MACHINE DRAWING THROUGH CAD LABORATORY

LAB MANUAL

Subject Code : AMEB07
Regulations : IARE-R18
Class : III Semester
Branch : ME

Prepared By

Dr. G.V.R. Seshagiri Rao, Associate Professor
Mr. M. Sunil Kumar, Assistant Professor

MECHANICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad - 500043

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043, Telangana

Certificate

This is to certify that Mr. / Ms.
bearing roll no of B. Tech semester branch has
satisfactorily completed \qquad laboratory during
\qquad .

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043

Program Outcomes		
PO1	Engineering Knowledge: Capability to apply knowledge of Mathematics, Science Engineering in the field of Mechanical Engineering	
PO2	Problem Analysis: An ability to analyze complex engineering problems to arrive at relevant conclusion using knowledge of Mathematics, Science and Engineering.	
PO3	Design/ Development of solution: Competence to design a system, component or process to meet societal needs within realistic constants.	
PO4	Conduct investigation of complex problems: To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies.	
PO5	Modern Tool usage: An ability to formulate, solve complex engineering problems using modern engineering and information technology tools.	
PO6	The Engineer society: To utilize the engineering practices, techniques, skills to meet needs of health, safety legal, cultural and societal issues.	
PO7	Environment and Sustainability: To understand the impact of engineering solution in the societal context and demonstrate the knowledge for sustainable development.	
PO8	Ethics: An understanding and implementation of professional and Ethical responsibilities.	
PO9	Individual Team work: To function as an effective individual and as a member or leader in multi- disciplinary environment and adopt in diverse teams.	
PO10	Communication: An ability to assimilate, comprehends, communicate, give and receive instructions to present effectively with engineering community and society.	
PO11	Project Management and Finance: An ability to provide leadership in managing complex engineering project at multi-disciplinary environment and to become a professional engineer.	
PO12	Life-Long learning: Recognition of the need and an ability to engage in lifelong learning to keep abreast with technological changes.	
	Program Specific Outcomes	
PSO1	Professional Skills: To produce engineering professional capable of synthesizing and analyzing mechanical system including allied engineering streams.	
PSO2	Design/ Analysis: An ability to adapt and integrate current technologies in the design and manufacturing domain to enhance the employability.	
PSO3	Successful Career and Entrepreneurship: To build the nation by imparting technological inputs and managerial skills to become a technocrats.	

ATTAINMENT OF PROGRAM OUTCOMES

AND PROGRAM SPECIFIC
OUTCOMES

Week No.	Experiment	Program Outcomes Attained	Program Specific Outcomes Attained
1	Conventional representation	$\begin{gathered} \text { PO1, } \mathrm{PO2}, \mathrm{PO} 3, \\ \mathrm{PO5} \end{gathered}$	PSO1, PSO2
2	Sectional views	$\begin{gathered} \mathrm{PO1,} \mathrm{PO2,PO3,} \\ \mathrm{PO} 5 \end{gathered}$	PSO1, PSO2
3	Dimensioning	$\begin{gathered} \text { PO1, PO2, PO3, } \\ \text { PO5 } \\ \hline \end{gathered}$	PSO1, PSO2
4	Working drawings	$\begin{gathered} \mathrm{PO1,} \mathrm{PO2,PO3,} \\ \mathrm{PO} 5 \end{gathered}$	PSO1, PSO2
5	Machine elements	$\begin{aligned} & \mathrm{PO1,} \mathrm{PO} 2, \mathrm{PO} 3, \\ & \mathrm{PO} 5 \end{aligned}$	PSO1, PSO2
6	Keys and cotter joints	$\begin{gathered} \mathrm{PO1,} \mathrm{PO} 2, \mathrm{PO}, \\ \mathrm{PO} 5 \end{gathered}$	PSO1, PSO2
7	Riveted joints	$\begin{gathered} \mathrm{PO1,} \mathrm{PO} 2, \mathrm{PO} 3, \\ \mathrm{PO} 5 \end{gathered}$	PSO1, PSO2
8	Couplings	$\begin{aligned} & \mathrm{PO1,} \mathrm{PO2,} \mathrm{PO3,} \\ & \text { PO5 } \end{aligned}$	PSO1, PSO2
9	Bearings	$\underset{\substack{\mathrm{PO} 1, \mathrm{PO} 2, \mathrm{PO} 3, \mathrm{PO}}}{\substack{\text { P } \\ \hline}}$	PSO1, PSO2
10	Assembly drawings-Engine parts : Stuffing box	$\begin{gathered} \mathrm{PO} 1, \mathrm{PO} 2, \mathrm{PO}, \\ \mathrm{PO} 5 \end{gathered}$	PSO1, PSO2
11	Assembly drawings : Connecting rod and eccentric	$\begin{aligned} & \text { PO1, PO2, PO3, } \\ & \text { PO5 } \end{aligned}$	PSO1, PSO2
12	Assembly drawings: Screw jack	$\begin{gathered} \text { PO1, } \mathrm{PO} 2, \mathrm{PO}, \\ \mathrm{PO} 5 \end{gathered}$	PSO1, PSO2
13	Assembly drawings: Machine vice and tailstock	$\begin{gathered} \mathrm{PO1,} \mathrm{PO} 2, \mathrm{PO}, \\ \mathrm{PO} 5 \end{gathered}$	PSO1, PSO2
14	Assembly drawings Rams-bottom Safety Valve, feed check valve	$\begin{gathered} \mathrm{PO1,} \mathrm{PO} 2, \mathrm{PO}, \\ \mathrm{PO} 5 \end{gathered}$	PSO1, PSO2

