BASIC SIMULATION WITH MAT LABORATORY LAB MANUAL

Academic Year	: 2019-2020
Course Code	: AAEB01
Regulation	: R18
Class	: II Sem
Branch	: AE

Prepared By

Dr. P K Mohanta, Professor

nin 1

AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

AERONAUTICALENGINEERING

	Program Outcomes
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineeringproblems.
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainabledevelopment.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

	Program Specific Outcomes
PSO1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products
PSO2	Problem solving skills : imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flightvehicles
PSO3	Practical implementation and testing skills : Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies.
PSO4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats

Dundi	(Autonomous) gal, Hyderabad - 500 043 Certificate
This is to c <mark>ertify that it is a</mark>	bonafied record of practical work done by
Sri/Kum	bearing
the Roll No	of clas
	laboratory during the academi
year	under oursupervision.
SIL	ARES
Head oftheDepartment	LecturerIn-Charge
ExternalExaminer	InternalExaminer

ATTAINMENT OF PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES

Expt. No.	Program Outcomes Attained	Program Specific Outcomes Attained
Ι	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2
II	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2
III	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2
IV	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2
V	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2
VI	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2
VII	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2
VIII	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2
IX	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2
X	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2
XI	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2
XII	PO1, PO2, PO3, PO4, PO5, PO12	PSO1, PSO2

