
1

CLOUD APPLICATION DEVELOPMENT

LABORATORY

LAB MANUAL

Course Code : ACS110

Regulations : IARE –R18

Semester : VII

Branch : CSE | IT

Prepared by

 POLE ANAJAIAH

Assistant Professor

Department of Computer Science and Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

2

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad – 500043

COMPUTER SCIENCE AND ENGINEERING

 Program Outcomes

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and
engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and designsystem

components or processes that meet the specified needs with appropriate consideration for the public health

and safety, and the cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of experiments, analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering

and IT tools including prediction and modeling to complex engineering activities with an understanding of

the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,
health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional

engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in
societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the

engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse

teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one‘s own work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent

and life-long learning in the broadest context of technological change.

Program Specific Outcomes (CSE)

PSO1

Professional Skills: The ability to understand, analyze and develop computer programs in the areas related
to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient

analysis and design of computer - based systems of varying complexity.

PSO2
Problem-Solving Skills: The ability to apply standard practices and strategies in software project
development using open-ended programming environments to deliver a quality product for business success

PSO3

Successful Career and Entrepreneurship: The ability to employ modern computer languages,

environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher

studies.

3

INDEX

S. No. List of Experiments Page No.

1 Install Oracle Virtual box and create two VMs on your laptop.

2 Install Turbo C in guest OS and execute C program.

3 Test ping command to test the communication between the guest OS and Host OS

4 Install Hadoop single node setup.

5 Hopkinson‘s test on DC shunt machines

6

Develop hadoop application to count no of characters, no of words and each

character frequency.

7
Develop hadoop application to process given data and produce results such as

finding the year of maximum usage, year of minimum usage.

8

Develop hadoop application to process given data and produce results such as

how many female and male students in both schools the results should be in

following format.

GP-F #number

GP-M #numbers

MS-F #number

MS-M #number

9
Establish an AWS account. Use the AWS Management Console to launch an EC2

instance and connect to it.

10
Design a protocol and use Simple Queue Service(SQS)to implement the barrier

synchronization after the first phase

11 Use the Zookeeper to implement the coordination model in Problem 10.

12 Develop a Hello World application using Google App Engine

13 Develop a Guestbook Application using Google App Engine

14 Develop a Windows Azure Hello World application using.

15 Create a Mashup using Yahoo! Pipes.

4

 ATTAINMENT OF PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES

S. No Experiment

Program

Outcome

Attained

 Program

 Specific

Outcomes

Attained
1 VIRTUALIZATION : Install Oracle Virtual box and create two VMs

 on your laptop.

PO1, PO2, PO3 PSO1, PSO2

2 Install Turbo C in guest OS and execute C program. PO1, PO2, PO3 PSO1, PSO2

3 Test ping command to test the communication between the guest OS

 and Host OS.

PO1, PO2, PO3 PSO1, PSO2

4 Install Hadoop single node setup. PO2, PO3 PSO1, PSO2

5 Develop a simple hadoop application called Word Count. It counts

 the number of occurrences of each word in a given input set.

PO3, PO4 PSO1, PSO2

6 Develop hadoop application to count no of characters, no of words

 and each character frequency.

PO2, PO3 PSO1, PSO2

7 Develop hadoop application to process given data and produce results

 such as finding the year of maximum usage, year of minimum usage.

PO2, PO3 PSO1, PSO2

8 HADOOP Develop hadoop application to process given data and

 produce results such as how many female and male students in both

 schools the results should be in following format. GP-F #number

 GP-M #numbers MS-F #number MS-M #number

PO2, PO3 PSO1, PSO2

9 Establish an AWS account. Use the AWS Management Console to

 launch an EC2 instance and connect to it.

PO3, PO4 PSO1, PSO2

10 Design a protocol and use Simple Queue Service(SQS)to implement

 the barrier synchronization after the first phase.

PO3, PO4 PSO1, PSO2

11 Use the Zookeeper to implement the coordination model in Problem 10. PO2, PO3 PSO1, PSO2

12 CLOUD PROGRAMMING :Develop a Hello World application using

Google App Engine.

PO2, PO3 PSO1, PSO2

13 Develop a Guestbook Application using Google App Engine. PO2, PO3 PSO1, PSO2

14 Develop a Windows Azure Hello World application using. PO2, PO3 PSO1, PSO2

15 PIPES Create a Mashup using Yahoo! Pipes. PO2, PO3 PSO1, PSO2

5

CLOUD APPLICATION DEVELOPMENT LABORATORY

OBJECTIVE:

 The objective of cloud computing lab is to learn the cloud architecture and its efficiency, and tools to provide

virtualization on cloud. The lab enables the study and implementation of infrastructure as a service, storage as

a service, and user management on cloud. Cloud computing is a style of computing in which dynamically

scalable and often virtualized resources are provided as a service over the Internet. Cloud computing services

usually provide common business applications on-line that are accessed from a web browser, while the

software and data are stored on the servers. It is expected that Cloud Computing will help in pooling of

computing resources of Government Departments into large clouds thereby increasing utilization of

computing resources effectively. Besides, the self-service nature of cloud computing allows organizations to

create elastic environments that expand and contract; based on the workload and target performance

parameters.

OUTCOMES:

 Students will be able to:

 1. Define & implement Virtualization using different types of Hypervisors

 2. Describe steps to perform on demand Application delivery using Ulteo .

 3. Examine the installation and configuration of Open stack cloud

 4. Analyze and understand the functioning of different components involved in Amazon

 Web services cloud platform.

 5. Describe the functioning of Platform as a Service 6. Design & Synthesize Storage as a

 service using own Cloud

6

EXPERIMENT - 1

VIRTUALIZATION: Install Oracle Virtual box and create two VMs on your

laptop

Points to Consider before installing Virtual Machine (VM):

1. Decide which applications you are going to install on your virtual machine.

According to that install 32 or 64-bit Operating system in VM. Some applications

are not compatible with old operating systems. E.g. If you are going to use UFT

12.01 it doesn't work with Windows XP. So you should install higher version of

Windows to work with UFT. Check OS compatibility of your required application

before proceeding with operating system installation.

2. Is your Processor supports Virtualization? Almost all of the new processors

support virtualization but it is a good idea to check manufacturer's website to

know the details. E.g. Intel Pentium Dual Core T2390 processor doesn't support

virtualization for a 64-bit operating system. So, in that case, you should install 32-

bit operating system compulsory.

3. VMWare also provides a trial period. So you should have a key or serial number

to keep using it further.

4. We are going to use VMWare Virtualization software for demonstration.

Steps to install and configure VMWare:

1. Download VMWare workstation trial version setup file from here. Set up is

around 307 MB. Currently, version 12 is available. Please note we have set up

screens on version 11.

2. Install VMWare on your machine. Setup is simple and requires to click Next

button couple of times.

3. After installation open VMWare workstation by using either start menu or

shortcut created on the desktop.

4. Click on ―Create a New Virtual Machine‖.

 (Note: Click on the image for enlarged view)

5. With default ―Typical‖ selected click on Next button.

http://www.vmware.com/products/workstation/workstation-evaluation

7

6. Specify the path of the operating system set up file.

8

7. In the Next step you need to specify a Key or a serial number of operating system.

If

 you are using trial version then that part can be skipped.

8. Enter the name for the virtual machine and specify a path to the directory where

you

 want to create your virtual machine. It is recommended that the drive you‘re

selecting to install virtual machine should have sufficient space.

9. Specify an amount of disk space you want to allocate for a virtual machine.

Allocate

 disk space according to the size of software you are going to install on the virtual

 machine

.

10. On the next screen it will show configuration you selected for a virtual machine.

9

11. It will allocate Hardware according to the default settings but you can change it by

using Customize Hardware button in the above screen.

You can specify what amount of RAM, a processor has to be allocated for a virtual

machine. Do not allocate complete RAM or complete Processor for a virtual

machine. Also, do not allocate very less RAM or processor. Leave default settings or

allocate in such way that your application should be able to run on the virtual

machine. Else it will result in a slow virtual machine.

10

12. Click on the Finish button to create the virtual machine at the specified location and

with specified resources.

If you have specified a valid file (.iso, .rar., .nrg) for the operating system it will take

standard time to complete operating system set up on the virtual machine and then it

will be ready to use your regular OS.

Notes:

 If you didn't specify any operating system while creating the virtual machine,

later you can install it just like we do for your laptop or desktop machines. We

can use CD/DVD or USB devices like Pen Drive or even set up a file on the disk

to install the operating system in the VM.

 If your CD/DVD drive is not working then also it is very simple to install the

operating system. Go to VM -> Settings – > select CD/DVD -> in the right half

select radio button for ‗use ISO image from' and specify the path on your hard disk

11

where the .iso file is placed. This location will be treated as CD/DVD drive of your

machine.

 Make sure correct boot order is specified in BIOS so installation will start while

getting VM power on (in this case guest OS is not installed).

Passing data between host and VM:

Generally, VM is having its own drive and it is not showing drives from host OS in

the VM environment. Also, VM drive cannot be used from host OS

PRE LAB VIVA QUESTIONS ?

1. What is meant by virtualization?

2. What does virtual machine do?

3. What is the role of VM Ware in virtual machine?

4. Is 32 bit processor supports Virtual Machine?

POST LAB VIVA QUESTIONS:

1. Explain the steps to install oracle virtual box?

2. How to create two VMs on your laptop?

3. How to specify an amount of disk space to allocate for a virtual machine?

4. Specify the full names of (.iso, .rar, .nrg) files?

12

EXPERIMENT – 2

Install Turbo C in guest OS and execute C program

 Step1: Create a Virtual Machine

 First job is to create a virtual machine, to do so open VirtualBox and click

 ―New‖ from the toolbar.