Ex.No	Date	Name of the Experiment	Page No	Staff Signature
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

INDEX

Ex.No	Date	Name of the Experiment	Page No	Staff Signature
11				
12				
13				
14				

Signature of Faculty - in-charge
Signature of HOD

MACHINE DRAWING THROUGH CAD LABORATORY

III Semester: ME

Course Code	Category	Hours / Week			Credits	Maximum Marks		
AME105	Core	L	T	P	C	CIA	SEE	Total
		-	-	$\mathbf{3}$	$\mathbf{2}$	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 42				Total Classes: 42		

OBJECTIVES:

The course should enable students to
I. Understand Code of drawing practice as per BIS conventions for mechanical elements using AutoCAD.
II. Practice the drawing methods for sectioning of joints, couplings, bearings, keys.
III. Prepare assembly drawings, sectional views and bill of materials for selectedassemblies.

LIST OF EXERCISES

Week-1 CONVENTIONAL REPRESENTATION

Conventional representation of materials, common machine elements and parts such as screws, nuts, bolts, keys, gears, webs and ribs; Introduction to AutoCAD.

Week-2 \quad SECTIONAL VIEWS

Types of sections, selection of section planes and drawing of sections and auxiliary sectional views, parts not usually sectioned.

Week-3 DIMENSIONING

Methods of dimensioning, general rules for sizes, and placement of dimensions for holes, centers, and curved and tapered features.

Week-4 \quad WORKING DRAWINGS

Types of drawings-working drawings for machine parts.

Week-5 MACHINE ELEMENTS

Drawing of machine elements and simple parts; Selection of orthogonal views and additional views for the following machine elements and parts with every drawing proportion, popular forms of screw threads, bolts, nuts, stud bolts.

Week-6 KEYS AND COTTER JOINTS

Keys, cotter joints, and knuckle joint.
Week-7 \quad RIVETED JOINTS
Riveted joints for plates.
Week-8 COUPLINGS
Shaft coupling and spigot joint.
Week-9 BEARINGS
Journal, pivot, and collar bearing.
Week-10 ASSEMBLY DRAWINGS-ENGINE PARTS

Week-11 CONNECTING ROD AND ECCENTRIC

Eccentrics, I.C. engine connecting rod.

WeeK-12 SCREW JACK

Screw jack.

Week-13 TAIL STOCK AND MACHINE VICE

Machine vice and tailstock.

Week-14 SAFETY VALVES

Rams-bottom Safety Valve, feed check valve.
Text Books:
1.K.L. Narayana, P. Kannaiah, K. Venkata Reddy, "Machine Drawing", New Age Publishers, 3rd Edition, 2012.
2. P.S Gill, "Machine Drawing", S.K Kataria \& Sons, 1stEdition, 2013.
3. N. D. Bhatt, V. M Pancahal, "Machine Drawing", Charotar, 2014.
4. R. K. Dhavan, "A Text book of Machine Drawing", S.Chand Publication \& Co, New Delhi, 2nd Edition, 2008.

Web References:

1. http://web.iitd.ac.in/~achawla/public_html/201/sheets/sheet5/sheet5.pdf
2. https://drive.google.com/file/d/0B_GCh7LMfHf6Z0VNWTNHU3pMSTg/view?pref=2\&pli=1
3. http://www.uiet.co.in/downloads/20140911122818-Machine20Drawing.pdf
4. http://listpdf.com/ma/machine-drawing-book-pdf.html

Course Home Page:

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 36 STUDENTS:

SOFTWARE: System Software: Microsoft Windows 7.
Application Software: AutoCAD.
HARDWARE: 36 numbers of Desktop Computer Systems

Introduction:

DESIGNATION AND RELATIVE POSITIONS OF VIEWS

An object positioned in space may be imagined as surrounded by six mutually perpendicular planes. So, for any object, six different views may be obtained by viewing at it along the six directions, normal to these planes. Figure 1.0 shows an object with six possible directions to obtain the different views which are designated as follows:

View in the direction $\mathbf{a}=$ view from the front
View in the direction $\mathbf{b}=$ view from above

Fig. 1.0
View in the direction $\mathrm{c}=$ view from the left

View in the direction $\mathrm{d}=$ view from the right

View in the direction $\mathrm{e}=$ view from below

View in the direction $\mathrm{f}=$ view from the rear

Figure $1.1 a$ shows the relative positions of the above six views in the first angle projection and Fig.1.1 b, the distinguishing symbol of this method of projection. Figure $1.2 a$ shows the relative position of the views in the third angle projection and Fig. 1.2b, the distinguishing symbol of this method of projection

Fig. 1.1

TYPES OF LINES

Illustration	Application
Thick	Outlines, visible edges, surface boundaries of objects, margin lines
Continuous thin	Dimension lines, extension lines, section lines leader or pointer lines, construction lines, boarder lines
Continuous thin wavy	Short break lines or irregular boundary lines - drawn freehand
Continuous thin with zig-zag	Long break lines
Short dashes, gap 1, length 3 mm	Invisible or interior surfaces
Short dashes	Center lines, locus lines Alternate long and short dashes in a proportion of 6:1,
Long chain thick at end and thin elsewhere	Cutting plane lines