2

PON F

N.R

BASIC SIMULATION WITH MAT LABORATORY

Course CodeCategoryHours / WeekCreditsMaximum MarkAAEB01FoundationLTPCCIESEETotoContact Classes: NilTutorial Classes: NilPractical Classes: 24Total Classes: 2OBJECTIVES:The course should enable the students to:I.Understand the procedures, algorithms, and concepts require to solve specific problems.II.Analyze the concepts of algebra, calculus and numerical solutions using MATLABsoftware.III.Enrich the knowledge in MATLAB and can apply for projectworks.IV.Interpret and visualize simple mathematical functions and operations thereon usingplots/displationLIST OF EXPERIMENTSWeek-1BASIC FEATURESa. Features anduses.b. Local environmentsetup.Week-2ALGEBRAa. Solving basic algebraicequations.b. Solving system of equations.c. Two dimensionalplots.Week-3CONTROL STRUCTURESa. Addition, subtraction and multiplication ofmatrices.b. Transpose of amatrix.c. Inverse of amatrix.Week-6SYSTEM OF LINEAR EQUATIONSa. Rank of amatrix.b. Gauss Jordanmethod.c. LU decompositionmethod.Week-6LINEAR TRANSFORMATIONa. Characteristic equation.b. Eigen vectors.	II Semester: AE									
AAEB01FoundationLTPCCIESEETot0031.530701010Contact Classes: NilTutorial Classes: NilPractical Classes: 24Total Classes: 24OBJECTIVES:The course should enable the students to:1.Understand the procedures, algorithms, and concepts require to solve specific problems.II. Analyze the concepts of algebra, calculus and numerical solutions using MATLABsoftware.III. Enrich the knowledge in MATLAB and can apply for projectworks.IV. Interpret and visualize simple mathematical functions and operations thereon using plots/displation of the students.Week-1BASIC FEATURESa. Features anduses.b. Local environmentsetup.Week-2ALGEBRAa. Solving basic algebraicequations.control STRUCTURESa. For Loop.b. WhileLoop.c. Inverse of amatrix.Veek-4MATRICESa. Addition, subtraction and multiplication ofmatrices.b. Transpose of amatrix.compositionmethod.compositionmethod.compositionmethod.compositionmethod.compositionmethod.compositionmethod.compositionmethod.	Course Code	Category	Hou	ırs / W	Veek	Credits	Maximum Marks			
InterverPointation0031.5307010Contact Classes: NilTutorial Classes: 24Total Classes: 24OBJECTIVES:The course should enable the students to:1.Understand the procedures, algorithms, and concepts require to solve specific problems.II.Analyze the concepts of algebra, calculus and numerical solutions using MATLABsoftware.III.Enrich the knowledge in MATLAB and can apply for projectworks.IV.Interpret and visualize simple mathematical functions and operations thereon usingplots/displationsLIST OF EXPERIMENTSWeek-1BASIC FEATURESa. Features anduses.b. Local environmentsetup.Week-2ALGEBRAa. Solving basic algebraicequations.c. Two dimensionalplots.Week-3CONTROL STRUCTURESa. For Loop.b. WhileLoop.c. If elseif- else controlstructure.Week-4MATRICESa. Addition, subtraction and multiplication ofmatrices.b. Transpose of amatrix.c. Inverse of amatrix.b. Gauss Jordanmethod.c. LU decompositionmethod.c. LU decompositionmethod.c. LU decompositionmethod.c. LU decompositionmethod.c. LU decompositionmethod.c. Eigen vectors.	AAEB01	Foundation	L	Т	Р	C	CIE	SEE	Total	
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 24 Total Classes: 2 OBJECTIVES: The course should enable the students to: . . . Understand the procedures, algorithms, and concepts require to solve specific problems. II. Enrich the knowledge in MATLAB and can apply for projectworks. . . . IV. Interpret and visualize simple mathematical functions and operations thereon usingplots/displa LIST OF EXPERIMENTS Week-1 BASIC FEATURES a. Features anduses. . . b. Local environmentsetup. . . Week-2 ALGEBRA . . a. Solving system ofequations. . . . b. Solving system ofequations. c. Two dimensionalplots. Week-3 CONTROL STRUCTURES a. Addition, subtraction and multiplication ofmatrices. 	AAEDOI	roundation	0	0	3	1.5	1.5 30 70			
OBJECTIVES: The course should enable the students to: 1. Understand the procedures, algorithms, and concepts require to solve specific problems. II. Analyze the concepts of algebra, calculus and numerical solutions using MATLABsoftware. III. Enrich the knowledge in MATLAB and can apply for projectworks. IV. Interpret and visualize simple mathematical functions and operations thereon usingplots/displation of the state of the st	Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 24 Total Classes: 24					sses: 24		
Ine course should enable the students to: I. Understand the procedures, algorithms, and concepts require to solve specificproblems. II. Analyze the concepts of algebra, calculus and numerical solutions using MATLABsoftware. III. Enrich the knowledge in MATLAB and can apply for projectworks. IV. Interpret and visualize simple mathematical functions and operations thereon usingplots/displation of the students of the stude	OBJECTIVES:									
 I. Onderstand the procedures, algorithms, and concepts require to solve specific/problems. II. Analyze the concepts of algebra, calculus and numerical solutions using MATLABsoftware. IV. Interpret and visualize simple mathematical functions and operations thereon usingplots/displations and operations thereon usingplots/displations and operations thereon usingplots/displations are used by the solution operations of the solutions and operations thereon usingplots/displations are used by the solution operations and operations and operations thereon usingplots/displations are used by the solution operations and operations and operations are using plots. Week-1 BASIC FEATURES a. Features and uses. b. Local environmentsetup. Week-2 ALGEBRA a. Solving basic algebraic equations. b. Solving system of equations. c. Two dimensional plots. Week-3 CONTROL STRUCTURES a. For Loop. b. WhileLoop. c. If elseif- else controlstructure. Week-4 MATRICES a. Addition, subtraction and multiplication of matrices. b. Transpose of amatrix. c. Inverse of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. c. Eigen values. c. Eigen vectors. 	The course should ena	ble the students to:				1	: c:			
II. Analyze the concepts of argeora, caterina and minerical solutions using INATEADSoftware. III. Enrich the knowledge in MATLAB and can apply for projectworks. IV. Interpret and visualize simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations thereon usingplots/displature to the simple mathematical functions and operations.	I. Understand the pro	cedures, algorithms, and	conce	pis rec	juire i solut	ions using	маті	ABsoft	ware	
IV. Interpret and visualize simple mathematical functions and operations: thereon usingplots/displa LIST OF EXPERIMENTS Week-1 BASIC FEATURES a. Features anduses. b. Local environmentsetup. Week-2 ALGEBRA a. Solving basic algebraicequations. b. Solving system ofequations. c. Two dimensionalplots. Week-3 CONTROL STRUCTURES a. For Loop. b. WhileLoop. c. If- elseif- else controlstructure. Week-4 MATRICES a. Addition, subtraction and multiplication ofmatrices. b. Transpose of amatrix. c. Inverse of amatrix. Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. Week-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors.	II. Analyze the concepts of algebra, calculus and numerical solutions using MATLABsoftware.									
LIST OF EXPERIMENTS Week-1 BASIC FEATURES a. Features anduses. b. Local environmentsetup. Week-2 ALGEBRA a. Solving basic algebraicequations. b. Solving system ofequations. c. Two dimensionalplots. CONTROL STRUCTURES Week-3 CONTROL STRUCTURES a. For Loop. b. WhileLoop. c. If - elseif - else controlstructure. Week-4 Meek-4 MATRICES a. Addition, subtraction and multiplication ofmatrices. b. b. Transpose of amatrix. c. Inverse of amatrix. veek-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. Week-6 U Uncaracteristicequation. b. Eigenvalues. c. Eigen vectors. C. Eigen vectors.	IV. Interpret and visual	lize simple mathematical	functi	ons ar	nd ope	erations the	ereon us	singplot	s/display.	
Week-1 BASIC FEATURES a. Features anduses. . b. Local environmentsetup. . Week-2 ALGEBRA a. Solving basic algebraicequations. . b. Solving system ofequations. . c. Two dimensionalplots. . Week-3 CONTROL STRUCTURES a. For Loop. . b. WhileLoop. . c. If- elseif- else controlstructure. . Week-4 MATRICES a. Addition, subtraction and multiplication ofmatrices. . b. Transpose of amatrix. . Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. . b. Gauss Jordanmethod. . c. LU decompositionmethod. . Week-6 LINEAR TRANSFORMATION a. Characteristicequation. . b. Eigenvalues. . c. Eigen vectors. .	FF	LIST OF E	XPE	RIME	NTS					
a. Features anduses. b. Local environmentsetup. Week-2 ALGEBRA a. Solving basic algebraicequations. b. Solving system ofequations. c. Two dimensionalplots. Week-3 CONTROL STRUCTURES a. For Loop. b. WhileLoop. c. If elseif- else controlstructure. Week-4 MATRICES a. Addition, subtraction and multiplication ofmatrices. b. Transpose of amatrix. c. Inverse of amatrix. Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. week-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors.	Week-l BASIC FI	EATURES								
b. Local environmentsetup. Week-2 ALGEBRA a. Solving basic algebraicequations. b. Solving system ofequations. c. Two dimensionalplots. Week-3 CONTROL STRUCTURES a. For Loop. b. WhileLoop. c. If elseif else controlstructure. Week-4 MATRICES a. Addition, subtraction and multiplication of matrices. b. Transpose of amatrix. c. Inverse of amatrix. c. Inverse of amatrix. Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. c. LU decompositionmethod. d. Characteristicequation. b. Eigenvalues. c. Eigen vectors.	a. Features anduses.									
Week-2 ALGEBRA a. Solving basic algebraicequations. . b. Solving system ofequations. . c. Two dimensionalplots. . Week-3 CONTROL STRUCTURES a. For Loop. . b. WhileLoop. . c. If- elseif- else controlstructure. . Week-4 MATRICES a. Addition, subtraction and multiplication ofmatrices. . b. Transpose of amatrix. . Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. . b. Gauss Jordanmethod. . c. LU decompositionmethod. . Week-6 LINEAR TRANSFORMATION a. Characteristicequation. . b. Eigenvalues. . c. Eigen vectors. .	b. Local environmentset	tup.								
a. Solving basic algebraicequations. b. Solving system of equations. c. Two dimensionalplots. Week-3 CONTROL STRUCTURES a. For Loop. b. WhileLoop. c. If- elseif-else controlstructure. Week-4 MATRICES a. Addition, subtraction and multiplication of matrices. b. Transpose of amatrix. c. Inverse of amatrix. Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. c. Eigen values. c. Eigen values. c. Eigen values. c. Eigen values.	Week-2 ALGEBR	A								
b. Solving system ofequations. c. Two dimensionalplots. Week-3 CONTROL STRUCTURES a. For Loop. b. WhileLoop. c. If- elseif- else controlstructure. Week-4 MATRICES a. Addition, subtraction and multiplication ofmatrices. b. Transpose of amatrix. c. Inverse of amatrix. Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. c. LU decompositionmethod. d. Characteristicequation. b. Eigenvalues. c. Eigen vectors.	a. Solving basic algebra	icequations.								
c. Two dimensionalplots. Week-3 CONTROL STRUCTURES a. For Loop. b. WhileLoop. c. If- elseif- else controlstructure. MATRICES a. Addition, subtraction and multiplication ofmatrices. b. Transpose of amatrix. c. Inverse of amatrix. SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors. Control structure.	b. Solving system ofequ	lations.								
Week-3 CONTROL STRUCTURES a. For Loop. b. WhileLoop. c. If- elseif- else controlstructure. Week-4 MATRICES a. Addition, subtraction and multiplication ofmatrices. b. Transpose of amatrix. c. Inverse of amatrix. c. Inverse of amatrix. SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. Week-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors.	c. Two dimensionalplot	S.								
 a. For Loop. b. WhileLoop. c. If- elseif- else controlstructure. Week-4 MATRICES a. Addition, subtraction and multiplication of matrices. b. Transpose of amatrix. c. Inverse of amatrix. Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. week-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors. 	Week-3 CONTRO	L STRUCTURES	-							
b. WhileLoop. c. If- elseif- else controlstructure. Week-4 MATRICES a. Addition, subtraction and multiplication ofmatrices. b. Transpose of amatrix. c. Inverse of amatrix. Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. c. LU decompositionmethod. Meek-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors.	a. For Loop.									
Week-4 MATRICES a. Addition, subtraction and multiplication of matrices. b. Transpose of amatrix. b. Transpose of amatrix. c. Inverse of amatrix. Veek-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. C. LU decompositionmethod. Week-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors. C. Eigen vectors.	b. WhileLoop.	at must have								
week-4 MATRICES a. Addition, subtraction and multiplication of matrices. b. Transpose of amatrix. c. Inverse of amatrix. Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. Week-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors.	C. II- elseil- else control	structure.								
 a. Addition, subtraction and inditiplication offinances. b. Transpose of amatrix. c. Inverse of amatrix. week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. c. LU decompositionmethod. Week-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors. 	Addition subtraction	and multiplication of mat	miana	_				-	-	
c. Inverse of amatrix. Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. Week-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors.	h Transpose of amatrix		inces.						Sec. 1	
Week-5 SYSTEM OF LINEAR EQUATIONS a. Rank of amatrix. b. Gauss Jordanmethod. b. Gauss Jordanmethod. c. LU decompositionmethod. c. LU decompositionmethod. c. LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors. c. Eigen vectors.	c. Inverse of amatrix.			10					-	
 a. Rank of amatrix. b. Gauss Jordanmethod. c. LU decompositionmethod. Week-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors. 	Week-5 SYSTEM	OF LINEAR EOUATI	ONS				-	1.1		
b. Gauss Jordanmethod. c. LU decompositionmethod. Week-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors.	a. Rank of amatrix.			- 1			7	1.0	<u> </u>	
c. LU decompositionmethod. Week-6 LINEAR TRANSFORMATION a. Characteristicequation.	b. Gauss Jordanmethod.							- 27		
Week-6 LINEAR TRANSFORMATION a. Characteristicequation. b. Eigenvalues. c. Eigen vectors.	c. LU decompositionme	thod.						10%		
a. Characteristicequation.b. Eigenvalues.c. Eigen vectors.	Week-6 LINEAR TRANSFORMATION									
b. Eigenvalues. c. Eigen vectors.	a. Characteristicequation	n.					1	100		
c. Eigen vectors.	b. Eigenvalues.									
Week-7 DIFFERENTIATION AND INTEGRATION	Week-7 DIFFERE	ENTIATION AND INTE	EGRA	TION		- 0	V.			
a. Higher order differentialequations.	a. Higher order differen	tialequations.			1.16	1.00				
b. Doubleintegrals.										
Week-8 NUMERICAL DIFFERENTION AND INTEGRATION	Week-8 NUMERI	CAL DIFFERENTION		INTE	CRA	TION				
a Trapezoidal Simpson'smethod	a Trapezoidal Simpsor	'smethod	AND	11111	JONA					
b Eulermethod	b Eulermethod	i sinculou.								
c. RungeKutta method	c. RungeKutta method									
Week-9 3D PLOTTING	Week-9 3D PLOT	TING								
a Lineplotting.	a Lineplotting.									
b. Surfaceplotting.	b. Surfaceplotting.									
c. Volumeplotting.	c. Volumeplotting.									

