7) Ax(@x(a+ X, t) .

Now we’re ready for the final push. Let’s go back to the original idea — start by breaking up the
vibrating string into little segments, examine each such segment using Newton’s F =ma
equation, and finally figure out what happens as we let the length of the little string segment
dwindle to zero, i.e. examine the result as Ax goes to 0. Do you see any limit definitions of

derivatives kicking around in equation (7)? As Ax goes to 0, the left-hand side of the equation is
2
in fact just equal to 9 [a_uj = 6_121 , S0 the whole thing boils down to:
OX\ OX) ox

o’u S du
® —Z=r7
ox: T ot

which is often written as

o%u _c? o%u

9 -
®©) ot? ox?

by bringing in a new constant ¢? = 5 (typically written with c?, to show that it’s a positive

constant).

This equation, which governs the motion of the vibrating string over time, is called the one-
dimensional wave equation. It is clearly a second order PDE, and it’s linear and homogeneous.

Solution of the Wave Equation by Separation of Variables

There are several approaches to solving the wave equation. The first one we will work with,
using a technique called separation of variables, again, demonstrates one of the most widely used
solution techniques for PDEs. The idea behind it is to split up the original PDE into a series of
simpler ODEs, each of which we should be able to solve readily using tricks already learned.
The second technique, which we will see in the next section, uses a transformation trick that also
reduces the complexity of the original PDE, but in a very different manner. This second solution
is due to Jean Le Rond D’Alembert (an 18" century French mathematician), and is called
D’Alembert’s solution, as a result.




First, note that for a specific wave equation situation, in addition to the actual PDE, we will also
have boundary conditions arising from the fact that the endpoints of the string are attached
solidly, at the left end of the string, when x = 0 and at the other end of the string, which we
suppose has overall length I.  Let’s start the process of solving the PDE by first figuring out
what these boundary conditions imply for the solution function, u(x,t).

Answer: for all values of t, the time variable, it must be the case that the vertical displacement at
the endpoints is 0, since they don’t move up and down at all, so that

(1) u(0,t)=0andu(l,t)=0 for all values of t

are the boundary conditions for our wave equation. These will be key when we later on need to
sort through possible solution functions for functions that satisfy our particular vibrating string
set-up.

You might also note that we probably need to specify what the shape of the string is right when
time t = 0, and you’re right - to come up with a particular solution function, we would need to
know u(x,0). In fact we would also need to know the initial velocity of the string, which is just

u, (x,0). These two requirements are called the initial conditions for the wave equation, and are

also necessary to specify a particular vibrating string solution. For instance, as the simplest
example of initial conditions, if no one is plucking the string, and it’s perfectly flat to start with,
then the initial conditions would just be u(x,0) =0 (a perfectly flat string) with initial velocity,

u,(x,0)=0. Here, then, the solution function is pretty unenlightening — it’s just u(x,t) =0, i.e.

no movement of the string through time.

To start the separation of variables technique we make the key assumption that whatever the
solution function is, that it can be written as the product of two independent functions, each one
of which depends on just one of the two variables, x or t. Thus, imagine that the solution
function, u(x,t) can be written as

2) u(x,t) = F(X)G(t)

whereF, and G, are single variable functions of x and t respectively. Differentiating this equation
for u(x,t)twice with respect to each variable yields

(3) 2% =F"(x)G(t)and gtig =F(X)G"(t)

Thus when we substitute these two equations back into the original wave equation, which is
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(4)

then we get

0 , 0°U

;=

2U 4 _ el 2
(5) PO F(x)G"(t)=c - c F"(x)G(t)

Here’s where our separation of variables assumption pays off, because now if we separate the
equation above so that the terms involving F and its second derivative are on one side, and
likewise the terms involving G and its derivative are on the other, then we get

G't) _F'(¥

©) c2G(t)  F(x)

Now we have an equality where the left-hand side just depends on the variable t, and the right-
hand side just depends on x. Here comes the critical observation - how can two functions, one
just depending on t, and one just on x, be equal for all possible values of t and x? The answer is
that they must each be constant, for otherwise the equality could not possibly hold for all
possible combinations of t and x. Aha! Thus we have

G'(t) _F"(9) _ K
c’G(t) F(x)

(")

wherek is a constant. First let’s examine the possible cases for k.
Case One: k=0

Suppose k equals 0. Then the equations in (7) can be rewritten as
(8) G"(t)=0-c*G(t)=0and F"(x) =0-F(x) =0

yielding with very little effort two solution functions for F and G:
9) G(t)=at+band F(x) = px+r

wherea,b, p and r, are constants (note how easy it is to solve such simple ODEs versus trying to
deal with two variables at once, hence the power of the separation of variables approach).