WEEK-I - CONVENTIONAL REPRESENTATION

Exercise No. 1 Conventional Representation of Materials

Exercise No. 2 Conventional Representation of Common Machine Elements

(b)

Exercise No. 3 Conventional Representation of Machine Parts

Title	Subject	Convention
Straight knurling		
Diamond knurling		
Square on shaft	(両) $\frac{\square}{6}$	
Holes on circular pitch		
Bearings		
External screw threads (Detai)		
Internal screw threads (Detail)		
Screw threads (Assembly)		

(c)

Exercise No. 4 Conventional Representation Of Screws.

Screw Thread Forms: Various forms of threads are used to hold parts together, to adjust parts with reference to each other, or to transmit power.

(d)metric

(g) Whitworth standard

(b) AMERICAN NATIONAL

(e) SOUAARE

(h) KNuCKle

(c) UNFFIEO (EXTERNAL)

(j) euttress

Exercise No. 5 Conventional Representation of Nuts And Bolts

BOLT

SCREW

STUD

HEXAGONAL HEADED BOLT WITH NUT AND WASHER

WEEK-II

SECTIONAL VIEWS
Orthographic views when carefully selected may reveal the external features of even the most complicated objects.
However, there are objects with complicated interior details and when represented by hidden lines, may not effectively reveal the true interior details. This may be overcome by representing one or more of the views 'in section'.

A sectional view is obtained by imagining the object, as if cut by a cutting plane and the portion between the observer and the section plane being removed. Figure. $1(a)$ shows an object, with the cutting plane passing through it and Fig. $1(b)$, the two halves drawn apart, exposing the interior details.

Fig 1 (a)
Fig 1(b)

Fig.1.0 Principles of sectioning

In order to show such features clearly, one or more views are drawn as if a portion had been cut away to reveal the interior This procedure is called sectioning and the view showing the cut away picture is called section view. A section is an imaginary cut taken through an object to reveal the shape or interior construction.

Fig. 2a shows the imaginary cutting plane in perspective view.
The imaginary cutting plane is projected on a standard view so that the sectional view with orthographic representation is obtained as shown in Fig. 2 b .

A sectional view must show which portions of the object are solid material and which are spaces. This is done by section lining (cross-hatching) the solid parts with uniformly spaced thin lines generally at 45°.

PICTORIAL VIEW
(a)

FULL SECTION VIEW
(b)

Fig. 2 sectional view

Types of Sections

Depending on the number of cutting planes, sectional views can be simple with one cutting plane (Fig. 3) or complex with two or more cutting planes (Fig.4).

If the cutting plane-line cuts entirely across the object, it is called a full section.
If the cutting plane cuts halfway through the object, it is a half section.
In addition to these, there are broken-out sections, rotated sections, removed sections, auxiliary sections, and assembly sections.

Fig. 3 sectional views can be simple with one cutting plane

Fig. 4 sectional views can be complex with two or more cutting planes

Exercise No. 6

Full Section

A sectional view obtained by assuming that the object is completely cut by a plane is called a full section or sectional view. shown in Fig. 5.1 a, in full section. The sectioned view provides all the inner details, better than the unsectioned view with dotted lines for inner details (Fig. $5.1 b$). The cutting plane is represented by its trace (V.T) in the view from the front (Fig. 5.1c) and the direction of sight to obtain the sectional view is represented by the arrows.

When cutting plane passes fully through an object, it is called full section

Fig. 5 Sectioned and un-sectioned views
It may be noted that, in order to obtain a sectional view, only one half of the object is imagined to be removed, but is not actually shown removed anywhere except in the sectional view. Further, in a sectional view, the portions of the object that have been cut by the plane are represented by section lining or hatching. The view should also contain the visible parts behind the cutting plane.

Figure. 6 Full Sectional View

Exercise No. 7

Half Section

A half sectional view is preferred for symmetrical objects. For a half section, the cutting plane removes only one quarter of an object. For a symmetrical object, a half sectional view is used to indicate both interior and exterior details in the same view.

A half section is made by cutting halfway through an object (Fig. 7). Thus, one half is drawn in section and the other half is a side view, usually, hidden lines are not used (inside details are visible on the section view).

Fig. 7 Half Section
Auxiliary sections may be used to supplement the principal views used in orthographic projections. A sectional view projected on an auxiliary plane, inclined to the principal planes of projection, shows the cross-sectional shapes of features such as arms, ribs and so on. In Fig.8, auxiliary cutting plane X-X is used to obtain the auxiliary section X-X

Fig. 8 Auxiliary section

Exercise No. 8

Assembly Sections

Assembly sections consist of a combination of parts.
The purpose of an assembly section is to reveal the interior of a machine or structure so that the separate parts can be clearly shown and identified. However, the separate parts do not need to be described.

In assembly drawing, only such hidden details (as needed for part identification or dimensioning) are drawn.

Fig. 9 Assembly section

Exercise No. 9

Hidden Edges and Surface in Section

Sections are primarily used to replace hidden lines with visible lines. As a rule, hidden lines and surfaces should be omitted in sectional views.