 Select "New" from the toolbar to create a new Virtual Machine

 Enter any name for your Virtual Machine and select the Operating System

you‘re going to use as your GUEST OS.

 Select the OS you are going to use inside your Virtual Machine

 Select the RAM size to be allocated to your guest OS, choose this wisely it

should be equal to or more than the minimum system requirement of your

guest OS at the same time if it goes more than 50% of your physical

machine‘s RAM it‘ll slow down your host OS.

13

 Select the amount of RAM to be allocated to the Virtual Machine

 You need to create a Virtual Hard disk for your Virtual Machine, this is just a

file with a .vdi extension which will contain all files stored inside that virtual

machine. Choose a size suited for your guest OS and select the ―Dynamically

expanding disk‖ if you want to save disk creation time and file size. If you

choose ―Fixed size disk‖ it will take up the entire size specified but the

performance of your Virtual Machine will be better. After clicking finish

move on to the next step.

Step 2: Change the boot order of the VM

 Right click the newly created Virtual machine and go to settings.

Go to the settings of your Virtual Machine

 Select storage from the left side list, select the CD icon and from the right

select ―Choose a virtual CD/DVD disk file‖, navigate to the ISO image file of

the OS on your computer. Now the OS image is mounted to your Virtual

machine.

14

The ISO image selected will be mounted in the Optical drive of your Virtual Machine

To change the boot device order of your virtual machine go to the ―System‖ option

from the left side list, select Hard Disk and click the up arrow to bring it to the top of

the list. Make the CD/DVD-ROM the second device and uncheck the other devices.

Set the boot device priority for the virtual machine

Step 3: Start the Virtual machine

 To start the virtual machine double-click the VM, a window opens here you

can

 press F12 if you want to select a device of your choice to boot.

15

Press F12 to select the boot device of your choice

To boot from the CD-ROM press c.

Press c to boot the VM from a CD image

Your VM will now boot from your Operating System image file and the OS

installation will start as usual.Some important shortcuts

The following keyboard shortcuts can be used inside the VM to perform certain

actions that might canflict with your physical machine

[Right Ctrl] + Del – Equivalent to pressing [ctrl] + [alt] + [delete] inside the Virtual

 Machine. If you press ctrl+alt+del the physical machine will also

be

 affected.

[Right Ctrl] + H – (Halt) Equivalent to pressing the power button on the physical

 machine.

[Right Ctrl] + R – (Reset) Equivalent to pressing the reset button, will reset your

virtual

 machine.

[Right CTRL] + F – (Fullscreen) Toggles fullscreen

16

PRE LAB VIVA QUESTIONS ?

1. What is meant guest OS?

2. What is meant by host OS?

3. Why the RAM size to be allocated to your guest OS?

4. Why to provide connectivity between guest OS and host OS?

POST LAB VIVA QUESTIONS:

1. If guest OS takes the 50% of your physical machine‘s RAM size what

happens?

2. Why to create a Virtual Hard disk for your Virtual Machine?

3. What does .vdi extension file contains inside the virtual machine?

4. Define the ― Dynamically expanding disk‖

17

EXPERIMENT – 4

INSTALL HADOOP SINGLE NODE SETUP

SPTEPS:

18

19

In new Terminal:

20

You can add the user above

21

Then open previous terminal:

22

23

24

25

26

27

Move to desktop

28

29

Today end class here

30

31

32

33

5

34

35

36

37

38

39

 when we format the name node: error: Error: Could not find or load main class

‖-Djava.library.path=.usr.local.hadoop.lib‖ I had installed java-7-opensdk. I

dont know hat was the issue, I installed java-8-oracle(which is shown here)

and it worked 2. while formating namenode error: hadoop command not

found: I modified my Path variable in .bashrc file it was untill hadoop/bin I

added one more hadoop, i.e export

PATH=$PATH:/usr/local/hadoop/bin/hadoop 3. while starting dfs.sh I faced a

problem where is was asking for passphrase for id_rsa, I again generated the

ssh key and added it to authorized key as it is shown here.

 change: cat $HOME/.ssh/id_rsa.pub ＞＞ $HOME/.ssh/authorized_keys for

cat

 ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

40

41

42

43

PRE LAB VIVA QUESTIONS?

1. What is meant by Hadoop?

2. What is meant by host OS?

3. Why the RAM size to be allocated to your guest OS?

4. Why to provide connectivity between guest OS and host OS?

POST LAB VIVA QUESTIONS?

1. If guest OS takes the 50% of your physical machine‘s RAM size what

happens?

2. Why to create a Virtual Hard disk for your Virtual Machine?

3. What does .vdi extension file contains inside the virtual machine?

4. Define the ― dynamically expanding disk‖

44

EXPERIMENT – 5

Develop hadoop application to count no of characters, no of words and each

character frequency.

Hadoop WordCount operation occurs in 3 stages –

Mapper Phase

Shuffle Phase

Reducer Phase

Hadoop WordCount Example- Mapper Phase Execution

The text from the input text file is tokenized into words to form a key value pair with

all the words present in the input text file. The key is the word from the input file and

value is ‗1‘.

For instance if you consider the sentence ―An elephant is an animal‖. The mapper

phase in the WordCount example will split the string into individual tokens i.e. words.

In this case, the entire sentence will be split into 5 tokens (one for each word) with a

value 1 as shown below –

Key-Value pairs from Hadoop Map Phase Execution-

(an,1)

(elephant,1)

(is,1)

(an,1)

(animal,1)

If you would like more information about Big Data and Hadoop Certification, please

click the orange "Request Info" button on top of this page.

Hadoop WordCount Example- Shuffle Phase Execution

After the map phase execution is completed successfully, shuffle phase is executed

automatically wherein the key-value pairs generated in the map phase are taken as

input and then sorted in alphabetical order. After the shuffle phase is executed from

the WordCount example code, the output will look like this -

(an,1)

(an,1)

(animal,1)

(elephant,1)

(is,1)

Hadoop WordCount Example- Reducer Phase Execution

In the reduce phase, all the keys are grouped together and the values for similar keys

are added up to find the occurrences for a particular word. It is like an aggregation

phase for the keys generated by the map phase. The reducer phase takes the output of

shuffle phase as input and then reduces the key-value pairs to unique keys with values

added up. In our example ―An elephant is an animal.‖ is the only word that appears

twice in the sentence. After the execution of the reduce phase of MapReduce

45

WordCount example program, appears as a key only once but with a count of 2 as

shown below

(an,2)

(animal,1)

(elephant,1)

(is,1)

 This is how the MapReduce word count program executes and outputs the

number of occurrences of a word in any given input file. An important point to

note during the execution of the WordCount example is that the mapper class

in the WordCount program will execute completely on the entire input file and

not just a single sentence. Suppose if the input file has 15 lines then the

mapper class will split the words of all the 15 lines and form initial key value

pairs for the entire dataset. The reducer execution will begin only after the

mapper phase is executed successfully.

 Learn Hadoop by working on interesting Big Data and Hadoop Projects for

just $9.

 Running the WordCount Example in Hadoop MapReduce using Java Project

with Eclipse. Now, let‘s create the WordCount java project with eclipse IDE

for Hadoop. Even if you are working on Cloudera VM, creating the Java

project can be applied to any environment.

Step 1:

Let‘s create the java project with the name ―Sample WordCount‖ as shown below -

File > New > Project > Java Project > Next.

"Sample WordCount" as our project name and click "Finish":

https://goo.gl/whtpXP
https://goo.gl/pkuTxT

46

Step 2 :

The next step is to get references to hadoop libraries by clicking on Add JARS as

follows

47

Step 3:

Create a new package within the project with the name com.code.dezyre

48

Step 4:

Now let‘s implement the WordCount example program by creating a WordCount

class under the project com.code.dezyre.

49

Step 5

Create a Mapper class within the WordCount class which extends MapReduceBase

Class to implement mapper interface. The mapper class will contain -

 1. Code to implement "map" method.

` 2. Code for implementing the mapper-stage business logic should be written

 within this method.

 Mapper Class Code for WordCount Example in Hadoop MapReduce

50

 public static class Map extends MapReduceBase implements Mapper

 {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value, OutputCollector

 output, Reporter reporter)

 throws IOException {

 String line = value.toString();

 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 output.collect(word, one);

 }

 }

 }

In the mapper class code, we have used the String Tokenizer class which takes the

entire line and breaks into small tokens (string/word).

Step 6 :

Create a Reducer class within the WordCount class extending MapReduceBase Class

to implement reducer interface. The reducer class for the wordcount example in

hadoop will contain the -

 1. Code to implement "reduce" method

 2. Code for implementing the reducer-stage business logic should be written

within this method

Reducer Class Code for WordCount Example in Hadoop MapReduce

public static class Reduce extends MapReduceBase implements Reducer {

 public void reduce(Text key, Iterator values, OutputCollector

output,

 Reporter reporter) throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

 }

Step 7 :

Create main() method within the WordCount class and set the following properties

using the JobConf class -

OutputKeyClass

OutputValueClass

Mapper Class

 Reducer Class

InputFormat

OutputFormat

InputFilePath

 OutputFolderPath

51

 public static void main(String[] args) throws Exception {

 JobConf conf = new JobConf(WordCount.class);

 conf.setJobName("WordCount");

 conf.setOutputKeyClass(Text.class);

 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(Map.class);

 //conf.setCombinerClass(Reduce.class);

 conf.setReducerClass(Reduce.class);

 conf.setInputFormat(TextInputFormat.class);

 conf.setOutputFormat(TextOutputFormat.class);

 FileInputFormat.setInputPaths(conf, new Path(args[0]));

 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 JobClient.runJob(conf);

 }

}

Would you like to work on hands-on Hadoop Projects -CLICK HERE.