Week-10 DEFLECTION OF SIMPLY SUPPORTED BEAM

a. Calculating vertical displacement with pointload.

b. Calculating vertical displacement with uniformly distributedload.

c. Calculating vertical displacement with uniformly varyingload.

Week-11 DEFLECTION OF CANTILEVER BEAM

b. Calculating vertical displacement with pointload.

c. Calculating vertical displacement with uniformly distributedload.

c. Calculating vertical displacement with uniformly varying load

Week-12 FORMULATION OF IDEAL AND REAL GAS EQUATIONS

a. Calculating the pressure, temperature, density for Earth's atmospheric conditions atdifferent altitudes.

b. Calculating the pressure, temperature, density for other planets at differentaltitudes. **Reference Books:**

- 1. Cleve Moler, "Numerical Computing with MATLAB", SIAM, Philadelphia, 2nd Edition, 2008.
- 2. Dean G. Duffy, "Advanced Engineering Mathematics with MATLAB", CRC Press, Taylor& Francis Group, 6th Edition,2015.
- 3. Delores M. Etter, David C. Kuncicky, Holly Moore, "Introduction to MATLAB 7", Pearson Education Inc, 1st Edition, 2009.
- 4. Rao. V. Dukkipati, "MATLAB for ME Engineers", New Age Science, 1st Edition, 2008.

Web Reference:

1. http://www.tutorialspoint.com/matlab/

2. http://www.iare.ac.in

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 30 STUDENTS:

SOFTWARE: Microsoft Windows 7 and MATLAB – V 8.5, which is also R2015a **HARDWARE:** 30 numbers of Intel Desktop Computers with 2 GB RAM

NON F

BASIC FEATURES

OBJECTIVES:

- a. To know the history, features and uses of MATLAB
- b. To know the local environment of MATLAB

CONTENT:

Introduction:

MATLAB is a high-level language and interactive environment for numerical computation, visualization, and programming. Using MATLAB, you can analyses data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spread sheets or traditional programming languages, such as C/C++ or Java. You can use MATLAB for a range of applications, including signal processing and communications, image and video processing, control systems, test and measurement, computational finance, and computational biology. More than a million engineers and scientists in industry and academia use MATLAB, the language of technical computing.

History:

- 1. Developed primarily by Cleve Moler in the 1970'sDerived from FORTRAN subroutines LINPACK and EISPACK, linear and eigenvaluesystems.
- 2. Developed primarily as an interactive system to access LINPACK and EISPACK.
- 3. Gained its popularity through word of mouth, because it was not socially distributed.
- 4. Rewritten in C in the 1980's with more functionality, which include plottingroutines.
- 5. The Math Works Inc. was created (1984) to market and continue development of MATLAB.

Strengths:

- 1. MATLAB may behave as a calculator or as a programminglanguage
- 2. MATLAB combine nicely calculation and graphicplotting.
- 3. MATLAB is relatively easy tolearn
- 4. MATLAB is interpreted (not compiled), errors are easy tofix
- 5. MATLAB is optimized to be relatively fast when performing matrixoperations
- 6. MATLAB does have some object-orientedelements

Weaknesses:

- 1. MATLAB is not a general purpose programming language such as C, C++, orFORTRAN
- 2. MATLAB is designed for scientific computing, and is not well suitable for otherapplications
- 3. MATLAB is an interpreted language, slower than a compiled language such asC++
- 4. MATLAB commands are specific for MATLAB usage. Most of them do not have a direct equivalent with other programming language commands

Competition:

One of MATLAB's competitors is Mathematica the symbolic computation program. MATLAB is more convenient for numerical analysis and linear algebra. It is frequently used in engineering community. Mathematica has superior symbolic manipulation, making it popular among physicists. There are other competitors: Scilab, GNU Octave, and Rlab.

Key Features:

- 1. It is a high-level language for numerical computation, visualization and applicationdevelopment.
- 2. It also provides an interactive environment for iterative exploration, design and problemsolving.
- 3. It provides vast library of mathematical functions for linear algebra, statistics, Fourier analysis, filtering, optimization, numerical integration and solving ordinary differentialequations.
- 4. It provides built-in graphics for visualizing data and tools for creating customplots.
- 5. MATLAB's programming interface gives development tools for improving code quality, maintainability, and maximizing performance.
- 6. It provides tools for building applications with custom graphicalinterfaces.

7. It provides functions for integrating MATLAB based algorithms with external applications and languages such as C, Java, .NET and MicrosoftExcel.