Thus, preferred sectional view should be as in Fig. 10.
In some cases, hidden edges and surfaces can be shown for describing the object

Fig . 10 Hidden Edges and surfaces in section

Section Lining (Cross Hatching)

Section lining of a cut surface is indicated by fine lines, which are drawn as continuous lines usually at an angle of 45° with uniform distance (about 2 mm). For smaller or larger areas, distance between lines can be from 1 mm to 4 mm .

Section lining or cross-hatching lines should not be parallel or perpendicular to any main visible line bounding the sectioned area.

incorrect

correct

Fig. 11 Cross Hatching
Ribs and webs are used to strengthen the parts. When the cutting plane passes through the ribs lengthwise, cross-hatching would give the misleading impression that the section was conical (Fig.12).

Therefore, cross-hatching is eliminated from the ribs and webs (as if the cutting plane was just in front of them) when the cutting plane passes longitudinally through them (Fig. 12and 13).

Fig. 13 Ribs

Exercise No. 10

SPOKES AND ARMS IN SECTION

When a cutting plane passes through pulley spokes or arms, cross-hatching is eliminated where the plane is thought
of as being just in front of the spokes.
Even though the cutting plane passes through two of the spokes in Fig. 14, the sectional view in Fig. 14 a must be made without cross-hatching the spokes in order to avoid the appearance of a solid web as in Fig. 14 b.

Fig 14 Spokes and Arms

Various cutting planes can be selected for obtaining clear sectional views
The plane may cut straight across (Fig.15) or be offset (changing direction forward and backward) to pass through features.

Fig. 15 : Various cutting planes obtaining clear sectional views.

Exercise No. 11

Draw (i) sectional view from the front, (ii) the view from above and (iii) the view from the right of the shaft support

(b)

Exercise No. 12

Draw the (i) the sectional view from the front, (ii) the view from above and (iii) the sectional view from the left Of the given Machine block.

Isometric View of Machine Block

Exercise No. 13

Week-III Dimensioning

A drawing of a component, in addition to providing complete shape description, must also furnish information regarding the size description. These are provided through the distances between the surfaces, location of holes, nature of surface finsih, type of material, etc. The expression of these features on a drawing, using lines, symbols, figures and notes is called dimensioning.

BASIC DIMENSIONING

In many applications, a drawing should contain annotations showing lengths or distances or angles between objects to convey the desired information. Dimensioning is the process of adding these annotations to a drawing. AutoCAD provides four basic types of dimensioning; linear, angular, diameter and radius.

DIM and DIMI Commands-DIMI command allows executing one dimensioning command and then returns to the normal command mode. If several dimensioning commands are to be executed, DIM command should be used. In this mode, the normal set of AutoCAD commands is replaced by a special set of dimensioning commands. To end the process of dimensioning, EXIT command has to be used.

The elements of dimensioning include the projection line, dimension line, leader line, dimension line termination, the origin indication and the dimension itself. The various elements of dimensioning are shown in Figs. 1 and 2. The following are some of the principles to be adopted during execution of dimensioning:

Fig. 1 Elements of dimensioning

Fig. 2 Elements of dimensioning

Projection and dimension lines should be drawn as thin continuous lines.
Projection lines should extend slightly beyond the respective dimension lines.
Projection lines should be drawn perpendicular to the feature being dimensioned. Where necessary, they may be drawn obliquely, but parallel to each other (Fig. 2). However, they must be in contact with the feature.

Projection lines and dimension lines should not cross each other, unless it is unavoidable (Fig.4)
A dimension line should be shown unbroken, even where the feature to which it refers, is shown broken (Fig. 5).
A centre line or the outline of a part should not be used as a dimension line, but may be used in place of projection line (Fig. 6).

Fig. 4
Fig. 5
Fig. 6

Dimension lines should show distinct termination, in the form of arrow heads or oblique strokes or where applicable, an origin indication. Two dimension line terminations and an origin indication are shown in Fig. 7.

Fig. 8

METHOD-1 (Aligned System)

Dimensions should be placed parallel to their dimension lines and preferably near the middle, above and clear-off the dimension line (Fig. 9). An exception may be made where super-imposed running dimensions are used (Fig. 15)

Dimensions may be written so that they can be read from the bottom or from the right side of the drawing. Dimensions on oblique dimension lines should be oriented as shown in Fig. 10. Angular dimensions may be oriented as shown in Fig. 11.

Fig. 9
Fig. 10 Oblique dimensioning

Fig. 11 Angular dimensioning

METHOD-2 (Uni-directional System)

Dimensions should be indicated so that they can be read from the bottom of the drawing only. Non-horizontal dimension lines are interrupted, preferably near the middle, for insertion of the dimension (Fig. 12). Angular dimensions may be oriented as in Fig. 13

Fig. 12

Fig. 13 Angular dimensioning

Arrangement of Dimensions

The arrangement of dimensions on a drawing must indicate clearly the design purpose. The following are the ways of arranging the dimensions.

Chain Dimensions

Chains of single dimensions should be used only where the possible accumulation of tolerances does not endanger the functional requirement of the part (Fig. 14).

