

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	PRODUCTION TECHNOLOGY LABORATORY								
Course Code	AME107								
Programme	B.Tech								
Semester	IV ME								
Course Type	Core								
Regulation	IARE - R16								
		Theory	Practical						
Course Structure	Lecture	s Tutorials	Credits	Laboratory	Credits				
	3	1	4	3	2				
Chief Coordinator	Dr. G. Na	veen Kumar, Profe	ssor						
Course Faculty		aveen Kumar, Profe besh Kumar , Assi							

I. COURSE OVERVIEW:

The aim of this course is to conduct experiments chiefly encompasses Metal casting, Welding, Press working and processing of Plastics. It inculcates knowledge and skill to the students starting from preparing a wooden pattern to completion of a casting which also comprises different Sand testing techniques. Also, students can understand broadly Welding and press working skills employed in Industries. One of the most outstanding features of plastics is the ease with which they can be processed. Production Technology lab also throws light on processing of plastics by Blow and Injection molding machines.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits		
UG	AME005	III	Metallurgy and material science	3		

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Production Technology Laboratory	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs				
×	LCD / PPT	✓ Demonstration		~	Experimentation	~	Videos				
×	Open Ended Experiments										

V. **EVALUATION METHODOLOGY:**

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	L			
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks	
CIA Marks	20	10	30	

Table 1. Assessment pattern for CIA

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total	
2	2	2	2	2	10	

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	SEE, CIE
	mathematics, science, engineering fundamentals, and an		
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Day to Day Evaluation
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences.		
PO 3	Design/development of solutions: Design solutions for	2	Day to Day Evaluation
	complex engineering problems and design system		
	components or processes that meet the specified needs		
	with appropriate consideration for the public health and		
	safety, and the cultural, societal, and environmental		
	considerations.		
PO 9	Individual and team work: Function effectively as an	2	Day to Day Evaluation
	individual, and as a member or leader in diverse teams,		
	and in multidisciplinary settings.		
	2 High 2 Madium 1 Law		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams.	2	Day to Day Evaluation
PSO 2	Problem solving skills: An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.	2	Day to Day Evaluation
PSO 3	Successful career and Entrepreneurship: To build the nation, by imparting technological inputs and managerial skills to become technocrats.	1	Presentation on real-world problems

3 = **High**; **2** = **Medium**; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:								
Ι	Understand practical orientation of manufacturing processes.								
II	Knowledge on different kinds of production processes and practices available for shaping or molding several daily used parts for industries.								
III	Determine bending and shearing strength for different materials								
IV	Evaluate the performance of welding joints.								
v	Understand Selection of equipment's for various manufacturing processes will be understood.								

IX. COURSE LEARNING OUTCOMES (CLOs):

AME107.01 AME107.02 AME107.03	CLO 2	Understand the Pattern design and making, casting drawing	PO 1, PO 2, PO 3, PO 9	Mapping 3
			107	
ME107.03		Utilize and determination of Sand properties testing for strengths and permeability	PO 1, PO 2, PO 3, PO 9	3
		Demonstrate practical understanding Moulding, melting and casting	PO 1, PO 2, PO 3, PO 9	3
AME107.04		Demonstrate practical understanding of ARC welding lap and butt joint	PO 1, PO 2, PO 3, PO 9	2
AME107.05	CLO 5	Demonstrate practical understanding of Spot welding, TIG welding	PO 1, PO 2, PO 3, PO 9	2
AME107.06	CLO 6	Demonstrate practical understanding of Plasma welding and brazing (water plasma device).	PO 1, PO 2, PO 3, PO 9	2
AME107.07	CLO 7	Understand Blanking and piercing, operation and study of simple, compound and progressive press tool.	PO 1, PO 2, PO 3, PO 9	1
AME107.08		Demonstrate practical understanding of Hydraulic press, deep drawing and extrusion operation.	PO 1, PO 2, PO 3, PO 9	1
AME107.09	CLO 9	Understand the Bending and other operation	PO 1, PO 2, PO 3, PO 9	2
AME107.10		Demonstrate practical understanding Injection moulding process	PO 1, PO 2, PO 3, PO 9	2
AME107.11		Demonstrate practical understanding Blow moulding process	PO 1, PO 2, PO 3, PO 9	3
AME107.12	CLO 12	Demonstrate practical understanding MIG welding exercises and Riveting of plates.	PO 1, PO 2, PO 3, PO 9	3