Putting these back together to form u(x,t) = F(x)G(t), then the next thing we need to do is to
note what the boundary conditions from equation (1) force upon us, namely that
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(10)  u(0,t) =F(0)G(t) =0andu(l,t)=F(1)G() =0 for all values of t

Unless G(t) =0 (which would then mean that u(x,t) =0, giving us the very dull solution
equivalent to a flat, unplucked string) then this implies that

(11) F()=F()=0.

But how can a linear function have two roots? Only by being identically equal to 0, thus it must
be the case that F(x) =0. Sigh, then we still get that u(x,t) =0, and we end up with the dull

solution again, the only possible solution if we start with k = 0.
So, let’s see what happens if...
Case Two: k>0

So now if k is positive, then from equation (7) we again start with

(12) G’(t) =kc’G(t) and
(13)  F"(x) =kF(x)

Try to solve these two ordinary differential equations. You are looking for functions whose
second derivatives give back the original function, multiplied by a positive constant. Possible
candidate solutions to consider include the exponential and sine and cosine functions. Of course,
the sine and cosine functions don’t work here, as their second derivatives are negative the
original function, so we are left with the exponential functions.

Let’s take a look at (13) more closely first, as we already know that the boundary conditions
imply conditions specifically for F(x), i.e. the conditions in (11). Solutions for F(x) include

anything of the form

(14) F(x)=Ae”

where ® =k and A is a constant. Since  could be positive or negative, and since solutions to
(13) can be added together to form more solutions (note (13) is an example of a second order
linear homogeneous ODE, so that the superposition principle holds), then the general solution for
(13)is




(14) F(X)=Ae”™ +Be ™

where now A and B are constants and =k . Knowing that F(0)=F()=0, then
unfortunately the only possible values of A and B that work are A=B =0, i.e. that F(x)=0.
Thus, once again we end up with u(x,t) = F(x)G(t) =0-G(t) =0, i.e. the dull solution once
more. Now we place all of our hope on the third and final possibility for k, namely...

Case Three: k<0

So now we go back to equations (12) and (13) again, but now working with k as a negative
constant. So, again we have

(12)  G'(t) =kc®G(t)
and
(13)  F"(x) =kF(x)

Exponential functions won’t satisfy these two ODEs, but now the sine and cosine functions will.
The general solution function for (13) is now

(15)  F(x) = Acos(ax) + B sin(ax)

where again A and B are constants and now we have »® =—k. Again, we consider the boundary
conditions that specified that F(0) = F(I) =0. Substituting in O for x in (15) leads to

(16) F(0)= Acos(0)+Bsin(0)=A=0

so that F(x) =Bsin(ax). Next, consider F(I) =Bsin(ewl) =0. We can assume that B isn’t
equal to 0, otherwise F(x) =0 which would mean that u(x,t) = F(x)G(t) =0-G(t) =0, again,
the trivial unplucked string solution. With B = 0, then it must be the case that sin(wl) =0 in
order to have Bsin(wl)=0. The only way that this can happen is for ol to be a multiple of .
This means that

17) o =nzorw= nl—” (where n is an integer)

This means that there is an infinite set of solutions to consider (letting the constant B be equal to
1 for now), one for each possible integer n.
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(18) FX) = sin(nl—ﬂ xj

Well, we would be done at this point, except that the solution function u(x,t) = F(x)G(t) and
we’ve neglected to figure out what the other function, G(t), equals. So, we return to the ODE in
(12):

(12)  G’(t) =kc’G(t)

where, again, we are working with k, a negative number. From the solution for F(x) we have
determined that the only possible values that end up leading to non-trivial solutions are with

2
n : : g .
= _(Tﬂj forn some integer. Again, we get an infinite set of solutions for (12) that can

be written in the form

(19) G(t)=Ccos(4,t)+ Dsin(A,t)

whereC and D are constants and A, =c+/—k =cw=ch”, where n is the same integer that
showed up in the solution for F(x) in (18) (we’re labeling A with a subscript “n” to identify

which value of n is used).