Fig. 14 Chain dimensioning

Parallel Dimensions

In parallel dimensioning, a number of dimension lines, parallel to one another and spaced -out are used. This method is used where a number of dimensions have a common datum feature (Fig. 15)

Fig. 15 Parallel dimensioning

Combined Dimensions

These are the result of simultaneous use of chain and parallel dimensions (Fig. 16).

Fig. 16 Combined dimensioning

Exercise No. 14

Diameters

Diameters should be dimensioned on the most appropriate view to ensure clarity. The dimension value should be preceded by φ. Figure 17 shows the method of dimensioning diameters.

Chords, Arcs, Angles and Radii

The dimensioning of chords, arcs and angles should be as shown in Fig. 18. Where the centre of an arc falls outside the limits of the space available, the dimension line of the radius should be broken or interrupted according to whether or not it is necessary to locate the centre (Fig. 19).

Fig. 18 Dimensioning of chords, arcs and angles

Fig. 19 Dimensioning of radius

Equi-distant Features

Linear spacings with equi-distant features may be dimensioned as shown in Fig. 20.

Fig. 20 Dimensioning equi-distant features

Tapered Features

Tapered features are dimensioned, either by specifying the diameters at either end and the length, or the length, one of the diameters and the taper or the taper angle (Fig. 21 a). A slope or flat taper is defined as the rise per unit length and is dimensioned by the ratio of the difference between the heights to its length (Fig 21 b).

Fig. 21 Dimensioning tapered features

Exercise No. 15

EXAMPLES

Violations of some of the principles of drawing are indicated in Fig. 22 a. The corrected version of the same as per the BIS, SP-46: 1988 is given in Fig. 22 b and the reasons are given below:

1. Dimension should follow the shape symbol (Fig. 22).
2. and 3. As far as possible, features should not be used as extension lines for dimensioning.
3. Extension line should touch the feature.
4. Extension line should project beyond the dimension line.
5. Writing the dimension is not as per the aligned system.
6. Hidden lines should meet without a gap
7. Centre line representation is wrong. Dot should be replaced by a small dash.
8. Horizontal dimension line should not be broken to insert the value of the dimension
9. Dimension should be placed above the dimension line
10. Radius symbol should precede the dimension
11. Centre lines should cross at long dashes
12. Dimension should be written by symbol (not abbreviation) followed by its value
13. Note with dimensions should be written in capitals.
14. Elevation is not the correct usage.
16.Usage of the term "plan"' is obsolete in graphic language.

Fig. 22

Week-IV Working Drawings

A production drawing, also known as working drawing, supplies information and instructions for the manufacture or construction of machines or structures. A production drawing should provide all the dimensions, limits, special finishing processes, surface quality, etc. The particulars of material, the number of components required for the assembly, etc., are given in the title block. The production drawing of a component should also indicate the sub-assembly or main assembly where it will be assembled. Since the working drawings may be sent to other companies to make or assemble the unit, the drawings should confirm with the standards followed in the country. For this reason, production drawing becomes a legal document between the parties, in case of disputes in manufacturing. Working drawings may be classified into two groups: (i) detail or part drawings and (ii) assembly drawings

Types of working Drawings

A detail or part drawing is nothing but a production or component drawing, furnishing complete information for the construction or manufacture of the part. This information may be classified as:

1. Shape description This refers to the selection of number of views to describe the shape of the part. The part may be drawn in either pictorial or orthographic projection; the latter being used more frequently. Sectional views, auxiliary views and enlarged detailed views may be added to the drawing in order to provide a clear image of the part.
2. Specifications this includes special notes, material, heat treatment, finish, general tolerances and number required. All this information is mostly located near the title block. 3. Additional information Information such as drawing number, scale, method of Projection, date, names of the parts, the draughter's name, etc., come under additional information which is included in the title block. Since the craftsman will ordinarily make one component at a time, it is advisable to prepare the production drawing of each component, regardless of its size, on a separate sheet. Figures 1 and 2 show the detailed drawings of a template jig and gear.

Exercise No. 16

Fig. 1 Template Jig

Exercise No. 17

Fig. 2 Gear

Exercise No. 18

Fig. 3 Crank

Exercise No. 19

Week-V MACHINE ELEMENTS

FORMS OF THREADS

Bureau of Indian Standards (BIS) adapts ISO (International Organisation for Standards) metric threads which are adapted by a number of countries apart from India.

The design profiles of external and internal threads are shown in Fig. 1. The following are the relations between the various parameters marked in the figure :

Fig. 5.2 Metric screw thread

$$
\begin{aligned}
\mathrm{P} & =\text { Pitch } \\
\mathrm{H} & =0.86 \mathrm{P} \\
\mathrm{D} & =d=\text { Major diameter } \\
\mathrm{D}_{2} & =d_{2}=d-0.75 \mathrm{H} \\
\mathrm{D}_{1} & =d_{2}-2(\mathrm{H} / 2-\mathrm{H} / 4)=d-2 \mathrm{H}_{1}
\end{aligned}
$$

$$
\begin{aligned}
d_{3} & =d_{2}-2(\mathrm{H} / 2-\mathrm{H} / 6) \\
& =d-1.22 \mathrm{P} \\
\mathrm{H}_{1} & =\left(\mathrm{D}-\mathrm{D}_{1}\right) / 2=5 \mathrm{H} / 8=0.54 \mathrm{P} \\
h_{3} & =\left(d-d_{3}\right) / 2=17 / 24 \mathrm{H}=0.61 \mathrm{P} \\
\mathrm{R} & =\mathrm{H} / 6=0.14 \mathrm{P}
\end{aligned}
$$

Other Thread Profiles

Apart from ISO metric screw thread profile, there are other profiles in use to meet various applications. These profiles are shown in Fig. 5.3, the characteristics and applications of which are discussed below :

V-Thread (sharp)

This thread profile has a larger contact area, providing more frictional resistance to motion. Hence, it is used where effective positioning is required. It is also used in brass pipe work.