Step 8 :

Create the JAR file for the wordcount class –

https://www.dezyre.com/hackerday/

52

53

How to execute the Hadoop MapReduce WordCount program ?

>> hadoop jar (jar file name) (className_along_with_packageName) (input file)

 (output folderpath)

 hadoop jar dezyre_wordcount.jar com.code.dezyre.WordCount

 /user/cloudera/Input/war_and_peace /user/cloudera/Output

54

Important Note: war_and_peace(Download link) must be available in HDFS at

/user/cloudera/Input/war_and_peace.

If not, upload the file on HDFS using the following commands -

hadoop fs –mkdir /user/cloudera/Input

hadoop fs –put war_and_peace /user/cloudera/Input/war_and_peace

Output of Executing Hadoop WordCount Example –

55

The program is run with the war and peace input file. To get the war and peace dataset

along with the Hadoop example code for the Word count program delivered to your

inbox

56

EXPERIMENT-6

Develop Hadoop application to count no of characters, no of words

and each Character Frequency.

 Example – (Map function in Word Count) Input Set of data

 Bus, Car, bus, car, train, car, bus, car, train, bus,

 TRAIN,BUS, buS, caR, CAR, car, BUS, TRAIN

 Output

 Convert into another set of data

 (Key,Value) (Bus,1), (Car,1), (bus,1), (car,1), (train,1),

 (car,1), (bus,1), (car,1), (train,1), (bus,1),

 (TRAIN,1),(BUS,1), (buS,1), (caR,1), (CAR,1),

 (car,1), (BUS,1), (TRAIN,1)

Reduce Function – Takes the output from Map as an input and combines those

data tuples into a smaller set of tuples.

Example – (Reduce function in Word Count)

Input

(output of Map function) Set of Tuples

(Bus,1), (Car,1), (bus,1), (car,1), (train,1),

(car,1), (bus,1), (car,1), (train,1), (bus,1),

(TRAIN,1),(BUS,1), (buS,1), (caR,1), (CAR,1),

(car,1), (BUS,1), (TRAIN,1)

Output

Converts into smaller set of tuple

(BUS,7), (CAR,7),(TRAIN,4)

 Work Flow of the Program

57

Workflow of MapReduce consists of 5 steps:

 Splitting – The splitting parameter can be anything, e.g. splitting by space,

comma, semicolon, or even by a new line (‗\n‘).

 Mapping – as explained above.

 Intermediate splitting – the entire process in parallel on different clusters. In

order to group them in ―Reduce Phase‖ the similar KEY data should be on the

same cluster.

 Reduce – it is nothing but mostly group by phase.

 Combining – The last phase where all the data (individual result set from each

cluster) is combined together to form a result.

Now Let‘s See the Word Count Program in Java

Fortunately, we don‘t have to write all of the above steps, we only need to

write the splitting parameter, Map function logic, and Reduce function logic.

The rest of the remaining steps will execute automatically.

Make sure that Hadoop is installed on your system with the Java SDK.

 Steps

 Open Eclipse> File > New > Java Project >(Name it – MRProgramsDemo) >

Finish.

Right Click > New > Package (Name it - PackageDemo) > Finish.

Right Click on Package > New > Class (Name it - WordCount).

Add Following Reference Libraries:

Right Click on Project > Build Path> Add External

/usr/lib/hadoop-0.20/hadoop-core.jar

58

Usr/lib/hadoop-0.20/lib/Commons-cli-1.2.jar

5. Type the following code:

package PackageDemo;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

public static void main(String [] args) throws Exception

{

Configuration c=new Configuration();

String[] files=new GenericOptionsParser(c,args).getRemainingArgs();

Path input=new Path(files[0]);

Path output=new Path(files[1]);

Job j=new Job(c,"wordcount");

j.setJarByClass(WordCount.class);

j.setMapperClass(MapForWordCount.class);

j.setReducerClass(ReduceForWordCount.class);

j.setOutputKeyClass(Text.class);

j.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(j, input);

FileOutputFormat.setOutputPath(j, output);

System.exit(j.waitForCompletion(true)?0:1);

}

public static class MapForWordCount extends Mapper<LongWritable, Text, Text,

IntWritable>{

public void map(LongWritable key, Text value, Context con) throws IOException,

InterruptedException

{

String line = value.toString();

String[] words=line.split(",");

for(String word: words)

{

 Text outputKey = new Text(word.toUpperCase().trim());

 IntWritable outputValue = new IntWritable(1);

 con.write(outputKey, outputValue);

59

}

}

}

public static class ReduceForWordCount extends Reducer<Text, IntWritable, Text,

IntWritable>

{

public void reduce(Text word, Iterable<IntWritable> values, Context con) throws

IOException, InterruptedException

{

int sum = 0;

 for(IntWritable value : values)

 {

 sum += value.get();

 }

 con.write(word, new IntWritable(sum));

}

}

}

The above program consists of three classes:

Driver class (Public, void, static, or main; this is the entry point).

The Map class which extends the public class

Mapper<KEYIN,VALUEIN,KEYOUT,VALUEOUT> and implements

the Map function.

The Reduce class which extends the public class

Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT> and implements

the Reduce function.

6. Make a jar file

Right Click on Project> Export> Select export destination as Jar File > next> Finish.

60

7. Take a text file and move it into HDFS format:

To move this into Hadoop directly, open the terminal and enter the following

commands:

[training@localhost ~]$ hadoop fs -put wordcountFile wordCountFile

8. Run the jar file:

61

(Hadoop jar jarfilename.jar packageName.ClassName PathToInputTextFile

PathToOutputDirectry)

[training@localhost ~]$ hadoop jar MRProgramsDemo.jar PackageDemo.WordCount

wordCountFile MRDir1

9. Open the result:

[training@localhost ~]$ hadoop fs -ls MRDir1

Found 3 items

-rw-r--r-- 1 training supergroup 0 2016-02-23 03:36

/user/training/MRDir1/_SUCCESS

drwxr-xr-x - training supergroup 0 2016-02-23 03:36

/user/training/MRDir1/_logs

-rw-r--r-- 1 training supergroup 20 2016-02-23 03:36

/user/training/MRDir1/part-r-00000

[training@localhost ~]$ hadoop fs -cat MRDir1/part-r-00000

BUS 7

CAR 4

TRAIN 6

PRE LAB VIVA QUESTIONS ?

1. Explain About MapReduce?

2. What does meant by splitting in MapReduce?

3. What does it mean by intermediate splitting?

4. Why Reduce Phase is required in MapReduce?

POST LAB VIVA QUESTIONS:

1. Define which resources should be exported to the JAR file ?

2. How does Hadoop works with Java?

3. Define the Map function logic in Hadoop?

4. Define the Reduce function logic in Hadoop?

62

EXPERIMENT-7
a) Develop Hadoop application to process given data and produce results such

as finding the year of maximum usage, year of minimum usage.

Step 1: Following is the application that counts number of lines in a file.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class CharacterCount {

 public static class CharacterCountMapper extends

 Mapper<Object, Text, Text, IntWritable> {

 private Text word = new Text("Total Characters in file are ");

 public void map(Object key, Text value, Context context)

 throws IOException, InterruptedException {

 context.write(word, new IntWritable(value.getLength()));

 }

 }

 public static class IntSumReducer extends

 Reducer<Text, IntWritable, Text, IntWritable> {

 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,

 Context context) throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

 }

 }

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 Job job = Job.getInstance(conf, "Character count");

 job.setJarByClass(CharacterCount.class);

63

 job.setMapperClass(CharacterCountMapper.class);

 job.setCombinerClass(IntSumReducer.class);

 job.setReducerClass(IntSumReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

Step2: Compile above java file.

$ hadoop com.sun.tools.javac.Main CharacterCount.java

Step 3: Create jar file

$ jar cf charcount.jar CharacterCount*class

Step 4: Run jar file.

hadoop jar charcount.jar CharacterCount /user/harikrishna_gurram/input.txt

/user/harikrishna_gurram/results1

Open ―/user/harikrishna_gurram/results1‖ directory, you can see two files.

$ hadoop fs -ls /user/harikrishna_gurram/results1

Found 2 items

-rw-r--r-- 3 harikrishna_gurram supergroup 0 2015-06-23 09:40

/user/harikrishna_gurram/results1/_SUCCESS

-rw-r--r-- 3 harikrishna_gurram supergroup 34 2015-06-23 09:40

/user/harikrishna_gurram/results1/part-r-00000

Open ―part-r-00000‖ file; you can see the number of characters of given input file.

$ hadoop fs -cat /user/harikrishna_gurram/results1/part-r-00000

b) Total Characters in file are 23999453

MapReduce Char Count Example

In MapReduce char count example, we find out the frequency of each character. Here,

the role of Mapper is to map the keys to the existing values and the role of Reducer is

to aggregate the keys of common values. So, everything is represented in the form of

Key-value pair.

Pre-requisite

Java Installation - Check whether the Java is installed or not using the following

command.

java -version

Hadoop Installation - Check whether the Hadoop is installed or not using the

following command.

hadoop version

If any of them is not installed in your system, follow the below link to install it.

www.javatpoint.com/hadoop-installation

Steps to execute MapReduce char count example

Create a text file in your local machine and write some text into it.

$ nano info.txt

Check the text written in the info.txt file.

$ cat info.txt

 In this example, we find out the frequency of each char value exists in this text file.

64

Create a directory in HDFS, where to kept text file.

$ hdfs dfs -mkdir /count

Upload the info.txt file on HDFS in the specific directory.