MATLAB's Power of Computational Mathematics:

MATLAB is used in every facet of computational mathematics. Following are some commonly used mathematical calculations where it is used most commonly:

- 1. Dealing with Matrices and Arrays
- 2. 2-D and 3-D Plotting and graphics
- 3. LinearAlgebra
- 4. Algebraic Equations
- 5. Non-linear Functions
- 6. Statistics
- 7. Data Analysis
- 8. Calculus and DifferentialEquations
- 9. NumericalCalculations
- 10. Integration
- 11. Transforms
- 12. CurveFitting
- 13. Various other specialfunctions

Uses of MATLAB:

MATLAB is widely used as a computational tool in science and engineering encompassing the fields of physics, chemistry, math and all engineering streams. It is used in a range of applications including:

- 1. Signal processing andCommunications
- 2. Image and videoProcessing
- 3. Controlsystems
- 4. Test and measurement
- 5. Computationalfinance
- 6. Computationalbiology

Understanding the MATLAB Environment:

MATLAB development IDE can be launched from the icon created on the desktop. The main working window in MATLAB is called the desktop. When MATLAB is started, the desktop appears in its default layout:

The desktop includes these panels:

Current Folder - This panel allows you to access the project folders and files.

	4 0	Find Files	₽	
New Script	New Ope	n 🔄 Compare	Import Data	
	6	b Ci b Urarr	N GTA	
	Et Co 1	C: V Users	V GTA	

Command Window - This is the main area where commands can be entered at the command line. It is indicated by the command prompt (>>).

» a = 2+2		 _	 -	*
) = 4 ,				
				+

Workspace - The workspace shows all the variables created and/or imported from files.

📣 Workspac	e					X
Name 🔺	Value	Class	Min	Max	Mean	
A	<4x4 double>	double	0	6	1.9375	۲
() C	<3x3 cell>	cell				
🕂 D	[1;2;3;4]	double	1	4	2.5000	
🗄 S	<1x3 struct>	struct				
🛨 Scores	[79;81.2000;90;85	double	79	90	83.9500	
🚯 f	<1x1 cell>	cell				
abc fn	'file_XLTM.xltm'	char				
🛨 g	6.2341e+03	single	6.234	6.234	6.2341e+03	
🔤 myfile	'handel.flac'	char				
abc t	'Hello'	char				
🛨 u	[243 0 567.9000 2	double	0	754	184.0800	
🖌 v	<2x5 logical>	logical				
{ val1	<1x3 cell>	cell				
🛨 val2	[17 21 42]	double	17	42	26.6667	
🛨 x	325	int16	325	325		
🛨 y	[9900 26025 39600]	uint32	9900	39600		
🛨 z	-Inf	double	-Inf	-Inf	-Inf	

Command History - This panel shows or rerun commands that are entered at the command line.

Command History	$\overline{\mathbf{O}}$
end	^
edge	
edgedetect	
<pre>imshow(edge);</pre>	
edgedetect	
⊟-*\$ 13-07-2013 18:27*	
<pre>imread("home.jpg");</pre>	
<pre>I=imread("home.jpg"):</pre>	
<pre>I=imread("home.jpg");</pre>	
<pre>I=imread('home.jpg');</pre>	
imshow(I);	Υ.

HOME PLOTS	APPS		4		h 6 2 2 4	?	Search Doc	umentat	ion 🔎 🗖
New New Open Compare	Import Save Data Workspac	 New Variable Open Variable Open Variable Clear Workspace 	Analyze Code	Simulink Library	Layout Contraction (Contraction)	rences ath el 💌	Add-Ons	Pelp	Scommunity → Request Support
FILE		VARIABLE	CODE	SIMULINK	ENVIRO	NMENT		1	RESOURCES
🗢 🔶 🔁 🔀 📕 🕨 H: 🕨 Docu	ments MATLAB	•					inter an		→ 2
Current Folder	Command V	Window				\odot	Workspace		۲
🗋 Name 🔺	New to MA	TLAB? See resources for <u>Ge</u>	tting Started.			×	Name 🔺		Value
Details	* *								
5.22 a							•	III	,
1111									

You are now faced with the MATLAB desktop on your computer, which contains the prompt (>>) in the Command Window. Usually, there are 2 types of prompt:

>>For full version

EDU> for educational version

Note:

- 1. To simplify the notation, we will use this prompt, >>, as a standard prompt sign, though our MATLAB version is for educationalpurpose.
- 2. MATLAB adds variable to the workspace and displays the result in the CommandWindow.

Managing workspace and file commands:

Command	Description
cd	Change current directory
clc	Clear the Command Window
clear (all)	Removes all variables from the workspace
clear x	Remove x from the workspace
copy file	Copy file or directory
delete	Delete files
dir	Display directory listing
exist	Check if variables or functions are defined
help	Display help for MATLAB functions
look for	Search for specified word in all help entries
m <mark>kdir</mark>	Make new directory
move file	Move file or directory
pwd	Identify current directory
rmdir	Remove directory
type	Display contents of file
what	List MATLAB files in current directory
which	Locate functions and files
who	Display variables currently in the workspace
whos	Display information on variables in the workspace

Commonly used Operators and Special Characters: MATLAB supports the following commonly used operators and special characters:

Operator	Purpose
+	Plus; addition operator.
102	Minus; subtraction operator.
*	Scalar and matrix multiplication operator.
•*	Array multiplication operator.
^	Scalar and matrix exponentiation operator.
•^	Array exponentiation operator.
١	Left-division operator.
/	Right-division operator.
.\	Array left-division operator.
./	Array right-division operator.
:	Colon; generates regularly spaced elements and represents an entire row or column.

()	Parentheses; encloses function arguments and array indices; overrides precedence.
[]	Brackets; enclosures array elements.
•	Decimal point.
•••	Ellipsis; line-continuation operator
,	Comma; separates statements and elements in a row
;	Semicolon; separates columns and suppresses display.
%	Percent sign; designates a comment and specifies formatting.
-1	Quote sign and transpose operator.
•_	Non-conjugated transpose operator.
=	Assignment operator.

Note:

If you end a statement with a semicolon, MATLAB performs the computation, butsuppresses the display of output in the Command Window.

Special Variables and Constants:

MATLAB supports the following special variables and constants:

Name	Meaning
ans	Most recent answer.
eps	Accuracy of floating-point precision.
i,j	The imaginary unit $\sqrt{-1}$.
Inf	Infinity.
NaN	Undefined numerical result (not a number).
pi	The number π

Naming Variables:

Variable names consist of a letter followed by any number of letters, digits or underscore. MATLAB is **case-sensitive**. Variable names can be of any length; however, MATLAB uses only first N characters, where N is given by the function **namelengthmax**.

Saving Your Work:

The **save** command is used for saving all the variables in the workspace, as a file with .mat extension, in the current directory.

For example, save myfile

You can reload the file anytime later using the load command. load myfile

Example 1:

Example 2:

MATLAB 7.6.0 (R2008a)								
File Edit Debug Parallel Desktop Window Help								
1 🖸 🖆 👗 🖷	s 🖷 🤊 د 🖷 🖻	🐒 🖹 🛛 🥑 🛛 Current Dire	tory: C:\	▼ 🖻				
Shortcuts 🗷	Shortcuts 🛙 How to Add 🖉 What's New							
Workspace		H 🗆	Command Window		X 5 ⊡ 1+			
1 🖻 🖻 🐿 🖬	🌢 🖶 🐻 - S	tack: Base 🔻	>> x=6;					
Name 🔺	Value	Min Max	>> y=x+9					
∎ <mark>⊞</mark> ×	6	6 6	y =					
<u></u> н у	15	15 15						
			15					
			>>					
Command His	story	I+ 🗖	× 5					
-8 12/3	8/16 10:09 PM	M%						
-x=6;								
y=x+9								
A Start]		OVP			
- start					OVR .			