British Standard Whitworth (B.S.W) Thread

This thread form is adopted in Britain in inch units. The profile has rounded ends, making it less liable to damage than sharp V-thread.

Buttress Thread

This thread is a combination of V-and square threads. It exhibits the advantages of square thread, like the ability to transmit power and low frictional resistance, with the strength of the V-thread. It is used where power transmission takes place in one direction only such as screw press, quick acting carpenter's vice, etc.

Square Thread

Square thread is an ideal thread form for power transmission. In this, as the thread flank is at right angle to the axis, the normal force between the threads, acts parallel to the axis, with zero radial component. This enables the nut to transmit very high pressures, as in the case of a screw jack and other similar applications.

ACME Thread

It is a modified form of square thread. It is much stronger than square thread because of the wider base and it is easy to cut. The inclined sides of the thread facilitate quick and easy engagement and disengagement as for example, the split nut with the lead screw of a lathe.

Worm Thread

Worm thread is similar to the ACME thread, but is deeper. It is used on shafts to carry power to worm wheels.

Fig. 5.3 Types of thread profiles

RIGHT HAND AND LEFT HAND THREADS

Screw threads may be right hand or left hand, depending on the direction of the helix. A right hand thread is one which advances into the nut, when turned in a clockwise direction and a left hand thread is one which advances into the nut when turned in a counter clockwise direction. An abbreviation LH is used to indicate a left hand thread. Unless otherwise stated, a thread should be considered as a right hand one. Figure 5.5 illustrates both right and left hand thread forms.

Fig. 5.5 Right hand and left hand threads

BOLTED JOINT

Nuts in general are square or hexagonal in shape. The nuts with internal threads engage with the corresponding size of the external threads of the bolt. However, there are other forms of nuts used to suit specific requirements. For nuts, hexagonal shape is preferred to the square one, as it is easy to tighten even in a limited space. This is because, with only one-sixth of a turn, the spanner can be reintroduced in the same position. However, square nuts are used when frequent loosening and tightening is required, for example on job holding devices like vices, tool posts in machines, etc. The sharp corners on the head of bolts and nuts are removed by chamfering.

Fig. 5.11 Bolted joint

Exercise No. 20

Methods of Drawing Hexagonal (Bolt Head) Nut

Drawing hexagonal bolt head or nut, to the exact dimensions is labourious and time consuming. Moreover, as standard bolts and nuts are used, it is not necessary to draw them accurately. The following approximate methods are used to save the draughting time

Method 1 (Fig. 5.12)

Empirical relations :
Major or nominal diameter of bolt $=\mathrm{D}$
Thickness of nut, $\mathrm{T}=\mathrm{D}$
Width of nut across flat surfaces, $\mathrm{W}=1.5 \mathrm{D}+3 \mathrm{~mm}$
Radius of chamfer, $\mathrm{R} \quad=1.5 \mathrm{D}$

Fig. 5.12 Method of drawing views of a hexagonal nut (Method I)

PROCEDURE

Draw the view from above by drawing a circle of diameter, W and describe a regular hexagon on it, by keeping any two parallel sides of the hexagon, horizontal.

Project the view from the front, and the view from side, and mark the height equal to D.
With radius R , draw the chamfer arc 2-1-3 passing through the point 1 in the front face.
Mark points 4 and 5, lying in-line with 2 and 3 .
Locate points 8,9 on the top surface, by projecting from the view from above.
Draw the chamfers 4-8 and 5-9.
Locate points 6 and 7, lying at the middle of the outer two faces.
Draw circular arcs passing through the points $4,6,2$ and $3,7,5$, after determining the radius R_{1} geometrically.
Project the view from the side and locate points 10,11 and 12 .
Mark points 13 and 14, lying at the middle of the two faces (view from the side).
Draw circular arcs passing through the points $10,13,11$ and $11,14,12$, after determining the radius R_{2} geometrically.

It may be noted that in the view from the front, the upper outer corners appear chamfered.

In the view from the side, where only two faces are seen, the corners appear square.

Method 2 (Fig. 5.13)

Empirical relations:

Major or nominal diameter of bolt $=\mathrm{D}$

Thickness of nut, $\mathrm{T}=\mathrm{D}$

Width of the nut across corners $=2 \mathrm{D}$

Radius of chamfer arc, $\mathrm{R} \quad=1.5 \mathrm{D}$

Figure 5.13 illustrates the stages of drawing different views of a hexagonal nut, following the above relations, which are self-explanatory.