$ hdfs dfs -put /home/codegyani/info.txt /count

Write the MapReduce program using eclipse.

File: WC_Mapper.java

package com.javatpoint;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reporter;

public class WC_Mapper extends MapReduceBase implements

Mapper<LongWritable,Text,Text,IntWritable>{

 public void map(LongWritable key, Text value,OutputCollector<Text,IntWritable>

 output,

 Reporter reporter) throws IOException{

 String line = value.toString();

 String tokenizer[] = line.split("");

 for(String SingleChar : tokenizer)

 {

 Text charKey = new Text(SingleChar);

 IntWritable One = new IntWritable(1);

 output.collect(charKey, One);

 }

 }

}

 File: WC_Reducer.java

 package com.javatpoint;

 import java.io.IOException;

 import java.util.Iterator;

 import org.apache.hadoop.io.IntWritable;

 import org.apache.hadoop.io.Text;

 import org.apache.hadoop.mapred.MapReduceBase;

 import org.apache.hadoop.mapred.OutputCollector;

 import org.apache.hadoop.mapred.Reducer;

 import org.apache.hadoop.mapred.Reporter;

 public class WC_Reducer extends MapReduceBase implements Reducer

 <Text,IntWritable,Text,IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,OutputCollector

 <Text,IntWritable> output,

 Reporter reporter) throws IOException {

 int sum=0;

 while (values.hasNext()) {

 sum+=values.next().get();

 }

65

 output.collect(key,new IntWritable(sum));

 }

 }

 File: WC_Runner.java

 package com.javatpoint;

 import java.io.IOException;

 import org.apache.hadoop.fs.Path;

 import org.apache.hadoop.io.IntWritable;

 import org.apache.hadoop.io.Text;

 import org.apache.hadoop.mapred.FileInputFormat;

 import org.apache.hadoop.mapred.FileOutputFormat;

 import org.apache.hadoop.mapred.JobClient;

 import org.apache.hadoop.mapred.JobConf;

 import org.apache.hadoop.mapred.TextInputFormat;

 import org.apache.hadoop.mapred.TextOutputFormat;

 public class WC_Runner {

 public static void main(String[] args) throws IOException{

 JobConf conf = new JobConf(WC_Runner.class);

 conf.setJobName("CharCount");

 conf.setOutputKeyClass(Text.class);

 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(WC_Mapper.class);

 conf.setCombinerClass(WC_Reducer.class);

 conf.setReducerClass(WC_Reducer.class);

 conf.setInputFormat(TextInputFormat.class);

 conf.setOutputFormat(TextOutputFormat.class);

 FileInputFormat.setInputPaths(conf,new Path(args[0]));

 FileOutputFormat.setOutputPath(conf,new Path(args[1]));

 JobClient.runJob(conf);

 }

 }

Download the source code.

Create the jar file of this program and name it charcountdemo.jar.

Run the jar file

hadoop jar /home/codegyani/charcountdemo.jar com.javatpoint.WC_Runner

/count/info.txt /char_output

The output is stored in /char_output/part-00000

 Now execute the command to see the output.

hdfs dfs -cat /r_output/part-00000

PRE LAB VIVA QUESTIONS?

1. Hadoop has how many layers?

2. What are the different operation modes of Hadoop?

3. What are the platforms can be supported by Hadoop?

4. What are the different operations can be performed by SSH?

66

POST LAB VIVA QUESTIONS:

1. Define master node?

2. Define data node?

3. What is name note?

4. Define slave node?

67

EXPERIMENT-9

Establish an AWS account. Use the AWS Management Console to launch an EC2

instance and connect to it.

Overview

The instance is an Amazon EBS-backed instance (meaning that the root volume is an

EBS volume). You can either specify the Availability Zone in which your instance

runs, or let Amazon EC2 select an Availability Zone for you. When you launch your

instance, you secure it by specifying a key pair and security group. When you connect

to your instance, you must specify the private key of the key pair that you specified

when launching your instance.

 Tasks

To complete this tutorial, perform the following tasks:

1. Launch an Instance

2. Connect to Your Instance

3. Clean Up Your Instance

 Related Tutorials

 If you'd prefer to launch a Windows instance, see this tutorial in the Amazon

EC2

 User Guide for Windows Instances: Getting Started with Amazon EC2

Windows

 Instances.

 If you'd prefer to use the command line, see this tutorial in the AWS

Command

 Line Interface User Guide: Using Amazon EC2 through the AWS CLI.

 Prerequisites

 Before you begin, be sure that you've completed the steps in Setting Up with

 Amazon EC2.

 Step 1: Launch an Instance

You can launch a Linux instance using the AWS Management Console as described

in the following procedure. This tutorial is intended to help you launch your first

instance quickly, so it doesn't cover all possible options. For more information about

the advanced options, see Launching an Instance.

To launch an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the console dashboard, choose Launch Instance.

3. The Choose an Amazon Machine Image (AMI) page displays a list of basic

 configurations, called Amazon Machine Images (AMIs), that serve as templates

 for your instance. Select an HVM version of Amazon Linux 2.Notice that these

 AMIs are marked "Free tier eligible."

5. On the Choose an Instance Type page, you can select the hardware configuration

of your instance. Select the t2.micro type, which is selected by default. Notice that

this instance type is eligible for the free tier.

6. Choose Review and Launch to let the wizard complete the other configuration

 settings for you.

7. On the Review Instance Launch page, under Security Groups, you'll see that the

 wizard created and selected a security group for you. You can use this security

group, or alternatively you can select the security group that you created when

getting set up using the following steps:

 a. Choose Edit security groups.

68

b. On the Configure Security Group page, ensure that Select an existing security

 group is selected.

c. Select your security group from the list of existing security groups, and then

 choose Review and Launch.

7. On the Review Instance Launch page, choose Launch.

8. When prompted for a key pair, select Choose an existing key pair, then select the

 key pair that you created when getting set up.

Alternatively, you can create a new key pair. Select Create a new key pair, enter

a name for the key pair, and then choose Download Key Pair. This is the only

chance for you to save the private key file, so be sure to download it. Save the

private key file in a safe place. You'll need to provide the name of your key pair

when you launch an instance and the corresponding private key each time you

connect to the instance.

 Warning

 Don't select the Proceed without a key pair option. If you launch your instance

 without a key pair, then you can't connect to it.

 When you are ready, select the acknowledgement check box, and then choose

 Launch Instances.

8. A confirmation page lets you know that your instance is launching. Choose View

Instances to close the confirmation page and return to the console.

9. On the Instances screen, you can view the status of the launch. It takes a short

time for an instance to launch. When you launch an instance, its initial state is

pending. After the instance starts, its state changes to runningand it receives a

public DNS name. (If the Public DNS (IPv4) column is hidden, choose

Show/Hide Columns (the gear-shaped icon) in the top right corner of the page and

then select Public DNS (IPv4).)

10. It can take a few minutes for the instance to be ready so that you can connect to it.

Check that your instance has passed its status checks; you can view this

information in the Status Checks column.

Step 2: Connect to Your Instance

 There are several ways to connect to your Linux instance. For more

 information,see Connect to Your Linux Instance.

Important

You can't connect to your instance unless you launched it with a key pair for which

you have the .pem file and you launched it with a security group that allows SSH

access from your computer. If you can't connect to your instance, see Troubleshooting

Connecting to Your Instance for assistance.

Step 3: Clean Up Your Instance

After you've finished with the instance that you created for this tutorial, you should

clean up by terminating the instance. If you want to do more with this instance before

you clean up, see Next Steps.

Important

Terminating an instance effectively deletes it; you can't reconnect to an instance after

you've terminated it.

If you launched an instance that is not within the AWS Free Tier, you'll stop incurring

charges for that instance as soon as the instance status changes to shutting down or

terminated. If you'd like to keep your instance for later, but not incur charges, you can

stop the instance now and then start it again later. For more information, see Stopping

Instances.

To terminate your instance

69

1. In the navigation pane, choose Instances. In the list of instances, select the

 instance.

2. Choose Actions, Instance State, Terminate.

3. Choose Yes, Terminate when prompted for confirmation.

Amazon EC2 shuts down and terminates your instance. After your instance is

terminated, it remains visible on the console for a short while, and then the entry is

deleted.

Next Steps.

After you start your instance, you might want to try some of the following exercises:

 Learn how to remotely manage your EC2 instance using Run Command. For

more

 information, see AWS Systems Manager Run Command in the AWS Systems

 Manager User Guide.

 Configure a CloudWatch alarm to notify you if your usage exceeds the Free Tier.

For more information, see Create a Billing Alarm in the AWS Billing and Cost

Management User Guide.

 Add an EBS volume. For more information, see Creating an Amazon EBS

 Volume and Attaching an Amazon EBS Volume to an Instance.

 Install the LAMP stack. For more information, see Tutorial: Install a LAMP Web

Server on Amazon Linux 2.

PRE LAB VIVA QUESTIONS

1. What is AWS?

2. What are the key components of AWS?

3. The fundamental elements of AWS ?

4. What is the importance of buffer in Amazon Web Services?

POST LAB VIVA QUESTIONS

1. What is lambda@edge in AWS??

2. Distinguish between scalability and flexibility?

3. What are the different types of events triggered by Amazon Cloud Front?

4. Which automation gears can help with spinup services?

70

 EXPERIMENT- 11

Before installing ZooKeeper, make sure your system is running on any of the

following operating systems

 Any of Linux OS − Supports development and deployment. It is preferred for

 demo applications.

 Windows OS − Supports only development.

 Mac OS − Supports only development.

 ZooKeeper server is created in Java and it runs on JVM. You need to use JDK 6

 or greater.

 Now, follow the steps given below to install ZooKeeper framework on your

machine.

