

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title		MECHANICS OF FLUIDS AND HYDRAULIC MACHINES LABORATORY								
Course Code	AME108	AME108								
Programme	B.Tech	B.Tech								
Semester	IV ME	IV ME								
Course Type	Core	Core								
Regulation	IARE - R16									
		Theory	Practical							
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits					
	3	1	4	3	2					
Chief Coordinator	Dr. CH.V.K	X.N.S.N Moorthy	, Professor							
Course Faculty	Dr. CH.V.K.N.S.N Moorthy, Professor Mr. A. Somaiah, Assistant Professor									

I. COURSE OVERVIEW:

The aim of this course is to conduct experiments on basic principles of fluid mechanics and it is further extended to cover the application of fluid mechanics by the inclusion of fluid machinery. Nowadays the principles of fluid mechanics find wide applications in many situations. The course deals with the fluid machinery, like turbines, pumps in general and in power stations. This course includes experiments deal with the study of water.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS007	I	Applied Physics	4
UG	AME002	II	Engineering Mechanics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Mechanics of Fluids and Hydraulic Machines Laboratory	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk			×	Assignments		MOOCs			
~	LCD / PPT	×	Seminars	×	Mini Project	~	Videos			
~	✓ Open Ended Experiments									

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	L	Total Manks		
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks	
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex	3	Calculations of the observations
PO 2	engineering problems. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Characteristic curves
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Seminar
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Term observations

 $^{3 = \}text{High}$; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: To produce engineering professional capable of synthesizing and analyzing	2	Seminar
	mechanical systems including allied engineering streams.		
PSO 2	Problem solving skills: An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.	2	Seminar
PSO 3	Successful career and Entrepreneurship: To build the nation, by imparting technological inputs and managerial skills to become technocrats.	1	Presentation on real-world problems

 $^{3 = \}text{High}$; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:							
I	Demonstrate the basic principles of fluid mechanics.							
II	Analyze the effect of friction on flow through pipes.							
III	Estimate the performance of hydraulic turbines.							
IV	Evaluate the functioning and characteristic curves of pumps.							

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AME108.01	CLO 1	Understand basic units of measurement, convert units, and appreciate their magnitudes.	PO 1	3
AME108.02	CLO 2	Utilize basic measurement techniques of fluid mechanics.	PO 1, PO 3	3
AME108.03	CLO 3	Measure fluid pressure and relate it to flow velocity.	PO 1, PO 3	3
AME108.04	CLO 4	Demonstrate practical understanding of the various equations of Bernoulli.	PO 1, PO 2, PO 4	2
AME108.05	CLO 5	Demonstrate practical understanding of friction losses in internal flows.	PO 1, PO 3	2
AME108.06	CLO 6	Compare the results of analytical models introduced in lecture to the actual behavior of real fluid flows and draw correct and sustainable conclusions.	PO 1, PO 2, PO 4	2
AME108.07	CLO 7	Calculate the performance analysis in turbines can be used in power plants.	PO 1, PO 2, PO 3	1
AME108.08	CLO 8	Calculate the performance analysis in pumps.	PO 1, PO 2, PO 3	1
AME108.09	CLO 9	Draw and analysis of performance characteristic curves of pumps.	PO 1, PO 2	2
AME108.10	CLO 10	Draw and analysis of performance characteristic curves of turbines.	PO 1, PO 3	2
AME108.11	CLO 11	Draw and analysis of characteristic curves of flow meters.	PO 1, PO 3	3
AME108.12	CLO 12	Determine the coefficient of impact of different types of vanes.	PO 1, PO 2	3
AME108.13	CLO 13	Determine the coefficient of discharge of different types of flow meters.	PO 1, PO 3	3
AME108.14	CLO 14	Determine the friction factor of different types of cross section of pipes.	PO 1, PO 2	2
AME108.15	CLO 15	Draw the characteristic curves of friction apparatus.	PO 1, PO 3, PO 4	2
AME108.16	CLO 16	Determine the friction factor using moody's chart.	PO 1, PO 2	2
AME108.17	CLO 17	Applying the Darcy's Weisbach equation for the measurement of coefficient of friction.	PO 1, PO 2	3
AME108.18	CLO 18	Evaluate the performance of hydraulic turbines.	PO 1, PO 2	2
AME108.19	CLO 19	Evaluate the performance of hydraulic pumps.	PO 1, PO 3, PO 4	1
AME108.20	CLO 20	Analyze flow in closed pipes, and design and selection of pipes including sizes.	PO 1, PO 2	1
AME108.21	CLO 21	Explain the working principle of various types of hydro turbines and know their application range	PO 1, PO 2, PO 3, PO 4,	2
AME108.22	CLO 22	Demonstrate the various types of major and minor losses in pipes and explain flow between parallel plates.	PO 3, PO 4,	2