Now we really are done, for all we have to do is to drop our solutions for F(x)andG(t) into
u(x,t) = F(x)G(t), and the result is

(20) u, (xt) = F(X)G(t) = (C cos(4,t)+ D sin(lnt))sin[nl_ﬂ Xj
where the integer n that was used is identified by the subscript in u, (x,t) and 4,, and C and D

are arbitrary constants.

At this point you should be in the habit of immediately checking solutions to differential
equations. Is (20) really a solution for the original wave equation

o°u , 0%u
— — =Cc°—
ot? ox?




and does it actually satisfy the boundary conditions u(0,t) =0 and u(l,t) = 0 for all values of t

The solution given in the last section really does satisfy the one-dimensional wave equation. To
think about what the solutions look like, you could graph a particular solution function for
varying values of time, t, and then examine how the string vibrates over time for solution
functions with different values of n and constants C and D. However, as the functions involved

are fairly simple, it’s possible to make sense of the solution U (X,t) functions with just a little

more effort.
For instance, over time, we can see that the G(t) = (C cos(4, t) + Dsin(4,t)) part of the function

is periodic with period equal to 2—” This means that it has a frequency equal to j” cycles per
T

n

unit time. In music one cycle per second is referred to as one hertz. Middle C on a piano is
typically 263 hertz (i.e. when someone presses the middle C key, a piano string is struck that
vibrates predominantly at 263 cycles per second), and the A above middle C is 440 hertz. The
solution function when n is chosen to equal 1 is called the fundamental mode (for a particular
length string under a specific tension). The other normal modes are represented by different
values of n. For instance one gets the 2" and 3 normal modes when n is selected to equal 2 and
3, respectively. The fundamental mode, when n equals 1 represents the simplest possible
oscillation pattern of the string, when the whole string swings back and forth in one wide swing.
In this fundamental mode the widest vibration displacement occurs in the center of the string (see
the figures below).

et
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Thus suppose a string of length |, and string mass per unit length &, is tightened so that the

. : T
values of T, the string tension, along the other constants make the value of 4, = L equal to

215

440. Then if the string is made to vibrate by striking or plucking it, then its fundamental (lowest)
tone would be the A above middle C.




Now think about how different values of n affect the other part of u, (x,t) = F(X)G(t), namely

) . . (n . . . I
F(x) = sm[nl—ﬂ xj . Since sm(l—” xj function vanishes whenever x equals a multiple of —, then
n

selecting different values of n higher than 1 has the effect of identifying which parts of the
vibrating string do not move. This has the affect musically of producing overtones, which are
musically pleasing higher tones relative to the fundamental mode tone. For instance picking n =
2 produces a vibrating string that appears to have two separate vibrating sections, with the
middle of the string standing still. This mode produces a tone exactly an octave above the
fundamental mode. Choosing n = 3 produces the 3™ normal mode that sounds like an octave and
a fifth above the original fundamental mode tone, then 4™ normal mode sounds an octave plus a
fifth plus a major third, above the fundamental tone, and so on.

It is this series of fundamental mode tones that gives the basis for much of the tonal scale used in
Western music, which is based on the premise that the lower the fundamental mode differences,
down to octaves and fifths, the more pleasing the relative sounds. Think about that the next time
you listen to some Dave Matthews!

Finally note that in real life, any time a guitar or violin string is caused to vibrate, the result is
typically a combination of normal modes, so that the vibrating string produces sounds from
many different overtones. The particular combination resulting from a particular set-up, the type
of string used, the way the string is plucked or bowed, produces the characteristic tonal quality
associated with that instrument. The way in which these different modes are combined makes it
possible to produce solutions to the wave equation with different initial shapes and initial
velocities of the string. This process of combination involves Fourier Series which will be
covered at the end of Math 21b (come back to see it in action!)