In MATLAB environment, every variable is an array or matrix.

Example 3:

In the above example it creates a 1-by-1 matrix named 'x' and stores the value 3 in its element.

MATLAB 7.6.0 (R2008a)	Annual Contraction of the Contra									
File Edit Debug Parallel Desktop Window Help										
🞦 😂 👗 🛍 🧐 🐑 🗮 🗿 Current Directory: C:\										
Shortcuts 🗷 How to Add 🗷 What's New										
Workspace 🕶 🖛 🖬 🛪 🖬 Variable Editor - x 🔿 🔿 🖓										
🔟 🛃 🝓 🍓 🐻 🔤 - Stack Base 💌	👪 🗸 🖻 🛍 🤌 🛄 - 🖌 - 🖿 Stack: Base 📼 🖽 🖽 🖽	5 🗆 * ×								
Name 🔺 Value Min Max	x <1x1 double>									
⊞ x 3 3 3	1 2 3 4 5 6 7 8	9								
	1 3	A								
	2	Ξ								
	3									
	4									
	5									
Command History 🕨 🗖 🛪 🗙										
⊡-% 12/3/16 10:09 PM%										
-x=3		v								
	Command Window	-1 D a Y								
	>> x=3									
	x =									
		Ξ								
3										
		-								
▲ Start		OVR .:								

Example 4:

MATLAB 7.6.0	(R2008a)		-										
File Edit View Graphics Debug Parallel Desktop Window Help													
Shortcuts 🛙 How to Add 🖾 What's New													
Workspace	Workspace re 2 × 1 Variable Editor - x												
	🔏 🔤 🔞 Stack:	Base	•	•2	å 🗉 🖬	S 100	* %• * "	Stack: B	ase 🔻			ШШЕ	с П ч х
Name 🔺	Value	Min	Max	⊞,	<1x1 dou	ble>							
н	5	5	5		1	2	3	4	5	6	7	8	9
				1	5								A
				2									E
				3									
				4									
				5									
				6									
Command Histon	1		× 5 ⊡ ≁i	7									
-% 12/3/1	, 6 10:09 PM	- %	_	8									
x=sgrt(2	5)			9									
					•	11							•
	Cor	mmand Wij	ndow							×s⊡≀×			
	>>	x=sqrt	(25)							*			
	x	=								_			
		E								=			
					J								
													v
📣 Start													

In this example x is to find the square root of 25 it creates a 1-by-1 matrix named 'x' and stores the value 5 in its element.

Note:

- 1. Once a variable is entered into the system, you can refer to itlater.
- 2. Variables must have values before they areused.
- 3. When you do not specify an output variable, MATLAB uses the variable ans, short for *answer*, to store the results of yourcalculation.

Example 5:

A MATLAB 7.6.0 (R2008a)								
File Edit Debug Parallel Desktop Window Help								
🗄 🖆 👗 🐂 🖏 🤊 🛯 🚵 🗊 🖹 🞯 Current Directory:	C:\Program Files\MATLAB 🛛 🗸 🛄 🛍							
Shortcuts 🗷 How to Add 🗷 What's New	Shortcuts 2 How to Add 2 What's New							
Workspace	Command Window 🔫 🗆 र 🗙							
🛅 🖬 🗃 🦦 👞 💌 🔹 Stack: Base 💌	>> sqrt(75)							
Name ▲ Value Min Max ■ ans 232.7876 232.232	ans =							
	8.6603							
	>> 2016/ans							
	ans =							
Command History	232.7876							
⊡**	>>							
sqrt(75)								
-2016/ans								
Start								

Example 6:

In the above example we have multiple assignments

ALGEBRA

OBJECTIVES:

- a) Find the roots of the equations $6x^5 41x^4 + 97x^3 97x^2 + 41x 6$
- b) Find the values of x, y, z of the equationsx+y+z=3, x+2y+3z=4, x+4y+9z=6
- c) For $f(x)=8x^8 7x^7 + 12x^6 5x^5 + 8x^4 + 13x^3 12x + 9$ compute f(2), roots of f(x) and plot for $0 \le x \le 20$

SOFTWARE REQUIRED:

- 1. MATLABR2013a.
- 2. Windows 7/XPSP2.

PROCEDURE:

- 1. OpenMATLAB
- 2. Open newM-file
- 3. Type theprogram
- 4. Save in currentdirectory
- 5. Compile and Run theprogram
- 6. For the output see command window Figurewindow

PROGRAM:

Roots of the equations 6x^5 - 41x^4 + 97x^3 - 97x^2 + 41x-6

```
v = [6, -41, 97, -97, 41,-6]; % writing the coefficients
s = roots(v);
disp('The first root is: '), disp(s(1));
disp('The second root is: '), disp(s(2));
disp('The third root is: '), disp(s(3));
disp('The fourth root is: '), disp(s(4));
disp('The fifth root is: '), disp(s(5));
```

Values of x.y.z of the equations x+y+z=3.x+2y+3z=4.x+4y+9z=6

A=[1,1,1;1,2,3;1,4,9]; b=[3;4;6]; inv(A) inv(A)*b

f(2), roots and plot of f(x)

p=[8 -7 12 -5 8 13 0 -12 9]; polyval(p,2) roots(p) x=0:0.1:20; y=polyval(p,x); plot(x,y)

OUTPUT: <u>Roots of the equations $6x^5 - 41x^4 + 97x^3 - 97x^2 + 41x - 6$</u> The first root is: 3.0000
The second root is: 2.0000
The third root is: 1.0000
The fourth root is: 0.5000
The fifth root is: 0.3333
Values of x.y.z of the equations x+y+z=3.x+2y+3z=4.x+4y+9z=6 ans =
3.0000 -2.5000 0.5000 -3.0000 4.0000 -1.0000 1.0000 -1.5000 0.5000
ans =
2.0000 1.0000 0.0000
f(2).roots and plot of f(x) ans = 1977
ans =
-0.2079 + 1.3091i -0.2079 - 1.3091i -0.8053 + 0.4306i -0.8053 - 0.4306i 0.8878 + 0.9318i 0.8878 - 0.9318i 0.5629 + 0.3828i 0.5629 - 0.3828i

CONTROL STRUCTURES

OBJECTIVES:

- a. To know how to use For Loop with examples.
- b. To know how to use While Loop with examples.
- c. To know how to use If- else if- else control structure with examples.

SOFTWARE REQUIRED:

- 1. MATLABR2013a.
- 2. Windows 7/XPSP2.