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)													Program Specific Outcomes (PSOs)		
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CLO 1	3								3				1	2			
CLO 2	3		3						3				1				
CLO 3	3		3						3				1	2			
CLO 4	2	2							2				1	2			
CLO 5	2		2						2				1	2			
CLO 6	2	2							2					2			
CLO 7	1	1	1						1				1				
CLO 8	1	1	1						1					2			
CLO 9	2	2							2					2			
CLO 10	2		2						2				1				

Course Learning										Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 11	3		3						3					2	
CLO 12	3	3	1						3				1		

3 = **High**; **2** = **Medium**; **1** = **Low**

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2, PO 4, PO 9	SEE Exams	PO 1, PO 2, PO 4, PO 9	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 2, PO 4, PO 9	Student Viva	-	Mini Project	-	Certification	-

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

LIST OF EXPERIMENTS								
Week-1	PATTERN MAKING							
Pattern design and making, casting drawing.								
Week-2	SAND PROPERTIES TESTING							
Sand proper	Sand properties testing for strengths and permeability.							
Week-3	METAL CASTING							
Moulding, n	Moulding, melting and casting.							
Week-4	ARC WELDING							
ARC welding lap and butt joint.								
Week-5	SPOT WELDING							
Spot welding	g, TIG welding.							
Week-6	PLASMA WELDING AND BRAZING							
Plasma weld	Plasma welding and brazing (water plasma device).							
Week-7	APPLICATION OF SIMPLE AND COMPOUND DIE							
Blanking and piercing, operation and study of simple, compound and progressive press tool.								
Week-8	APPLICATION OF PROGRESSIVE DIE							
Hydraulic press: deep drawing and extrusion operation.								

Week-9	MECHANICAL PRESS WORKING							
Bending an	Bending and other operation.							
Week-10	PROCESSING OF PLASTICS							
Injection m	Injection moulding.							
WeeK-11	PROCESSING OF PLASTICS							
Blow moulding.								
Week-12	BEYOND SYLLABUS							
MIG welding exercises and Riveting of a plates.								

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Pattern design and making, casting drawing.	CLO 1	T1:1.4 R1:1.2
2	Sand properties testing for strengths and permeability.	CLO 2	T1:1.5 R1:2.4
3	Moulding, melting and casting.	CLO 3	T1:2.5 R1:2.5
4	ARC welding lap and butt joint.	CLO 4	T1:2.5 R1:2.6
5	Spot welding, TIG welding.	CLO 5	T1:22.7
6	Plasma welding and brazing (water plasma device).	CLO 6	T1:6.3 R1:5.3
7	Blanking and piercing, operation and study of simple, compound and progressive press tool.	CLO 7	T1:7.5 R1:6.3
8	Hydraulic press: deep drawing and extrusion operation.	CLO 8	T1:8.5 R1:6.8
9	Bending and other operation.	CLO 9	T1:12.2 R1:13.1
10	Injection moulding.	CLO 10	T1:12.3 R1:13.2
11	Blow moulding.	CLO 11	T1:12.10 R1:13.7
12	MIG welding exercises and Riveting of a plates.	CLO 12	T1:11.2 R1:10.2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Class room teaching, Video Lecture	PO 1, PO 4	PSO 1

Prepared by:

Dr. G. Naveen Kumar, Professor Mr. C. Labesh Kumar, Assistant Professor