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning								Program Specific Outcomes (PSOs)							
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1	2	
CLO 2	3		3										1		
CLO 3	3		3										1	2	
CLO 4	2	2		2									1	2	
CLO 5	2		2										1	2	
CLO 6	2	2		2										2	
CLO 7	1	1	1										1		
CLO 8	1	1	1											2	
CLO 9	2	2												2	
CLO 10	2		2										1		
CLO 11	3		3											2	
CLO 12	3	3											1		
CLO 13	3		3										1	2	
CLO 14	2	2											1		
CLO 15	2		2	2									1	2	
CLO 16	2	2											1		
CLO 17	3	3											1		
CLO 18	2	2											1	2	
CLO 19	1		1	1										2	
CLO 20	1	1												2	
CLO 21	2	2	2	2									1	2	
CLO 22			2	2									1	2	

³ = **High**; **2** = **Medium**; **1** = **Low**

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 4	SEE Exams	PO 1, PO 2 PO 3, PO 4	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 2 PO 3, PO 4	Student Viva	-	Mini Project	-	Certification	-

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

LIST OF EXPERIMENTS				
Week-1	VENTURIMETER			
Determination of coefficient of discharge (C _d) and generation of various characteristic curves for water flowing through Venturimeter				
Week-2	ORIFICE METER			
Determination of coefficient of discharge (C _d) and generation of various characteristic curves for water flowing through Orifice meter.				
Week-3	PIPE FRICTION			
Determination	on of friction factor for a given pipe line.			
Week-4	BERNOULLI'S THEOREM			
Verification	of Bernoulli's theorem.			
Week-5	IMPACT OF JET ON VANES			
Determination	on of Impact of jet on various types of Vanes.			
Week-6	PELTON WHEEL TURBINE			
Performance	test on Pelton wheel and generate various characteristic curves.			
Week-7	FRANCIS TURBINE			
Performance	Test on Francis Turbine and generate various characteristic curves.			
Week-8	KAPLAN TURBINE			
Performance	Test on Kaplan wheel and generate various characteristic curves.			
Week-9	CENTRIFUGAL PUMP			
Performance Test on Centrifugal Pump and generate various characteristic curves				
Week-10	MULTI-STAGE CENTRIFUGAL PUMP			
Performance Test on Multistage Centrifugal Pump and generate various characteristic curves				
WeeK-11	RECIPROCATING PUMP			
Performance	Performance Test on Reciprocating Pump and generate various characteristic curves			
Week-12	MINIOR LOSSES			
Determination of losses of head due to sudden contraction in a pipe line.				

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week	Topics to be covered	Course Learning Outcomes	Reference
No.		(CLOs)	Reference
	Determination of coefficient of discharge (Cd) and	CLO 1, CLO 2, CLO 3,	T1:1.4
1	generation of various characteristic curves for	CLO 6	R1:1.2
	water flowing through Venturimeter	CEO 0	K1.1.2
	Determination of coefficient of discharge (Cd) and	CLO 1, CLO 2, CLO 3,	T1:1.5
2	generation of various characteristic curves for	CLO 6	R1:2.4
	water flowing through Orifice meter.	<u></u>	
3	Determination of friction factor for a given pipe	CLO 5, CLO 6, CLO 14,	T1:2.5
	line.	CLO 15, CLO 17	R1:2.5
4	Verification of Bernoulli's theorem.	CLO 4, CLO 6	T1:2.5
		CLO 4, CLO 0	R1:2.6
5	Determination of Impact of jet on various types of	CLO 12, CLO 6	T1:22.7
	Vanes.	<u> </u>	
6	Performance test on Pelton wheel and generate	CLO 7, CLO 10, CLO 18,	T1:6.3
	various characteristic curves.	CLO 21	R1:5.3
7	Performance Test on Francis Turbine and generate	CLO 7, CLO 10, CLO 18,	T1:7.5
,	various characteristic curves.	CLO 21	R1:6.3
8	Performance Test on Kaplan wheel and generate	CLO 7, CLO 10, CLO 18,	T1:8.5
	various characteristic curves.	CLO 21	R1:6.8
9	Performance Test on Centrifugal Pump and	CLO 8, CLO 9, CLO 19	T1:12.2
	generate various characteristic curves	CLO 8, CLO 3, CLO 13	R1:13.1
10	Performance Test on Multistage Centrifugal Pump	CLO 8, CLO 9, CLO 19	T1:12.3
	and generate various characteristic curves	CLO 6, CLO 3, CLO 13	R1:13.2
11	Performance Test on Reciprocating Pump and	CLO 8, CLO 9, CLO 19	T1:12.10
11	generate various characteristic curves		R1:13.7
	Determination of losses of head due to sudden	CLO 11,	T1:11.2
12	contraction in a pipe line.	CLO 13, CLO 16, CLO 20,	R1:10.2
		CLO 22	131.10.2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and	CASE STUDIES	PO 1, PO 4	PSO 1
	analyze the concepts.			
2	Conditional probability,	NPTEL	PO 4, PO3	PSO 1
	Sampling distribution,			
	correlation, regression analysis			
	and testing of hypothesis			
3	Encourage students to solve	INTERNSHIPS	PO 2	PSO 1
	real time applications and			
	prepare towards competitive			
	examinations.			

Prepared by:

Dr. CHVKNSN Moorthy, Professor Mr. A Somaiah, Assistant Professor

HOD, MECHANICAL ENGINEERING