PROCEDURE:

- 1. OpenMATLAB
- 2. Open newM-file
- 3. Type theprogram
- 4. Save in currentdirectory
- 5. Compile and Run theprogram
- 6. For the output see command window Figurewindow

PROGRAM:

<u>while loop</u>

The while loop repeatedly executes statements while a specified condition is true The syntax of a while loop in MATLAB is as following:

Syntax

```
while <expression>
   <statements>
end
```

Example

```
a =10;
% while loop execution
while( a < 20 )
fprintf('value of a: %d\n', a);
a = a + 1;
end
```

for loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.

The syntax of a for loop in MATLAB is as following:

<u>Syntax</u>

```
<program statements>
...
end</prod
```

Example

```
for a = 10:20
fprintf('value of a: %d\n', a);
end
```

<u>if loop</u>

if expression, statements, end evaluates an expression, and executes a group of statements when the expression is true. An expression is true when its result is nonempty and contains only nonzero elements (logical or real numeric). Otherwise, the expression is false.

The elseif and else blocks are optional. The statements execute only if previous expressions in the if...end block are false. An if block can include multiple elseifblocks.

Svntax if expression statements elseif expression statements else statements end Example nrows =4 ncols =6 A = ones(nrows, ncols)for c = 1:ncols forr = 1:nrows if r == cA(r,c) = 2elseifabs(r-c) == 1 A(r,c) = -1else A(r,c) = 0end end end TONY

OUTPUT: <u>While</u>

loopvalue of a: 10 value of a: 11 value of a: 12 value of a: 13 value of a: 14 value of a: 15 value of a: 16 value of a: 17 value of a: 18 value of a: 19

for loop value

of a: 10 value of a: 11 value of a: 12 value of a: 12 value of a: 13 value of a: 14 value of a: 15 value of a: 16 value of a: 17 value of a: 18 value of a: 19 value of a: 20

if loop nrows = 4 ncols = 6 A =1 1 1 1 1 1 1 1 1 1 ON F 1 1 1 1 1 1 1 1 1 1 1 1 A =2 1

$A = 2 1 \\ -1 1 \\ 1 1 \\ 1 1 \\ 1 1$	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	
$A = 2 1 \\ -1 1 \\ 0 1 \\ 1 1$	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	2 0 0
$A = 2 1 \\ -1 1 \\ 0 1 \\ 0 1$	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	
$A = 2 -1 \\ -1 1 \\ 0 1 \\ 0 1$	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	
A = 2 -1 -1 -2 0 -1 0 -1 0 -1 0 -1 0 -1 0 -	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	LARE
A = 2 -1 -1 -2 0 -1 0 -1 0 -1	1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	N FOR LIBER
A = 2 -1 -1 -2 0 -1 0 0 0	1 1 1 1	1 1 1	1 1 1 1	1 1 1 1	

$A = \begin{bmatrix} 2 & -1 & 0 & 1 & 1 \\ -1 & 2 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$	1 1 1 1
$A = \begin{bmatrix} 2 & -1 & 0 & 1 & 1 \\ -1 & 2 & -1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$	
$A = \begin{bmatrix} 2 & -1 & 0 & 1 & 1 \\ -1 & 2 & -1 & 1 & 1 \\ 0 & -1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$	1 1 1 1
$A = \begin{bmatrix} 2 & -1 & 0 & 1 & 1 \\ -1 & 2 & -1 & 1 & 1 \\ 0 & -1 & 2 & 1 & 1 \\ 0 & 0 & -1 & 1 & 1 \end{bmatrix}$	
$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 1 \\ -1 & 2 & -1 & 1 & 1 \\ 0 & -1 & 2 & 1 & 1 \\ 0 & 0 & -1 & 1 & 1 \end{bmatrix}$	
$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 1 \\ -1 & 2 & -1 & 0 & 1 \\ 0 & -1 & 2 & 1 & 1 \\ 0 & 0 & -1 & 1 & 1 \end{bmatrix}$	TON FOR LIBER
$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 1 \\ -1 & 2 & -1 & 0 & 1 \\ 0 & -1 & 2 & -1 & 1 \\ 0 & 0 & -1 & 1 & 1 \end{bmatrix}$	

$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 1 \\ -1 & 2 & -1 & 0 & 1 \\ 0 & -1 & 2 & -1 & 1 \\ 0 & 0 & -1 & 2 & 1 \end{bmatrix}$	1 1 1 1
$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 1 \\ 0 & -1 & 2 & -1 & 1 \\ 0 & 0 & -1 & 2 & 1 \end{bmatrix}$	
$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 1 \\ 0 & 0 & -1 & 2 & 1 \end{bmatrix}$	1 1 1
$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & 1 \end{bmatrix}$	
$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \end{bmatrix}$	
$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \end{bmatrix}$	O FOR
$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \end{bmatrix}$	0 0 1 1

MATRICES

OBJECTIVES:

a) Find the addition, subtraction and multiplication of matrix

$$A = \begin{bmatrix} 1 & 2 & -9 \\ 2 & -1 & 2 \\ 3 & -4 & 3 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

b) Find the transpose of matrix

$$\mathbf{A} = \begin{vmatrix} 1 & 2 & -9 \\ 2 & -1 & 2 \\ 3 & -4 & 3 \end{vmatrix}$$

c) Find the inverse of matrix

	1	2	3
A=	2	3	2
	1	2	5

SOFTWARE REQUIRED:

- 1. MATLABR2013a.
- 2. Windows 7/XPSP2.

PROCEDURE:

- 1. OpenMATLAB
- 2. Open newM-file
- 3. Type theprogram
- 4. Save in currentdirectory
- 5. Compile and Run theprogram
- 6. For the output see command window Figurewindow

PROGRAM:

Addition. Subtraction and Multiplication of matrix

```
a=[1 2 -9; 2 -1 2; 3 -4 3];
b=[1 2 3; 4 5 6; 7 89];
disp('The matrix a= ');a
disp('The matrix b=');b
% to find sum of a and b
c=a+b;
disp('The sum of a and b is ');c
% to find difference of a and b
d=a-b;
disp('The difference of a and b is ');d
% to find multiplication of a and b
e=a*b;
disp('The product of a and b is ');e
% to find element-by-element multiplication
```

Transpose of matrix A=[1,2,-9;2,-1,2;3,-4,3] B = A.'

Inverse of matrix a = [1 2 3; 2 3 4; 1 2 5] inv (a)

OUTPUT: Addition, Subtraction and Multiplication of matrix

The matrix a=

a =

1 2 -9

The matrix b=

b =

/ 8 9

The sum of a and b is

c =

The difference of a and b is

d =

0 0-12 -2 -6 -4 -4 -12 -6

The product of a and b is

e =

-54 -60 -66 12 15 18 8 10 12

Transpose of matrix

ONF

A =

1	2	-9
2	-1	2
3	-4	3

B =

SYSTEM OF LINEAREQUATIONS

OBJECTIVES:

- a) Find the rank of matrix
 - $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 10 & 11 \\ 13 & 14 & 15 \end{bmatrix}$
- b) Find the row echelonform

 $A = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 10 & 11 \\ 13 & 14 & 15 \end{bmatrix}$

c) Find the LU decomposition of thematrix

2	-3	-1
1/2	1	-1
0	1	-1

SOFTWARE REQUIRED:

- 1. MATLABR2013a.
- 2. Windows 7/XPSP2.