Finally, finally, note that the solutions to the wave equations also show up when one considers
acoustic waves associated with columns of air vibrating inside pipes, such as in organ pipes,
trombones, saxophones or any other wind instruments (including, although you might not have
thought of it in this way, your own voice, which basically consists of a vibrating wind-pipe, i.e.
your throat!). Thus the same considerations in terms of fundamental tones, overtones and the
characteristic tonal quality of an instrument resulting from solutions to the wave equation also
occur for any of these instruments as well. So, the wave equation gets around quite a bit
musically!

D’Alembert’s Solution of the Wave Equation

As was mentioned previously, there is another way to solve the wave equation, found by Jean Le
Rond D’Alembert in the 18" century. In the last section on the solution to the wave equation
using the separation of variables technique, you probably noticed that although we made use of
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the boundary conditions in finding the solutions to the PDE, we glossed over the issue of the
initial conditions, until the very end when we claimed that one could make use of something
called Fourier Series to build up combinations of solutions. If you recall, being given specific
initial conditions meant being given both the shape of the string at time t = 0, i.e. the function

u(x,0) = f (x), as well as the initial velocity, u, (x,0) = g(X) (note that these two initial condition

functions are functions of x alone, as t is set equal to 0). In the separation of variables solution,
we ended up with an infinite set, or family, of solutions, u,(x,t) that we said could be combined

in such a way as to satisfy any reasonable initial conditions.

In using D’ Alembert’s approach to solving the same wave equation, we don’t need to use Fourier
series to build up the solution from the initial conditions. Instead, we are able to explicitly
construct solutions to the wave equation for any (reasonable) given initial condition functions
u(x,0) = f(x)and u,(x,0)=g(x).

The technique involves changing the original PDE into one that can be solved by a series of two
simple single variable integrations by using a special transformation of variables. Suppose that
instead of thinking of the original PDE

o D2
ot? ox?
in terms of the variables x, and t, we rewrite it to reflect two new variables
2 v=x+ctandz =x—ct
This then means that u, originally a function of x, and t, now becomes a function of v and z,
instead. How does this work? Note that we can solve for x and t in (2), so that

A3) x:%(v+z)andt:%(v—z)

Now using the chain rule for multivariable functions, you know that

ou ouov ouoz ou ou
4) — =+ ——=C—-C—
ot ovot oz ot ov 0z

since@ =cand o _ —c, and that similarly
ot ot

ouU oOuov ouoz ou ou
5) = =4
OX OVOX 070X ov 0z

since? =1 and % =1. Working up to second derivatives, another, more involved application
X X

of the chain rule yields that




duov, ouar) 62u62+62u8v
ov? ot azovat) \oz? ot ovaz ot

,(d%°u  d%u ,(d%u  d%u 8 u
+C - =C -2
oz%  ovoz ov® azav oz°

Another almost identical computation using the chain rule results in the fact that

o’u o (ou du azuav auaz auaz azuav
(7) —=—|—+— + —+
ox2 ox\ov az) \ov? 8x ozov ox )\ 2% ox  ovéz ox
o%u o°u o4
=—+2 +—
ov Ozov 0z

Now we revisit the original wave equation

2 2 2 2
) ] u u. u u
and substitute in what we have calculated for 0 > and 0 > interms of 0 > 0 >
ot OX ov 0z

Doing this gives the following equation, ripe with cancellations:

9) V)

+
ov? ooV - oz’

2 2 2 2 2 2
o°u _ au_zau auj_c auzcz(8u+26u 8UJ

2 ¢ 2
ot v’ arv oz’

2
Dividing by c?and canceling the terms involving ZVIZJ and z l: reduces this series of equations
z

to

which means that




o%u

=0
OzZov

11)

So what, you might well ask, after all, we still have a second order PDE, and there are still
several variables involved. But wait, think about what (11) implies. Picture (11) as it gives you
information about the partial derivative of a partial derivative:

0 (ou

In this form, this implies that a considered as a function of z and v is a constant in terms of the

variable z, so that Z—U can only depend on v, i.e.
v

(13) %“ =M (v)

Now, integrating this equation with respect to v yields that
(14)  u(v,2)= j M (v)dv

This, as an indefinite integral, results in a constant of integration, which in this case is just
constant from the standpoint of the variable v. Thus, it can be any arbitrary function of z alone,
so that actually

(15) u(v,z)= j M (v)dv + N(z) = P(v) + N(2)
where P(v) is a function of v alone, and N(z) is a function of z alone, as the notation indicates.
Substituting back the original change of variable equations for v and z in (2) yields that

(16)  u(x,t) =P(x+ct)+N(x—ct)

whereP and N are arbitrary single variable functions. This is called D’ Alembert’s solution to the
wave equation. Except for the somewhat annoying but easy enough chain rule computations,
this was a pretty straightforward solution technique. The reason it worked so well in this case
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was the fact that the change of variables used in (2) were carefully selected so as to turn the
original PDE into one in which the variables basically had no interaction, so that the original
second order PDE could be solved by a series of two single variable integrations, which was easy
to do.

Check out that D’ Alembert’s solution really works. According to this solution, you can pick any
functions for P and N such as P(v) =v’and N(v) =v+2. Then

(A7) u(xt)=(x+ct)® +(x—ct) +2=x*>+x+ct+Cc’t* +2
Now check that

o%u

Foat

(18)

and that

0%u
19 — =2
(19) Ve

so that indeed

o°u
-

and so this is in fact a solution of the original wave equation.

This same transformation trick can be used to solve a fairly wide range of PDEs. For instance
one can solve the equation

pn Ju_du
oxoy oy’

by using the transformation of variables
(22) v=xandz=x+Yy

(Try it out! You should get that u(x, y) = P(x) + N(x+ y) with arbitrary functions P and N )




Note that in our solution (16) to the wave equation, nothing has been specified about the initial
and boundary conditions yet, and we said we would take care of this time around. So now we
take a look at what these conditions imply for our choices for the two functions P and N.

If we were given an initial function u(x,0) = f(x) along with initial velocity function
u, (x,0) = g(x) then we can match up these conditions with our solution by simply substituting in

t =0 into (16) and follow along. We start first with a simplified set-up, where we assume that
we are given the initial displacement function u(x,0) = f (x), and that the initial velocity

function g(x) is equal to O (i.e. as if someone stretched the string and simply released it without
imparting any extra velocity over the string tension alone).

Now the first initial condition implies that
(23)  u(x,0)=P(x+c-0)+N(x—c-0)=P(x)+N(x) = f(x)

We next figure out what choosing the second initial condition implies. By working with an
initial condition that u, (x,0) = g(x) =0, we see that by using the chain rule again on the
functions P and N

(24)  u, (x,0)= % (P(x+ct)+ N(x—ct))=cP'(x+ct) —cN'(x —ct)

(remember that P and N are just single variable functions, so the derivative indicated is just a
simple single variable derivative with respect to their input). Thus in the case where

u, (x,0)=g(x) =0, then
(25) cP’(x+ct)—cN'(x+ct) =0
Dividing out the constant factor ¢ and substituting in t =0

(26)  P'(x)=N'(x)

and so P(x)-+k = N(x)for some constant k. Combining this with the fact that
P(x) +N(x) = f(x), means that 2P(x) +k = f (x), so that P(x) =(f (x)—k)/2 and likewise
N(x) = (f (x)+k)/2. Combining these leads to the solution




(27)  u(x,t) = P(x+ct)+ N(x—ct) :%(f(x+ct)+ f(x—ct))

To make sure that the boundary conditions are met, we need
(28) u(0,t)=0andu(l,t)=0 for all values of t

The first boundary condition implies that

(29) u(0,t) =%(f (ct)+ f(—ct))=0

(30)  f(—ct)=—f(ct)

so that to meet this condition, then the initial condition function f must be selected to be an odd
function. The second boundary condition that u(l,t) = 0 implies

(31) u(I,t)=%(f(I+ct)+f(I—ct))=0

sothat f(I+ct)=—f(l—ct). Next, since we’ve seen that f has to be an odd function, then
— f (I —ct) = f (-l +ct). Putting this all together this means that

(32) f(+ct)= f(-I+ct)forall values of t

which means that f must have period 2l, since the inputs vary by that amount. Remember that
this just means the function repeats itself every time 21 is added to the input, the same way that
the sine and cosine functions have period 2 .