Step 1: Verifying Java Installation

We believe you already have a Java environment installed on your system. Just verify

it using the following command.

$ java -version

If you have Java installed on your machine, then you could see the version of installed

Java. Otherwise, follow the simple steps given below to install the latest version of

Java.

Step 1.1: Download JDK

Download the latest version of JDK by visiting the following link and download the

latest version. Java

The latest version (while writing this tutorial) is JDK 8u 60 and the file is ―jdk-8u60-

linuxx64.tar.gz‖. Please download the file on your machine.

$ mkdir /opt/jdk

$ mv jdk-1.8.0_60 /opt/jdk/

Step 1.4: Set path

To set path and JAVA_HOME variables, add the following commands to ~/.bashrc

file.

export JAVA_HOME = /usr/jdk/jdk-1.8.0_60

export PATH=$PATH:$JAVA_HOME/bin

Now, apply all the changes into the current running system.

$ source ~/.bashrc

Step 1.5: Java alternatives

Use the following command to change Java alternatives.

update-alternatives --install /usr/bin/java java /opt/jdk/jdk1.8.0_60/bin/java 100

Step 1.6

Verify the Java installation using the verification command (java -version)explained

in Step 1.Step 2: ZooKeeper Framework Installation

Step 2.1: Download ZooKeeper

To install ZooKeeper framework on your machine, visit the following link and

download the latest version of ZooKeeper. http://zookeeper.apache.org/releases.html

As of now, the latest version of ZooKeeper is 3.4.6 (ZooKeeper-3.4.6.tar.gz).

Step 2.2: Extract the tar file

Extract the tar file using the following commands −

$ cd opt/

$ tar -zxf zookeeper-3.4.6.tar.gz

$ cd zookeeper-3.4.6

$ mkdir data

71

Step 2.3: Create configuration file

Open the configuration file named conf/zoo.cfg using the command vi conf/zoo.cfg

and all the following parameters to set as starting point.

$ vi conf/zoo.cfg

tickTime = 2000

dataDir = /path/to/zookeeper/data

clientPort = 2181

initLimit = 5

syncLimit = 2

Once the configuration file has been saved successfully, return to the terminal again.

You can now start the zookeeper server.

Step 2.4: Start ZooKeeper server

Execute the following command −

$ bin/zkServer.sh start

After executing this command, you will get a response as follows −

$ JMX enabled by default

$ Using config: /Users/../zookeeper-3.4.6/bin/../conf/zoo.cfg

$ Starting zookeeper ... STARTED

Step 2.5: Start CLI

Type the following command

$ bin/zkCli.sh

After typing the above command, you will be connected to the ZooKeeper server and

you should get the following response.

Connecting to localhost:2181

................

................

................

Welcome to ZooKeeper!

................

................

WATCHER::

WatchedEvent state:SyncConnected type: None path:null

[zk: localhost:2181(CONNECTED) 0]

Stop ZooKeeper Server

After connecting the server and performing all the operations, you can stop the

zookeeper server by using the following command.

EXAMPLE: ZooKeeper has an official API binding for Java and C. The ZooKeeper

community provides unofficial API for most of the languages (.NET, python, etc.).

Using ZooKeeper API, an application can connect, interact, manipulate data,

coordinate, and finally disconnect from a ZooKeeper ensemble.

ZooKeeper API has a rich set of features to get all the functionality of the ZooKeeper

ensemble in a simple and safe manner. ZooKeeper API provides both synchronous

and asynchronous methods.

ZooKeeper ensemble and ZooKeeper API completely complement each other in every

aspect and it benefits the developers in a great way. Let us discuss Java binding in this

chapter.

72

Basics of ZooKeeper API

Application interacting with ZooKeeper ensemble is referred as ZooKeeper Client or

simply Client.

Znode is the core component of ZooKeeper ensemble and ZooKeeper API provides a

small set of methods to manipulate all the details of znode with ZooKeeper ensemble.

A client should follow the steps given below to have a clear and clean interaction with

ZooKeeper ensemble.

 Connect to the ZooKeeper ensemble. ZooKeeper ensemble assign a Session ID

for

 the client.

 Send heartbeats to the server periodically. Otherwise, the ZooKeeper ensemble

 expires the Session ID and the client needs to reconnect.

 Get / Set the znodes as long as a session ID is active.

 Disconnect from the ZooKeeper ensemble, once all the tasks are completed. If

the

client is inactive for a prolonged time, then the ZooKeeper ensemble will

automatically disconnect the client.

Java Binding

Let us understand the most important set of ZooKeeper API in this chapter. The

central part of the ZooKeeper API is ZooKeeper class. It provides options to connect

the ZooKeeper ensemble in its constructor and has the following methods

 connect − connect to the ZooKeeper ensemble

 create − create a znode

 exists − check whether a znode exists and its information

 getData − get data from a particular znode

 setData − set data in a particular znode

 getChildren − get all sub-nodes available in a particular znode

 delete − get a particular znode and all its children

 close − close a connection

Connect to the ZooKeeper Ensemble

The ZooKeeper class provides connection functionality through its constructor. The

signature of the constructor is as follows −

ZooKeeper(String connectionString, int sessionTimeout, Watcher watcher)

Where,

 connectionString − ZooKeeper ensemble host.

 sessionTimeout − session timeout in milliseconds.

 watcher − an object implementing ―Watcher‖ interface. The ZooKeeper

ensemble returns the connection status through the watcher object.

Let us create a new helper class ZooKeeperConnection and add a method connect.

The connect method creates a ZooKeeper object, connects to the ZooKeeper

ensemble, and then returns the object.

Here CountDownLatch is used to stop (wait) the main process until the client

connects with the ZooKeeper ensemble.

The ZooKeeper ensemble replies the connection status through the Watcher callback.

The Watcher callback will be called once the client connects with the ZooKeeper

ensemble and the Watcher callback calls the countDown method of the

CountDownLatch to release the lock, await in the main process.

73

Here is the complete code to connect with a ZooKeeper ensemble.

Coding: ZooKeeperConnection.java

// import java classes

import java.io.IOException;

import java.util.concurrent.CountDownLatch;

// import zookeeper classes

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.AsyncCallback.StatCallback;

import org.apache.zookeeper.KeeperException.Code;

import org.apache.zookeeper.data.Stat;

public class ZooKeeperConnection

 {

 // declare zookeeper instance to access ZooKeeper ensemble

 private ZooKeeper zoo;

 final CountDownLatch connectedSignal = new CountDownLatch(1);

 // Method to connect zookeeper ensemble.

 public ZooKeeper connect(String host) throws IOException,InterruptedException

 {

 zoo = new ZooKeeper(host,5000,new Watcher()

 {

 public void process(WatchedEvent we)

 {

 if (we.getState() == KeeperState.SyncConnected)

 {

 connectedSignal.countDown();

 }

 }

 });

 connectedSignal.await();

 return zoo;

 }

 // Method to disconnect from zookeeper server

 public void close() throws InterruptedException

 {

 zoo.close();

 }

}

Save the above code and it will be used in the next section for connecting the

ZooKeeper ensemble.

Create a Znode

The ZooKeeper class provides create method to create a new znode in the ZooKeeper

ensemble. The signature of the create method is as follows −

create(String path, byte[] data, List<ACL> acl, CreateMode createMode)

Where,

74

 path − Znode path. For example, /myapp1, /myapp2, /myapp1/mydata1,

 myapp2/mydata1/myanothersubdata

 data − data to store in a specified znode path

 acl − access control list of the node to be created. ZooKeeper API provides a

 static interface ZooDefs.Ids to get some of basic acl list. For example,

ZooDefs.Ids.OPEN_ACL_UNSAFE returns a list of acl for open znodes.

 createMode − the type of node, either ephemeral, sequential, or both.

 This is an enum.

Let us create a new Java application to check the create functionality of the

ZooKeeper API. Create a file ZKCreate.java. In the main method, create an object of

type ZooKeeperConnection and call the connect method to connect to the ZooKeeper

ensemble.

The connect method will return the ZooKeeper object zk. Now, call the createmethod

of zk object with custom path and data.

The complete program code to create a znode is as follows −

Coding: ZKCreate.java

import java.io.IOException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.CreateMode;

import org.apache.zookeeper.ZooDefs;

public class ZKCreate {

 // create static instance for zookeeper class.

 private static ZooKeeper zk;

 // create static instance for ZooKeeperConnection class.

 private static ZooKeeperConnection conn;

 // Method to create znode in zookeeper ensemble

 public static void create(String path, byte[] data) throws

 KeeperException,InterruptedException {

 zk.create(path, data, ZooDefs.Ids.OPEN_ACL_UNSAFE,

 CreateMode.PERSISTENT);

 }

 public static void main(String[] args) {

 // znode path

 String path = "/MyFirstZnode"; // Assign path to znode

 // data in byte array

 byte[] data = "My first zookeeper app‖.getBytes(); // Declare data

 try {

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

75

 create(path, data); // Create the data to the specified path

 conn.close();

 }

 catch (Exception e)

 {

 System.out.println(e.getMessage()); //Catch error message

 }

 }

}

Once the application is compiled and executed, a znode with the specified data will be

created in the ZooKeeper ensemble. You can check it using the ZooKeeper CLI

zkCli.sh.

cd /path/to/zookeeper

bin/zkCli.sh

>>> get /MyFirstZnode

Exists – Check the Existence of a Znode

The ZooKeeper class provides the exists method to check the existence of a znode. It

returns the metadata of a znode, if the specified znode exists. The signature of the

exists method is as follows −

exists(String path, boolean watcher)

Where,

 path − Znode path

 watcher − boolean value to specify whether to watch a specified znode or not

Let us create a new Java application to check the ―exists‖ functionality of the

ZooKeeper API. Create a file ―ZKExists.java‖. In the main method, create ZooKeeper

object, ―zk‖ using ―ZooKeeperConnection‖ object. Then, call ―exists‖ method of ―zk‖

object with custom ―path‖. The complete listing is as follow −

Coding: ZKExists.java

import java.io.IOException;

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import org.apache.zookeeper.data.Stat;

public class ZKExists {

 private static ZooKeeper zk;

 private static ZooKeeperConnection conn;

 // Method to check existence of znode and its status, if znode is available.

 public static Stat znode_exists(String path) throws

 KeeperException,InterruptedException {

 return zk.exists(path, true);

 }

76

 public static void main(String[] args) throws InterruptedException,KeeperException

{

 String path = "/MyFirstZnode"; // Assign znode to the specified path

 try

 {

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

 Stat stat = znode_exists(path); // Stat checks the path of the znode

 if(stat != null)

 {

 System.out.println("Node exists and the node version is " +

 stat.getVersion());

 }

 else

 {

 System.out.println("Node does not exists");

 }

 }

 catch(Exception e)

 {

 System.out.println(e.getMessage()); // Catches error messages

 }

 }

}

Once the application is compiled and executed, you will get the below output.