PROCEDURE:

- 1. OpenMATLAB
- 2. Open newM-file
- 3. Type theprogram
- 4. Save in currentdirectory
- 5. Compile and Run theprogram
- 6. For the output see command window Figurewindow

PROGRAM:

Rank of matrix

A= [1, 2, 3; 5, 6, 7;9, 10, 11;13, 14, 15] rank (A)

Row echelon form

A = [1, 2, 3;5, 6, 7;9, 10, 11;13, 14, 15]R = rref(A)

LU decomposition

A = [2 -3 -1; 1/2 1 -1; 0 1 -1] [L, U] = lu(A)

OUTPUT: <u>Rank of matrix</u> A =					
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
ans = 2					
<u>Row echelon form</u> A =					
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
R =					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
LU decomposition A =					
2.0000 -3.0000 -1 0.5000 1.0000 -1 0 1.0000-1.00	0000 0000 00	A	R.	3	5
L =	5			1 2	÷.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 0 000			1º	
U = 2.0000 -3.0000 -1. 0 1.7500-0.75 0 0-0.5714	0000 00	V FO	RL	6	

LINEAR TRANSFORMATION

OBJECTIVES:

- a) Find the characteristic equation of thematrix
 - 2 3 1
 - 5 6 4
 - 7 8 0
- b) Find the eigen values of thematrix

 -10^{-10} 8 1 4 2 8

- 2 -5
- c) Find the eigen vector of thematrix

SOFTWARE REQUIRED:

- 1. MATLABR2013a.
- 2. Windows 7/XPSP2.

PROCEDURE:

- 1. OpenMATLAB
- 2. Open newM-file
- 3. Type theprogram
- 4. Save in currentdirectory
- 5. Compile and Run theprogram
- 6. For the output see command window Figurewindow

PROGRAM:

Characteristics equation

 $A = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 0]$ p = poly(A)

Eigen values

 $A = [1 \ 8 \ -10; \ -4 \ 2 \ 4; \ -5 \ 2$ 8 e =eig(A)

Eigenvector

A=[3,1,1;1,0,2;1,2,0]; [eigenvector, eigenvalue] = eig(A)

OUTPUT:

Characteristics equation

A =

p =

1.0000 -6.0000 -72.0000 -27.0000

Eigen values

A =

e =

11.6219 +0.0000i -0.3110 +2.6704i -0.3110 - 2.6704i

Eigenvector

eigenvector=

0.0000	0.5774	-0.8165
0.7071	-0.5774	-0.4082
-0.7071	-0.5774	-0.4082

eigenvalue =

 $\begin{array}{cccc} -2.0000 & 0 & 0 \\ 0 & 1.0000 & 0 \\ 0 & 0 & 4.0000 \end{array}$

NON F

DIFFERENTIATION AND INTEGRATION

OBJECTIVES:

a)

Solve

$$(D^2 + 5D + 6)y = e^x$$

b) Solve $\int_{0}^{5} \int_{0}^{x^{2}} x(x^{2} + y^{2}) dx dy$ c) Solve $\int_{0}^{3} \int_{0}^{3-x^{3}-x-y} dx dy$

xyzdxdydz

SOFTWARE REQUIRED:

- 1. MATLABR2013a.
- 2. Windows 7/XPSP2.

PROCEDURE:

- 1. OpenMATLAB
- 2. Open newM-file
- 3. Type theprogram
- 4. Save in currentdirectory
- 5. Compile and Run theprogram
- 6. For the output see command window Figurewindow

PROGRAM:

Higher order differential

dsolve('D2y+5*Dy+6*y=exp(x)','x')

Double Integration

```
symsx y
firstint=int(x*(x^2+y^2),y,0,x^2)
answer=int(firstint,x,0,5)
```

Triple Integration

```
symsx y z
firstans=int(int(int(x*y*z,z,0,3-x-y),y,0,3-x),x,0,3)
```

ONF

OUTPUT: <u>Higher order differential</u>

ans =

exp(x)/12 + C1*exp(-2*x) + C2*exp(-3*x)

Double Integration

firstint =

NUMERICAL DIFFERENTION AND INTEGRATION

OBJECTIVES:

a) Evaluate by using trapezoidal and simpsonsmethod

$$\int_{0}^{1.2} e^{x}$$

b) Evaluate

 $y^{1}=x+y, y(0)=1$

of size h=0.2 by using eulers and range kutta method

SOFTWARE REQUIRED:

- 1. MATLABR2013a.
- 2. Windows 7/XPSP2.

PROCEDURE:

- 1. OpenMATLAB
- 2. Open newM-file
- 3. Type theprogram
- 4. Save in currentdirectory
- 5. Compile and Run theprogram
- 6. For the output see command window Figurewindow

NON F

PROGRAM:

Trapezoidal Method:

x=0:0.2:1.2; y=exp(x); trapz(x,y)

Simpson's Method:

quad('exp(x)', 0, 1.2)

Euler's and Runge-Kutta method:

f=@(x,y) (x+y); [x,y]=ode23(f,[0:0.2:1],1) [x,y]=ode45(f,[0:0.2:1],1)

OUTPUT: Trapezoidal Method:

ans =

2.3278

Simpson's Method:

ans =

2.3201				
<u>Euler's method</u> x =				
0 0.2000 0.4000 0.6000 0.8000 1.0000				
y =				
1.0000 1.2428 1.5836 2.0442 2.6510 3.4364				
<u>Runge-Kutta method</u> x =				
0 0.2000 0.4000 0.6000 0.8000 1.0000				44
y =	n.		1	1
1.0000 1.2428 1.5836 2.0442 2.6511 3.4366	01	FO	RLI	

3D PLOTTING

OBJECTIVES:

a) Evaluate $\iint (3x^2 - 8y^2)dx + (4y - 6xy)dy$ Where the region is bounded by

 $y = x^2, y = \sqrt{x}$

- b) Plot the surface for $f = (2 \cos \pi x)e^{y}$
- c) Plot the surface for 2+cost

SOFTWARE REQUIRED:

- 1. MATLABR2013a.
- 2. Windows 7/XPSP2.

PROCEDURE:

- 1. OpenMATLAB
- 2. Open newM-file
- 3. Type theprogram
- 4. Save in current directory
- 5. Compile and Run theprogram
- 6. For the output see command window Figurewindow

PROGRAM:

Line

```
Integralclea
r all clc
symsx y
f=[3*x.^2-8*y.^2 4*y-6*x*y];
disp('Along the curve y=x.^
                            2')
a=subs(f,y,x.^2);
b=diff(x.^2,x);
c=b*a(2);
d=int(a(1),x,0,1);
e=int(c,x,0,1);
u=d+e
disp('Along the curve y=sqrt(x)')
p=subs(f,y,sqrt(x));
q=diff(sqrt(x), x);
                                NE
r=q*p(2);
s=int(p(1),x,1,0);
t=int(r,x,1,0);
v=s+t
I=u+v
x = -2:0.5:2;
y2=sqrt(x);
y1=x.^2;
plot(x,y1,'r', x,y2,'g');
grid on
```

Surface

x=-1:.1:1; y=0:.1:1.5; [X,Y]=meshgrid(x,y); F=(2-cos(pi*X)).*exp(Y); surf(X,Y,F); xlabel('x'); ylabel('y'); <u>Volume</u> t = 0:pi/10:2*pi; figure [X, Y, Z] = cylinder(2+cos(t));surf(X,Y,Z) axissquare

OUTPUT:

Line Integral Along the curve y=x.^2

u =

-1

Along the curve y=sqrt(x)

5/2

I=

3/2

<u>Volume</u>

DEFLECTION OF SIMPLY SUPPORTED BEAM

OBJECTIVES:

- a. Calculating vertical displacement with pointload.
- b. Calculating vertical displacement with uniformly distributedload.
- c. Calculating vertical displacement with uniformly varyingload.