What happens if the initial velocity isn’t equal to 0? Thus suppose U, (X,0) =g(x) #0. Tracing
through the same types of arguments as the above leads to the solution function

(33)  u(xt) =%(f (x+ct)+ f (x—ct))+2—1C j:f:g(s)ds

In the next installment of this introduction to PDEs we will turn to the Heat Equation.




Heat Equation

For this next PDE, we create a mathematical model of how heat spreads, or diffuses through an
object, such as a metal rod, or a body of water. To do this we take advantage of our knowledge
of vector calculus and the divergence theorem to set up a PDE that models such a situation.
Knowledge of this particular PDE can be used to model situations involving many sorts of
diffusion processes, not just heat. For instance the PDE that we will derive can be used to model
the spread of a drug in an organism, of the diffusion of pollutants in a water supply.

The key to this approach will be the observation that heat tends to flow in the direction of
decreasing temperature. The bigger the difference in temperature, the faster the heat flow, or
heat loss (remember Newton's heating and cooling differential equation). Thus if you leave a hot
drink outside on a freezing cold day, then after ten minutes the drink will be a lot colder than if
you'd kept the drink inside in a warm room - this seems pretty obvious!

If the function u(x, y, z,t) gives the temperature at time t at any point (X, y, z) in an object, then in

mathematical terms the direction of fastest decreasing temperature away from a specific point (X,
Yy, 2), is just the gradient of u (calculated at the point (X, y, z) and a particular time t). Note that
here we are considering the gradient of u as just being with respect to the spatial coordinates x, y
and z, so that we write

ou. oOu. ou
1 rad(u)=Vu=—i+—j+—Kk
(1)  grad(u) ™ ayJ e

Thus the rate at which heat flows away (or toward) the point is proportional to this gradient, so
that if F is the vector field that gives the velocity of the heat flow, then

(2)  F=-k(grad(u))
(negative as the flow is in the direction of fastest decreasing temperature).
The constant, k, is called the thermal conductivity of the object, and it determines the rate at
which heat is passed through the material that the object is made of. Some metals, for instance,

conduct heat quite rapidly, and so have high values for k, while other materials act more like
insulators, with a much lower value of k as a result.

Now suppose we know the temperature function, u(x, y, z,t), for an object, but just at an initial
time, when t =0, i.e. we just know u(Xx, y, z,0). Suppose we also know the thermal conductivity
of the material. What we would like to do is to figure out how the temperature of the object,
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u(x,y,z,t), changes over time. The goal is to use the observation about the rate of heat flow to
set up a PDE involving the function u(x, y, z,t) (i.e. the Heat Equation), and then solve the PDE
to find u(x, y, z,t).

Deriving the Heat Equation

To get to a PDE, the easiest route to take is to invoke something called the Divergence Theorem.
As this is a multivariable calculus topic that we haven’t even gotten to at this point in the
semester, don’t worry! (It will be covered in the vector calculus section at the end of the course
in Chapter 13 of Stewart). It's such a neat application of the use of the Divergence Theorem,
however, that at this point you should just skip to the end of this short section and take it on faith
that we will get a PDE in this situation (i.e. skip to equation (10) below. Then be sure to come
back and read through this section once you’ve learned about the divergence theorem.