Node exists and the node version is 1.

getData Method

The ZooKeeper class provides getData method to get the data attached in a specified

znode and its status. The signature of the getData method is as follows −

getData(String path, Watcher watcher, Stat stat)

Where,

 path − Znode path.

 watcher − Callback function of type Watcher. The ZooKeeper ensemble will

notify through the Watcher callback when the data of the specified znode

changes.

 This is one time notification.

 stat − Returns the metadata of a znode.

Let us create a new Java application to understand the getData functionality of the

ZooKeeper API. Create a file ZKGetData.java. In the main method, create a

ZooKeeper object zk using he ZooKeeperConnection object. Then, call the getData

method of zk object with custom path.

Here is the complete program code to get the data from a specified node −

Coding: ZKGetData.java

import java.io.IOException;

import java.util.concurrent.CountDownLatch;

import org.apache.zookeeper.ZooKeeper;

77

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import org.apache.zookeeper.data.Stat;

public class ZKGetData {

private static ZooKeeper zk;

private static ZooKeeperConnection conn;

public static Stat znode_exists(String path) throws

 KeeperException,InterruptedException {

 return zk.exists(path,true);

 }

 public static void main(String[] args) throws InterruptedException,

KeeperException {

 String path = "/MyFirstZnode";

 final CountDownLatch connectedSignal = new CountDownLatch(1);

 try {

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

 Stat stat = znode_exists(path);

 if(stat != null) {

 byte[] b = zk.getData(path, new Watcher() {

 public void process(WatchedEvent we) {

 if (we.getType() == Event.EventType.None) {

 switch(we.getState()) {

 case Expired:

 connectedSignal.countDown();

 break;

 }

 } else

 {

 String path = "/MyFirstZnode";

 try {

 byte[] bn = zk.getData(path,

 false, null);

 String data = new String(bn,

 "UTF-8");

 System.out.println(data);

 connectedSignal.countDown();

 }

 catch(Exception ex) {

 System.out.println(ex.getMessage());

 }

 }

78

 }

 }, null);

 String data = new String(b, "UTF-8");

 System.out.println(data);

 connectedSignal.await();

 } else {

 System.out.println("Node does not exists");

 }

 } catch(Exception e) {

 System.out.println(e.getMessage());

 }

 }

}

Once the application is compiled and executed, you will get the following output

My first zookeeper app

And the application will wait for further notification from the ZooKeeper ensemble.

Change the data of the specified znode using ZooKeeper CLI zkCli.sh.

cd /path/to/zookeeper

bin/zkCli.sh

>>> set /MyFirstZnode Hello

Now, the application will print the following output and exit.

Hello

setData Method

The ZooKeeper class provides setData method to modify the data attached in a

specified znode. The signature of the setData method is as follows −

setData(String path, byte[] data, int version)

Where,

 path − Znode path

 data − data to store in a specified znode path.

 version − Current version of the znode. ZooKeeper updates the version

number of the znode whenever the data gets changed.

Let us now create a new Java application to understand the setDatafunctionality of the

ZooKeeper API. Create a file ZKSetData.java. In the main method, create a

ZooKeeper object zk using the ZooKeeperConnectionobject. Then, call the setData

method of zk object with the specified path, new data, and version of the node.

Here is the complete program code to modify the data attached in a specified znode.

Code: ZKSetData.java

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import java.io.IOException;

public class ZKSetData {

 private static ZooKeeper zk;

79

 private static ZooKeeperConnection conn;

 // Method to update the data in a znode. Similar to getData but without watcher.

 public static void update(String path, byte[] data) throws

 KeeperException,InterruptedException {

 zk.setData(path, data, zk.exists(path,true).getVersion());

 }

 public static void main(String[] args) throws InterruptedException,KeeperException

 {

 String path= "/MyFirstZnode";

 byte[] data = "Success".getBytes(); //Assign data which is to be updated.

 try {

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

 update(path, data); // Update znode data to the specified path

 } catch(Exception e) {

 System.out.println(e.getMessage());

 }

 }

}

Once the application is compiled and executed, the data of the specified znode will be

changed and it can be checked using the ZooKeeper CLI, zkCli.sh.

cd /path/to/zookeeper

bin/zkCli.sh

>>> get /MyFirstZnode

getChildren Method

The ZooKeeper class provides getChildren method to get all the sub-node of a

particular znode. The signature of the getChildren method is as follows −

getChildren(String path, Watcher watcher)

Where,

 path − Znode path.

 watcher − Callback function of type ―Watcher‖. The ZooKeeper ensemble will

notify when the specified znode gets deleted or a child under the znode gets created

/ deleted. This is a one-time notification.

Coding: ZKGetChildren.java

import java.io.IOException;

import java.util.*;

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import org.apache.zookeeper.data.Stat;

public class ZKGetChildren {

80

 private static ZooKeeper zk;

 private static ZooKeeperConnection conn;

 // Method to check existence of znode and its status, if znode is available.

 public static Stat znode_exists(String path) throws

 KeeperException,InterruptedException {

 return zk.exists(path,true);

 }

 public static void main(String[] args) throws InterruptedException,KeeperException

{

 String path = "/MyFirstZnode"; // Assign path to the znode

 try {

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

 Stat stat = znode_exists(path); // Stat checks the path

 if(stat!= null) {

 //―getChildren‖ method- get all the children of znode.It has two

 args, path and watch

 List <String> children = zk.getChildren(path, false);

 for(int i = 0; i < children.size(); i++)

 System.out.println(children.get(i)); //Print children's

 } else {

 System.out.println("Node does not exists");

 }

 } catch(Exception e) {

 System.out.println(e.getMessage());

 }

 }

}

Before running the program, let us create two sub-nodes for /MyFirstZnodeusing the

ZooKeeper CLI, zkCli.sh.

cd /path/to/zookeeper

bin/zkCli.sh

>>> create /MyFirstZnode/myfirstsubnode Hi

>>> create /MyFirstZnode/mysecondsubmode Hi

Now, compiling and running the program will output the above created znodes.

myfirstsubnode

mysecondsubnode

Delete a Znode

The ZooKeeper class provides delete method to delete a specified znode. The

signature of the delete method is as follows −

delete(String path, int version)

Where,

 path − Znode path.

 version − Current version of the znode.

81

Let us create a new Java application to understand the delete functionality of the

ZooKeeper API. Create a file ZKDelete.java. In the main method, create a ZooKeeper

object zk using ZooKeeperConnection object. Then, call the delete method of zk

object with the specified path and version of the node.

The complete program code to delete a znode is as follows −

Coding: ZKDelete.java

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.KeeperException;

public class ZKDelete {

 private static ZooKeeper zk;

 private static ZooKeeperConnection conn;

 // Method to check existence of znode and its status, if znode is available.

 public static void delete(String path) throws KeeperException,InterruptedException

{

 zk.delete(path,zk.exists(path,true).getVersion());

 }

 public static void main(String[] args) throws InterruptedException,KeeperException

{

 String path = "/MyFirstZnode"; //Assign path to the znode

 try {

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

 delete(path); //delete the node with the specified path

 } catch(Exception e) {

 System.out.println(e.getMessage()); // catches error messages

 }

 }

}

PRE LAB VIVA QUESTIONS?

1. What exactly is ZooKeeper?

2. What is ZooKeeper server and client?

3. How does ZooKeeper work?

4. What is ZooKeeper used for?

POST LAB VIVA QUESTIONS?

5. What type of connection is made with ZooKeeper by client?

6. Is ZooKeeper mandatory for Kafka?

7. What does Apache ZooKeeper mean?

8. What is Apache ZooKeeper?

82

EXPERIMENT-12

Create a Java Hello World Example with Google App Engine in Eclipse

In the following tutorial we will create a Java Google App Engine example. The

application will display the typical ―Hello World‖ greeting when it is invoked. We‘ll

develop all the source code in Eclipse with the help of the GAE plugin for Eclipse,

test the application through Google App Engine Runtime (included within the plug in)

and finally we will deploy it to the GAE account.

1. Prerequisites

1. Eclipse IDE.

2. GAE Eclipse Plugin for Eclipse.

3. A Google App Engine account (to test the app in GAE)

 2. Create the GAE Project

Once you have installed the GAE Plugin for Eclipse, a new icon (a blue ―g‖) will be

shown in the tool bar. Click it and a menu will be displayed.

Select New Web Application Project.