SOFTWARE REQUIRED:

- 1. MATLABR2013a.
- 2. Windows 7/XPSP2.

PROCEDURE:

- 1. OpenMATLAB
- 2. Open newM-file
- 3. Type theprogram
- 4. Save in current directory
- 5. Compile and Run theprogram
- 6. For the output see command window Figurewindow

PROGRAM:

```
clear all
clc
 8____
fprintf (' | SSB with UDL and at Half span | \n')
fprintf(' UDL \n')
fprintf('
                                                                n')
fprintf(' | | | n')
fprintf('
                                                                  \n')
fprintf(' | ---> x \setminus n')
%Dimensions of Beam
L = 3000; %in mm
B =300;
D = 300;
% Grade of Concrete
GC = 25;
% Loading Conditions
UDL= 5;
%Calculations
E = 5000 * sqrt(GC);
I = (B^{*}(D^{3}))/12;
i = 0:
for x=0:0.2:(2*L)
i=i+1;
if x<=L
sf(i) = (((7*UDL*L)/16) - (UDL*x));
sf1(i)=0;
bm(i) = ((UDL*x)*((7*L)-(8*x))/16);
bm1(i)=0;
else sf(i) = (UDL*L)/16;
sf1(i)=0;
bm(i) = ((UDL*L)*(x-(2*L))/16);
bm1(i)=0;
end
end
%Plotting the Results
x=0:0.2:(2*L);
subplot(2,1,1)
plot(x,sf,x,sf1)
```

title('Shear Force Diagram')
xlabel('Length of Beam in mm')
ylabel('Shear Force in kN')
subplot(2,1,2)
plot(x,bm,x,bm1)
title('Bending momnent Diagram')
xlabel('Length of Beam in mm')
ylabel('Bending Moment in kN-mm')

OUTPUT: | SSB with UDL and at Half span | UDL

DEFLECTION OF CANTILEVER BEAM

OBJECTIVES:

- a. Calculating vertical displacement with point load.
- b. Calculating vertical displacement with uniformly distributedload.
- c. Calculating vertical displacement with uniformly varyingload

SOFTWARE REQUIRED:

- 1. MATLABR2013a.
- 2. Windows 7/XPSP2.

PROCEDURE:

- 1. OpenMATLAB
- 2. Open newM-file
- 3. Type theprogram
- 4. Save in current directory
- 5. Compile and Run theprogram
- 6. For the output see command window Figurewindow

PROGRAM:

```
clear all
clc
fprintf('Fixed beam with point load at the guarter span \n')
fprintf(' PL \n')
fprintf(' | | \setminus n')
fprintf('|
                                                                         \n')
fprintf('| | | n')
fprintf('|----L/2---|-
                                                                         n')
fprintf(' | ---> x \setminus n')
 %Dimensions of Beam
L = 3000\% in mm;
 = 300% in mm;
В
 = 300% in mm;
D
 % Grade of Concrete
GC = 25\% in N/mm^2;
% Loading Conditions
PL=5;
% Fixed end moments
Ma = ((PL*L)/6);
Mb = ((PL*L)/24);
Mc=-((PL*L)/48);
%Reactions at support
Ra = (PL/2) + ((Ma+Mb)/L);
                               ON 1
Rc=((Ma-Mb)/(2*L));
Rb=PL-Ra-Rc;
 i=0;
for x=0:0.1:(3*L)
i=i+1;
if x < (L/2);
sf(i)=Ra;
sf1(i)=0;
bm(i) = ((Ra*x) - Ma);
bm1(i)=0;
else if(L/2)<x<L;</pre>
sf(i) = (Ra-PL);
sf1(i)=0;
bm(i) = (Ra*x) + (PL*(x-(L/2))) - Ma;
bm1(i) = 0;
    else L<x<(3*L);</pre>
```

```
sf(i) = (Ra - PL + Rb);
sf1(i)=0;
bm(i) = ((Ra*x) + (PL*(x-(L/2))) - Ma+Rb(x-L));
bm1(i) = 0;
end
end
end
x=0:0.1:(3*L);
subplot(2,1,1)
plot(x,sf,x,sf1)
title('Shear ForceDiagram')
xlabel('Length of Beam in mm')
ylabel('Shear Force in kN')
subplot(2,1,2)
plot(x,bm,x,bm1)
title('Bending momnent Diagram')
xlabel('Length of Beam in mm')
ylabel('Bending Moment in kN-mm')
                   TONI
```


FORMULATION OF IDEAL AND REAL GAS EQUATIONS

OBJECTIVES:

- a. Calculating the pressure, temperature, density for Earth's atmospheric conditions at differentaltitudes.
- b. Calculating the pressure, temperature, density for other planets at differentaltitudes.

SOFTWARE REQUIRED:

- 1. MATLABR2013a.
- 2. Windows 7/XPSP2.

PROCEDURE:

- 1. OpenMATLAB
- 2. Open newM-file
- 3. Type theprogram
- 4. Save in current directory
- 5. Compile and Run theprogram
- 6. For the output see command window Figurewindow

PROGRAM:

Pressure. temperature. density for Earth's atmospheric conditions at different altitudes %PRESSURE PROFILE

```
clc;
clear all;
T=288.15;
G=9.81;
P1=101325;
R=287;
H=0:1000:1000000;
P=P1*exp((-G*H)/(R*T));
plot(P,H)
title('PRESSURE PROFILE')
xlabel('P')
ylabel('H')
```

```
%ISA PROFILE
clc;
clearall;
t(1)=288.15;
x(1) = 0;
i=1;
for h=1000:1000:32000
x(i+1) = h;
if x(i)>=0 && x(i)<11000
lp=-0.0065;
alt(i) = x(i+1) - x(i);
t(i+1)=t(i)+lp*alt(i);
elseifx(i)>=11000 && x(i)<=20000
lp=0;
alt(i) = x(i+1) - x(i);
t(i+1)=t(i)+lp*alt(i);
else
lp=0.001;
alt(i) = x(i+1) - x(i);
t(i+1)=t(i)+lp*alt(i);
end
i=i+1;
end
plot(t,x)
xlabel('temperature')
```

ylabel('altitude')
%DENSITY PROFILE
clc;
clear all;
T=288.15;
G=9.81;
RH01=1.225;
R=287;
H=0:1000:100000;
RH0=RH01*exp((-G*H)/(R*T));
plot(RH0,H)
title('DENSITY PROFILE')
xlabel('RH0')
ylabel('H')

A TON F

OUTPUT: <u>Pressure. temperature. density for Earth's atmospheric conditions at different altitudes</u>