First notice if E is a region in the body of interest (the metal bar, the pool of water, etc.) then the
amount of heat that leaves E per unit time is simply a surface integral. More exactly, it is the
flux integral over the surface of E of the heat flow vector field, F. Recall that F is the vector
field that gives the velocity of the heat flow - it's the one we wrote down as F =—kVuin the
previous section. Thus the amount of heat leaving E per unit time is just

1) j F-dS
S
whereS is the surface of E. But wait, we have the highly convenient divergence theorem that
tells us that

) j j F.dS=—k j j j div(grad(u))dv

S E

Okay, now what is div(grad(u))? Given that

ou. oOu. ou
3 rad(u)=Vu=—i+—j+—Kk
(3)  grad(u) P ayJ e

thendiv(grad(u)) is just equal to

0°u 0°u 0o%u
+ +

(&) div(grad(U))=V'(V“):aX2 oy? oz’




Incidentally, this combination of divergence and gradient is used so often that it's given a name,
the Laplacian. The notation div(grad(u) = V-(Vu) is usually shortened up to simply VZu. So
we could rewrite (2), the heat leaving region E per unit time as

(5) HF-dS=—km(V2u)dV

S E

On the other hand, we can calculate the total amount of heat, H, in the region, E, at a particular
time, t, by computing the triple integral over E:

(6) H-= jﬂ (a)u(x, y, z,t)dV

where ¢ is the density of the material and the constant o is the specific heat of the material (don't
worry about all these extra constants for now - we will lump them all together in one place in the
end). How does this relate to the earlier integral? On one hand (5) gives the rate of heat leaving

E per unit time. This is just the same as —%—T, where H gives the total amount of heat in E.

This means we actually have two ways to calculate the same thing, because we can calculate
aa—:l by differentiating equation (6) giving H, i.e.
oH

ot ot

@ -E ([ @)X av

Now since both (5) and (7) give the rate of heat leaving E per unit time, then these two equations
must equal each other, so...

(8) —%H?m (aS)%udV :—km' (V2u)dv

For these two integrals to be equal means that their two integrands must equal each other (since
this integral holds over any arbitrary region E in the object being studied), so...

©) (a&)%uz K(V2u)

or, if we let c? = % and write out the Laplacian, V?u, then this works out simply as




(10) 8—“:&(

+
ox> oy oz°

ot

o%u . 0%u azuj

This, then, is the PDE that models the diffusion of heat in an object, i.e. the Heat Equation! This
particular version (10) is the three-dimensional heat equation.

Solving the Heat Equation in the one-dimensional case

We simplify our heat diffusion modeling by considering the specific case of heat flowing in a
long thin bar or wire, where the cross-section is very small, and constant, and insulated in such a
way that the heat flow is just along the length of the bar or wire. In this slightly contrived
situation, we can model the heat flow by keeping track of the temperature at any point along the
bar using just one spatial dimension, measuring the position along the bar.

This means that the function, u, that keeps track of the temperature, just depends on X, the
position along the bar, and t, time, and so the heat equation from the previous section becomes
the so-called one-dimensional heat equation:

ou , 0%
1 —=c? =
@ ot ox?2

One of the interesting things to note at this point is how similar this PDE appears to the wave
equation PDE. However, the resulting solution functions are remarkably different in nature.
Remember that the solutions to the wave equation had to do with oscillations, dealing with
vibrating strings and all that. Here the solutions to the heat equation deal with temperature flow,
not oscillation, so that means the solution functions will likely look quite different. If you’re
familiar with the solution to Newton’s heating and cooling differential equations, then you might
expect to see some type of exponential decay function as part of the solution function.

Before we start to solve this equation, let’s mention a few more conditions that we will need to
know to nail down a specific solution. If the metal bar that we’re studying has a specific length,
I, then we need to know the temperatures at the ends of the bars. These temperatures will give us
boundary conditions similar to the ones we worked with for the wave equation. To make life a
bit simpler for us as we solve the heat equation, let’s start with the case when the ends of the bar,
at x=0 and x =1 both have temperature equal to O for all time (you can picture this situation as
a metal bar with the ends stuck against blocks of ice, or some other cooling apparatus keeping
the ends exactly at 0 degrees). Thus we will be working with the same boundary conditions as
before, namely




(2 u(0,t)=0andu(l,t) =0 for all values of t

Finally, to pick out a particular solution, we also need to know the initial starting temperature of
the entire bar, namely we need to know the function u(x,0). Interestingly, that’s all we would

need for an initial condition this time around (recall that to specify a particular solution in the
wave equation we needed to know two initial conditions, u(x,0)and u, (X,0)).