A new wizard appears and you have to put the information about your project.

http://www.eclipse.org/
https://developers.google.com/appengine/docs/java/tools/eclipse
https://developers.google.com/appengine/

83

Make sure that the Use Google Web Toolkit is unchecked, then click Finish.

 3.-Code your Project

The created project will have this structure:

The structure of the project is like a typical Web project with some extra libraries and

a appengine-web.xml , which we will look into later.

84

As you can see, a Servlet is created. In this Servlet you will put all the logic for the

incoming requests that your application will have.

In this example we will return Hello world from GAE , so let‘s take a look into the

code.

package com.marco.tello;

import java.io.IOException;

import javax.servlet.http.*;

 @SuppressWarnings("serial")

public class HelloWorldGAEServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws IOException {

 resp.setContentType("text/plain");

 resp.getWriter().println("Hello world from GAE");

 }

}

4. Test your Application Local

 At this point you can test your application in your local environment. Right click

 on HelloWorldGAEServlet.java->Run As->Web Application.

You will see the embedded server starting and when the deploy is ready, something

like

85

is will show in the Console tab.

Open a browser and go to http://localhost:8888/. The main Google App Engine screen

comes up.

If you click on HelloWorldGAE you will see the greeting from the servlet you just

modified.

http://localhost:8888/
http://localhost:8888/helloworldgae

86

That‘s it!

 5. Deploy to Google App Engine

For this step you have to create an account in https://appengine.google.com/ and

register you application. Google will only let you register 10 application, so be

careful.

Modify the appengine-web.xml with the name of your registered application. In my

case it is marcotello-test.

<?xml version="1.0" encoding="utf-8"?>

<appengine-web-app xmlns="http://appengine.google.com/ns/1.0">

 <application>marcotello-test</application>

 <version>1</version>

 <!--

 Allows App Engine to send multiple requests to one instance in parallel:

 -->

 <threadsafe>true</threadsafe>

 <!-- Configure java.util.logging -->

 <system-properties>

 <property name="java.util.logging.config.file" value="WEB

INF/logging.properties"/>

 </system-properties>

 <!--

 HTTP Sessions are disabled by default. To enable HTTP sessions specify:

 <sessions-enabled>true</sessions-enabled>

 It's possible to reduce request latency by configuring your application to

 asynchronously write HTTP session data to the datastore:

 <async-session-persistence enabled="true" />

 With this feature enabled, there is a very small chance your app will see

 stale session data. For details, see

 http://code.google.com/appengine/docs/java/config/appconfig.html#Enabling_Sessi

ons

 -->

 </appengine-web-app>

 Once you save the changes, click on the g icon in the tool bar and select Deploy to

https://appengine.google.com/

87

App

 Engine…

At this point you will have to log in with your Google account and the deployment

will

start.

When the deployment is finished, the following message will show up in the Eclipse

 console:

Test the application in the browser with the name of your registered application

followed by appspot.com. In my case it‘s http://marcotello-test.appspot.com/

PRE LAB VIVA QUESTIONS
1. What is meant by google App Engine?

2. How does google App Engine work ?

3. What are different versions of google App Engine?

4. What is Eclipse IDE?

POST LAB VIVA QUESTIONS

1. What does Eclipse IDE work ?

2. What is the Eclipse Plugin?

3. What is the use of Eclipse Plugin ?

4. Define the java persistence API ?

http://marcotello-test.appspot.com/
http://www.eclipse.org/
http://www.eclipse.org/

88

WEEK 13

Creating a Guestbook Application

This tutorial shows you how to build and run a sample Python application for App

Engine and provides a code walkthrough of the sample code. The sample is a simple

guestbook that lets users post messages to a public message board.

Objectives

 Build and test an App Engine app using Python.

 Integrate your application with Google Accounts for user authentication.

 Use the webapp2 framework.

 Use Jinja2 templates.

 Store data in Cloud Datastore.

 Deploy your app to App Engine.

 Costs

App Engine has generous free quotas that will cover your testing this tutorial in a live

production environment.

Before you begin

1. Create a new GCP Console project or retrieve the project ID of an existing project

from the Google Cloud Platform Console:

GO TO THE PROJECTS PAGE

Tip: Retrieve a list of your existing project IDs with gcloud.

2. Install the Google Cloud SDK and then initialize the gcloud tool:

DOWNLOAD THE SDK

Cloning the project from GitHub

1. Clone the Guestbook application repository to your local machine:

git clone https://github.com/GoogleCloudPlatform/appengine-guestbook-python.git

Go to the directory that contains the sample code:

cd appengine-guestbook-python

Building and running locally

To build and run the sample locally:

1. Start the local development web server by running the following command from

the appengine-guestbook-python directory: dev_appserver.py ./

The development web server runs and listens for requests on port 8080.

Note: The dev_appserver.py tool is installed globally with the App Engine

SDK whether you installed with the Cloud SDK or the standalone SDK.

2. Visit http://localhost:8080/ in your web browser to view the app.

Click Login, then sign in with any email address. The development server accepts any

email you supply, valid or not. This same code requires a valid Google Account and

email when deployed to production.

3. Stop the development server by pressing Control+C.

Authenticating Users

This part of the Python Guestbook code walkthrough shows how to authenticate users

and display a customized greeting for the signed-in user.

https://cloud.google.com/appengine/docs/quotas
https://console.cloud.google.com/project
https://cloud.google.com/appengine/docs/standard/python/getting-started/creating-guestbook#prerequisites
https://cloud.google.com/appengine/docs/standard/python/download
https://cloud.google.com/appengine/docs/standard/python/tools/using-local-server
https://cloud.google.com/appengine/docs/standard/python/download
https://cloud.google.com/appengine/docs/standard/python/download
https://cloud.google.com/appengine/docs/standard/python/download
http://localhost:8080/

89

This page is part of a multi-page tutorial. To start from the beginning and see

instructions for setting up, go to Creating a Guestbook.

Signing in users

The MainPage class defines a handler for HTTP GET requests to the root path '/'.

The handler checks to see whether a user is signed in:

guestbook.py

class MainPage(webapp2.RequestHandler):

 def get(self):

 guestbook_name = self.request.get('guestbook_name',

 DEFAULT_GUESTBOOK_NAME)

 greetings_query = Greeting.query(

 ancestor=guestbook_key(guestbook_name)).order(-Greeting.date)

 greetings = greetings_query.fetch(10)

 user = users.get_current_user()

 if user:

 url = users.create_logout_url(self.request.uri)

 url_linktext = 'Logout'

 else:

 url = users.create_login_url(self.request.uri)

 url_linktext = 'Login'

 template_values = {

 'user': user,

 'greetings': greetings,

 'guestbook_name': urllib.quote_plus(guestbook_name),

 'url': url,

 'url_linktext': url_linktext,

 }

 template = JINJA_ENVIRONMENT.get_template('index.html')

 self.response.write(template.render(template_values))

If the user is already signed in to your application, the get_current_user() method

returns a Userobject, and the app displays the users's nickname. If the user has not

signed in, the code redirects the user's browser to the Google account sign-in screen.

The Google account sign-in mechanism sends the user back to the app after the user

has signed in.

For more information, see the Users API.

Handling User Input in a Form

This part of the Python Guestbook code walkthrough shows how to handle user input.

This page is part of a multi-page tutorial. To start from the beginning and see

instructions for setting up, go to Creating a Guestbook.

Configuring the app to use webapp2
The Guestbook sample uses the webapp2 framework, which is included in the App

Engine environment and the App Engine Python SDK. You don't need to bundle

webapp2 with your application code to use it.

The app.yaml file specifies that the app uses the webapp2 framework:

https://cloud.google.com/appengine/docs/standard/python/getting-started/creating-guestbook
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/guestbook.py
https://cloud.google.com/appengine/docs/standard/python/users
https://cloud.google.com/appengine/docs/standard/python/getting-started/creating-guestbook
https://cloud.google.com/appengine/docs/standard/python/tools/webapp2
https://cloud.google.com/appengine/downloads#Google_App_Engine_SDK_for_Python

90

app.yaml

 libraries:

 name: webapp2

 version: latest

 name: jinja2

 version: latest

A webapp2 application has two parts:

 One or more RequestHandler classes that process requests and build responses.

 A WSGIApplication instance that routes incoming requests to handlers based on

 the URL.

The app.yaml file specifies the app object in guestbook.py as the handler for all

URLs:

app.yaml

handlers:

 url: /favicon\.ico

 static_files: favicon.ico

 upload: favicon\.ico

 url: /bootstrap

 static_dir: bootstrap

 url: /.*

 script: guestbook.app

Defining a handler for form submission

The app object in guestbook.py is a WSGIApplication that defines which scripts

handle requests for given URLs.

guestbook.py

app = webapp2.WSGIApplication([

 ('/', MainPage),

 ('/sign', Guestbook),

], debug=True)

The debug=True parameter tells webapp2 to print stack traces to the browser output if

a handler encounters an error or raises an uncaught exception. This option should be

removed before deploying the final version of your application, otherwise you will

inadvertently expose the internals of your application.

The Guestbook handler has a post() method instead of a get() method. This is because

the form displayed by Main Page uses the HTTP POST method to submit the form

data.

guestbook.py

class Guestbook(webapp2.RequestHandler):

 def post(self):

 # We set the same parent key on the 'Greeting' to ensure each

 # Greeting is in the same entity group. Queries across the

 # single entity group will be consistent. However, the write

https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/app.yaml
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/app.yaml
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/guestbook.py
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/guestbook.py

91

 # rate to a single entity group should be limited to

 # ~1/second.

 guestbook_name = self.request.get('guestbook_name',

 DEFAULT_GUESTBOOK_NAME)

 greeting = Greeting(parent=guestbook_key(guestbook_name))

 if users.get_current_user():

 greeting.author = Author(

 identity=users.get_current_user().user_id(),

 email=users.get_current_user().email())

 greeting.content = self.request.get('content')

 greeting.put()

 query_params = {'guestbook_name': guestbook_name}

 self.redirect('/?' + urllib.urlencode(query_params))

 The post() method gets the form data from self.request.