(a)

Fig. 5.13 Method of drawing views of a hexagonal nut (Method II)

Exercise No. 21

Method of Drawing Square (Bolt Head) Nut

A square bolt head and nut may be drawn, showing either across flats or corners. Following relations may be adopted for the purpose:

Major or nominal diameter of bolt	$=\mathrm{D}$
Thickness of nut, T	$=\mathrm{D}$
Width of the nut across flats, W	$=1.5 \mathrm{D}+3 \mathrm{~mm}$
Radius of chamfer arc, R	$=2 \mathrm{D}$

Figure 5.14 illustrates the method of drawing views of a square nut, in two orientations.

Fig.5.14 Method of drawing the views of a square nut

Hexagonal and Square Headed Bolts

Figure 5.15 shows the two views of a hexagonal headed bolt and square headed bolt, with the proportions marked.

Square Headed Bolt with Square Neck

It is provided with a square neck, which fits into a corresponding square hole in the adjacent part, preventing the rotation of the bolt (Fig. 5.18).

Fig. 5.18 Square headed bolt with square neck

Eye Bolt

In order to facilitate lifting of heavy machinery, like electric generators, motors, turbines, etc., eye bolts are screwed on to their top surfaces. For fitting an eye bolt, a tapped hole is provided, above the centre of gravity of the machine (Fig. 5.21).

Fig. 5.21 Eye-bolt

Stud Bolt or Stud

It consists of cylindrical shank with threads cut on both the ends (Fig. 5.22a). It is used where there is no place for accommodating the bolt head or when one of the parts to be joined is too thick to use an ordinary bolt.

The stud is first screwed into one of the two parts to be joined, usually the thicker one. A stud driver, in the form of a thick hexagonal nut with a blind threaded hole is used for the purpose. After placing the second part over the stud, a nut is screwed-on over the nut end. It is usual to provide in the second part, a hole which is slightly larger than the stud nominal diameter. Figure $5.22 b$ shows a stud joint.

Fig. 5.22 (a)-Stud, (b)-Stud joint

Other Forms of Nuts

Flanged Nut

This is a hexagonal nut with a collar or flange, provided integral with it. This permits the use of a bolt in a comparitively large size hole (Fig. 5.23a).

Cap Nut

It is a hexagonal nut with a cylindrical cap at the top. This design protects the end of the bolt from corrosion and also prevents leakage through the threads. Cap nuts are used in smoke boxes or locomotive and steam pipe connections (Fig. 5.23b).

Dome Nut

It is another form of a cap nut, having a spherical dome at the top (Fig. 5.23c).

Capstan Nut

This nut is cylindrical in shape, with holes drilled laterally in the curved surface. A tommy bar may be used in the holes for turning the nut (Fig. 5.23d). Holes may also be drilled in the upper flat face of the nut.

Exercise No. 22

d-Capstan nut
e-Ring nut
f-Wing nut

Fig. 5.23 Other forms of nuts

Week-VI KEYS AND COTTER JOINTS

Saddle Keys

- These are taper keys, with uniform width but tapering in thickness on the upper side.
- suitable for light duty only

Hollow saddle key

Flat saddle key

The rectangular sunk key with head at one end is known as GIB HEAD KEY. The head is provided to facilitate the removal of key.
Width $w=d / 4$
Thickness at large end $t=2 w / 3=d / 6$

A cotter is a flat wedge shaped piece, made of steel. It is uniform in thickness but tapering in width, generally on one side; the usual taper being 1:30. The lateral (bearing) edges of the cotter and the bearing slots are generally made semi-circular instead of straight (Fig. 1.0).

This increases the bearing area and permits drilling while making the slots. The cotter is locked in position by means of a screw as shown in Fig. 1.1.

Cotter joints are used to connect two rods, subjected to tensile or compressive forces along their axes. These joints are not suitable where the members are under rotation. The following are some of the commonly used cotter joints:

Fig. 1.0 Cotter and the bearing slot

Fig. 1.1 Locking arrangement of cotter

Cotter Joint with Sleeve

This is the simplest of all cotter joints, used for fastening two circular rods. To make the joint, the rods are enlarged at their ends and slots are cut. After keeping the rods butt against each other, a sleeve with slots is placed over them. After aligning the slots properly, two cotters are driven-in through the slots, resulting in the joint (Fig. 1.1). The rod ends are enlarged to take care of the weakening effect caused by the slots.

The slots in the rods and sleeve are made slightly wider than the width of cotter. The relative positions of the slots are such, that when a cotter is driven into its position, it permits wedging action and pulls the rod into the sleeve.

Exercise No. 23

Draw the sectional view from the front, and view from the side of a cotter joint with sleeve used to connect two rods of $\mathbf{5 0} \mathbf{~ m m}$ diameter each.

Fig. 1.2 Cotter joint with sleeve

Exercise No. 24

Cotter Joint with Socket and Spigot Ends

This joint is also used to fasten two circular rods. In this, the rod ends are modified instead of using a sleeve. One end of the rod is formed into a socket and the other into a spigot (Fig1.3) and slots are cut. After aligning the socket and spigot ends, a cotter is driven-in through the slots, forming the joint.

Draw the half sectional view from the front, with top half in section and the view from the side of a cotter joint with socket and spigot ends, to connect two rods of $50 \mathbf{~ m m}$ diameter each.