The nice thing now is that since we have already solved a PDE, then we can try following the
same basic approach as the one we used to solve the last PDE, namely separation of variables.
With any luck, we will end up solving this new PDE. So, remembering back to what we did in
that case, let’s start by writing

@) u(xt)=F)G(t)

whereF, and G, are single variable functions. Differentiating this equation for u(x,t) with
respect to each variable yields

o'u _ _, oau _ :
4) pvi F"(x)G(t) andE =F(x)G'(t)

When we substitute these two equations back into the original heat equation

ou , %
5 —=c2==
®) ot ox?

we get

au_ ' _ 2@: 2
(6) E—F(X)G t)=c Ve c F"(X)G(t)

If we now separate the two functions F and G by dividing through both sides, then we get

G'h) F'(

() c2G(t) F(x)

Just as before, the left-hand side only depends on the variable t, and the right-hand side just
depends on x. As a result, to have these two be equal can only mean one thing, that they are both
equal to the same constant, k:




G'M _F'0)_,

®) c2G(t) F(x)

As before, let’s first take a look at the implications for F(x) as the boundary conditions will
again limit the possible solution functions. From (8) we get that F(x) has to satisfy

@)  F"(X)—kF(x)=0

Just as before, one can consider the various cases with k being positive, zero, or negative. Just as
before, to meet the boundary conditions, it turns out that k must in fact be negative (otherwise
F(x) ends up being identically equal to 0, and we end up with the trivial solution u(x,t) =0).

So skipping ahead a bit, let’s assume we have figured out that k must be negative (you should
check the other two cases just as before to see that what we’ve just written is true!). To indicate

this, we write, as before, that k = —®?, so that we now need to look for solutions to
(10) F"(X)+w’F(x)=0
These solutions are just the same as before, namely the general solution is:

(11) F(x) = Acos(ax)+ Bsin(ax)

where again A and B are constants and now we have @ =+/—K . Next, let’s consider the
boundary conditions u(0,t) =0and u(l,t)=0. These are equivalent to stating that
F(0)=F(l)=0. Substituting in 0 for x in (11) leads to

(12) F(0)= Acos(0)+Bsin(0)=A=0

so that F(x) = Bsin(ax). Next, consider F(I) =Bsin(al) =0. As before, we check that B can’t
equal 0, otherwise F(x)=0 which would then mean that u(x,t) = F(x)G(t) =0-G(t) =0, the
trivial solution, again. With B = 0, then it must be the case that sin(el) =0 in order to have
Bsin(wl) =0. Again, the only way that this can happen is for wl to be a multiple of 7. This
means that once again

(13) owl=nzorw= nl—ﬂ (where n is an integer)

and so




(14)  F(x)= sin[”l—” xj

wheren is an integer. Next we solve for G(t), using equation (8) again. So, rewriting (8), we
see that this time

(15)  G'(t)+4,°G(t)=0

nr . - : . . n
where 4, = CT” since we had originally written k =—w?, and we just determined that o = I—”

during the solution for F(x). The general solution to this first order differential equation is just

(16) G(t)=Ce ™"

So, now we can put it all together to find out that

(17)  u(x,)=F(X)G()=C sin(nTﬂ x]e“nzt

Wheren is an integer, C is an arbitrary constant, and 1, = CnT” As is always the case, given a
supposed solution to a differential equation, you should check to see that this indeed is a solution
to the original heat equation, and that it satisfies the two boundary conditions we started with.

The next question is how to get from the general solution to the heat equation

2

1) u(x,t) =Csin[“|_” Xjeint

that we found in the last section, to a specific solution for a particular situation. How can one
figure out which values of n and Care needed for a specific problem? The answer lies not in
choosing one such solution function, but more typically it requires setting up an infinite series of
such solutions. Such an infinite series, because of the principle of superposition, will still be a
solution function to the equation, because the original heat equation PDE was linear and
homogeneous. Using the superposition principle, and by summing together various solutions
with carefully chosen values of C, then it is possible to create a specific solution function that
will match any (reasonable) given starting temperature functionu(x,0).