Fig. 1.3 Cotter joint with socket and spigot ends

Knuckle Joint

A knuckle joint is a pin joint used to fasten two circular rods. In this joint, one end of the rod is formed into an eye and the other into a fork (double eye). For making the joint, the eye end of the rod is aligned into the fork end of the other and then the pin is inserted through the holes and held in position by means of a collar and a taper pin (Fig. 1.4). Once the joint is made, the rods are free to swivel about the cylindrical pin.

Knuckle joints are used in suspension links, air brake arrangement of locomotives, etc.

Fig.1.4

Exercise No. 25

Draw a Knuckle joint with 50 mm diameter (D)

Fig. 1.5 Knuckle joint

Week-VII Riveted Joints

Types of Rivet Heads

Riveted Joints

Single strap chain riveted butt joint (single row)

(B) ZIG-ZAG RIVETED LAP JOINT

Single riveted, double strap butt joint

Double riveted, double strap chain butt joint

Double riveted, double strap zig zag butt joint

Week-VIII Couplings

Shaft couplings are used to join or connect two shafts in such a way that when both the shaftsrotate, they act as one unit and transmit power from one shaft to the other. Shafts to beconnected or coupled may have collinear axes, intersecting axes or parallel axes at a smalldistance. Based on the requirements, the shaft couplings are classified as: (i) rigid couplings,(ii) flexible couplings, (iii) loose or dis-engaging couplings and (iv) non-aligned couplings.

Split muff coupling

Oldham's coupling

Exercise No. 27

(a)

Fig. 7.4 Flanged coupling

Exercise No. 28

Solid flanged coupling
Draw (a) half sectional view from the front, top half in section and (b) view from the side of a bushed pin type flange coupling, indicating proportions to connect two shafts, each of diameter 30 mm .

Bushed pin type flanged coupling

Exercise No. 29

Universal coupling

Exercise No. 30

Week-IX Bearings

Bearings are supports for shafts, providing stability, and free and smooth rotation. The importance of bearings may be understood from the supporting requirement of machine tool spindles, engine crankshafts, transmission or line shafts in workshops, etc. Bearings are broadly classified into two categories: sliding contact bearings and rolling contact bearings or antifriction bearings.

Journal Bearings

Fig. 1.0 Solid journal bearing

Fig. 1.1 Bushed journal bearing

Exercise No. 31

Pivot or foot-step bearing

This bearing is used to support a vertical shaft under axial load. Further, in this, the shaft is terminated at the bearing. The bottom surface of the shaft rests on the surface of the bearing which is in the form of a disc. The bush fitted in the main body supports the shaft in position and takes care of possible radial loads coming on the shaft.

Draw (a) sectional view from the front and (b) view from above of a foot-step bearing with radial and thrust ball bearings, suitable for supporting a shaft of diameter 60 mm .

Fig. 1.2 Foot-step bearing

Collar thrust bearing

This is generally used for supporting a horizontal shaft under axial load. Further, in this, the shaft extends through and beyond the bearing. The shaft in a collar thrust bearing may consists of one or more collars which are either fitted to or integral with the shaft (Fig. 1.3). The collars rotate against the stationary split bearing surfaces.

Fig. 1.3 (a) Single collar bearing,
(b) Multi-collar bearing

Exercise No. 32

Week-X Assembly Drawings

ENGINE PARTS

Assembly of Stuffing Box

It is used to prevent loss of fluid such as steam, between sliding or turning parts of machine elements. In a steam engine, when the piston rod reciprocates through the cylinder cover; stuffing box provided in the cylinder cover, prevents leakage of steam from the cylinder.

Figure 1.0 shows the various parts of a stuffing box. At the base of stuffing box body 1, a bush 3 is placed such that the bevelled edge of the bush is at the inner side of the body. Gland 2 is placed at the other end of the body and is connected to the main body by means of studs 4 and nuts

The space between the reciprocating rod and the bush and the gland is packed with a packing material such as mineral fibres, leather, rubber or cork.

Exercise

Assemble all parts of the stuffing box for a vertical steam engine, shown in Fig. 1.0 and draw, (i) half sectional view from the front, with left half in section, (ii) half sectional view from the right and (iii) view from above.

Stuffing Box Assembly

Parts llist

Part No.	Narne	Nati	Oey
1	Body	Ci	1
2	Gland	Brass	1
3	Bush	Birass	1
4	Smud	MS	2
5	Nut. M12	MSS	2

Parts list

Part No.	Name	Matl	Qty
1	Body	Cl	1
2	Gland	Brass	1
3	Bush	Brass	1
4	Stud	MS	2
5	Nut, M12	MS	2

Fig. 1.0 Stuffing box

Exercise No. 33 Assembly of Connecting Rod

Exercise No. 36 Assembly of eccentric

The details of an eccentric are shown in Fig. 2. Assemble the parts and draw, (i) half sectional view from the front, with top half in section, (ii) view from the right and (iii) view from above.

Assembly Model of an Eccentric

Assembly Drawing of an Eccentric

Exercise No. 37 Assembly of Screw Jack

Screw Jack Assembly

Exercise No. 38 Assembly of Machine vice

Assembly Drawing :

Exercise No. 39 Assembly of lathe tailstock

Tail Stock Assembly

Exercise No. 40 Assembly of Ramsbottom Safety Valve

Assembly Of Ramsbottom Safety Valve

Exercise No. 41 Assembly of Feed Check Valve

Feed Check Valve Assembly