Generating Dynamic Content from Templates

This part of the Python Guestbook code walkthrough shows how to use Jinja

templates to generate dynamic web content.

This page is part of a multi-page tutorial. To start from the beginning and see

instructions for setting up, go to Creating a Guestbook.

HTML embedded in code is messy and difficult to maintain. It's better to use a

templating system, where the HTML is kept in a separate file with special syntax to

indicate where the data from the application appears. There are many templating

systems for Python: EZT, Cheetah, ClearSilver,Quixote, Django, and Jinja2 are just a

few. You can use your template engine of choice by bundling it with your application

code.

For your convenience, App Engine includes the Django and Jinja2 templating

engines.

Using Jinja2 Templates

The app.yaml file lists the latest version of jinja2 as a required library. Production

applications should use an actual version number rather than version: latest.

app.yaml

libraries:

 name: webapp2

 version: latest

name: jinja2

version: latest

The app imports jinja2 and creates a jinja2.Environment object.

guestbook.py

import os

import urllib

from google.appengine.api import users

from google.appengine.ext import ndb

import jinja2

import webapp2

JINJA_ENVIRONMENT = jinja2.Environment(

 loader=jinja2.FileSystemLoader(os.path.dirname(__file__)),

https://cloud.google.com/appengine/docs/standard/python/getting-started/creating-guestbook
https://code.google.com/p/ezt/
https://github.com/cheetahtemplate/cheetah/
http://www.clearsilver.net/
http://www.mems-exchange.org/software/quixote/
https://docs.djangoproject.com/en/dev/topics/templates/
http://jinja.pocoo.org/docs/
https://cloud.google.com/appengine/docs/standard/python/tools/built-in-libraries-27
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/app.yaml
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/guestbook.py

92

 extensions=['jinja2.ext.autoescape'],

 autoescape=True)

The get method for the MainPage request handler forms a dictionary of key/value

pairs and passes it to template.render.

guestbook.py

class MainPage(webapp2.RequestHandler):

 def get(self):

 guestbook_name = self.request.get('guestbook_name',

 DEFAULT_GUESTBOOK_NAME)

 greetings_query = Greeting.query(

 ancestor=guestbook_key(guestbook_name)).order(-Greeting.date)

 greetings = greetings_query.fetch(10)

 user = users.get_current_user()

 if user:

 url = users.create_logout_url(self.request.uri)

 url_linktext = 'Logout'

 else:

 url = users.create_login_url(self.request.uri)

 url_linktext = 'Login'

 template_values = {

 'user': user,

 'greetings': greetings,

 'guestbook_name': urllib.quote_plus(guestbook_name),

 'url': url,

 'url_linktext': url_linktext,

 }

 template = JINJA_ENVIRONMENT.get_template('index.html')

 self.response.write(template.render(template_values))

The page is rendered according to the index.html template, which receives the

dictionary as input.

index.html

{% for greeting in greetings %}

<div class="row">

 {% if greeting.author %}

 {{ greeting.author.email }}

 {% if user and user.user_id() == greeting.author.identity %}

 (You)

 {% endif %}

 wrote:

 {% else %}

 An anonymous person wrote:

 {% endif %}

 <blockquote>{{ greeting.content }}</blockquote>

</div>
{% endfor %}

The JINJA_ENVIRONMENT.get_template(name) method takes the name of a

template file and returns a template object. The template.render(template_values) call

https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/guestbook.py
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/index.html

93

takes a dictionary of values, and returns the rendered text. The template uses Jinja2

templating syntax to access and iterate over the values, and can refer to properties of

those values.

< PREVNEXT >

Storing Data in Cloud Datastore

This part of the Python Guestbook code walkthrough shows how to store structured

data in Cloud Datastore. With App Engine and Cloud Datastore, you don't have to

worry about distribution, replication, and load balancing of data. That is done for you

behind a simple API—and you get a powerful query engine and transactions as well.

Note: Cloud Datastore is only one option you have for storing application data. If you

prefer to use relational data and SQL instead of data structures, try walking

through the instructions for using Google Cloud SQL, which also use the Guestbook

example application.

This page is part of a multi-page tutorial. To start from the beginning and see

instructions for setting up, go to Creating a Guestbook.

Storing the submitted greetings

Data is written to Cloud Datastore in objects known as entities. Each entity has

a key that uniquely identifies it. An entity can optionally designate another entity as

its parent; the first entity is a child of the parent entity. The entities in the data store

thus form a hierarchically-structured space similar to the directory structure of a file

system. For detailed information, see Structuring Data for Strong Consistency.

App Engine includes a data modeling API for Python. To use the data modeling API,

the sample app imports the google.appengine.ext.ndb module. Each greeting includes

the author's name, the message content, and the date and time the message was

posted. The app displays messages in chronological order. The following code defines

the data model:

 guestbook.py

 class Author(ndb.Model):

 """Sub model for representing an author."""

 identity = ndb.StringProperty(indexed=False)

 email = ndb.StringProperty(indexed=False)

 class Greeting(ndb.Model):

 """A main model for representing an individual Guestbook entry."""

 author = ndb.StructuredProperty(Author)

 content = ndb.StringProperty(indexed=False)

 date = ndb.DateTimeProperty(auto_now_add=True)

 The code defines a Greeting model with three properties: author whose value is

an Authorobject with the email address and the author's identity, content whose

value is a string, and datewhose value is a datetime.datetime.

 Some property constructors take parameters to further configure their behavior.

Passing the ndb.StringProperty constructor the indexed=False parameter says

https://cloud.google.com/appengine/docs/standard/python/getting-started/handling-user-input-form
https://cloud.google.com/appengine/docs/standard/python/getting-started/handling-user-input-form
https://cloud.google.com/appengine/docs/standard/python/cloud-sql/
https://cloud.google.com/appengine/docs/standard/python/getting-started/creating-guestbook
https://cloud.google.com/appengine/docs/standard/python/ndb/creating-entities
https://cloud.google.com/appengine/docs/standard/python/datastore/#Kinds_Keys_and_Identifiers
https://cloud.google.com/appengine/docs/standard/python/datastore/structuring_for_strong_consistency
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/guestbook.py

94

that values for this property will not be indexed. This saves writes which aren't

needed because the app never uses that property in a query.

 Passing the ndb.DateTimeProperty constructor

an auto_now_add=True parameter configures the model to automatically give

new objects a datetime stamp of the time the object is created, if the application

doesn't otherwise provide a value. For a complete list of property types and

their options, see NDB Properties.

The application uses the data model to create new Greeting objects and put them into

Cloud Datastore. The Guestbook handler creates new greetings and saves them to the

data store:

guestbook.py

class Guestbook(webapp2.RequestHandler):

 def post(self):

 # We set the same parent key on the 'Greeting' to ensure each

 # Greeting is in the same entity group. Queries across the

 # single entity group will be consistent. However, the write

 # rate to a single entity group should be limited to

 # ~1/second.

 guestbook_name = self.request.get('guestbook_name',

 greeting = Greeting(parent=guestbook_key(guestbook_name))

 if users.get_current_user():

 greeting.author = Author(

 identity=users.get_current_user().user_id(),

 email=users.get_current_user().email())

 greeting.content = self.request.get('content')

 greeting.put()

 query_params = {'guestbook_name': guestbook_name}

 self.redirect('/?' + urllib.urlencode(query_params))

This Guestbook handler creates a new Greeting object, then sets

its author and contentproperties with the data posted by the user. The parent

of Greeting is a Guestbook entity. There's no need to create the Guestbook entity

before setting it to be the parent of another entity. In this example, the parent is used

as a placeholder for transaction and consistency purposes. See theTransactions page

for more information. Objects that share a common ancestor belong to the same entity

group. The code does not set the date property, so date is automatically set to the

present, using auto_now_add=True.

Finally, greeting.put() saves the new object to the data store. If we had acquired this

object from a query, put() would have updated the existing object. Because we created

this object with the model constructor, put() adds the new object to the data store.

Because querying in Cloud Datastore is strongly consistent only within entity groups,

the code assigns all of one book's greetings to the same entity group by setting the

https://cloud.google.com/appengine/docs/standard/python/ndb/entity-property-reference
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/guestbook.py
https://cloud.google.com/appengine/docs/standard/python/datastore/transactions
https://cloud.google.com/appengine/docs/standard/python/datastore/#Python_Ancestor_paths

95

same parent for each greeting. This means the user always sees a greeting

immediately after it is written. However, the rate at which you can write to the same

entity group is limited to one write to the entity group per second. When you design a

real application you'll need to keep this fact in mind. Note that by using services such

as Memcache, you can lower the chance that a user sees stale results when querying

across entity groups after a write.

Retrieving submitted greetings

Cloud Datastore has a sophisticated query engine for data models. Because Cloud

Datastore is not a traditional relational database, queries are not specified using SQL.

Instead, data is queried one of two ways: either by using Datastore queries, or by

using an SQL-like query language called GQL. To access the full range of Cloud

Datastore's query capabilities, we recommend using queries over GQL.

The MainPage handler retrieves and displays previously submitted greetings.

The greetings_query.fetch(10) call performs the query.

More about Cloud Datastore indexes

Every query in Cloud Datastore is computed from one or more indexes—tables that

map ordered property values to entity keys. This is how App Engine is able to serve

results quickly regardless of the size of your application's data store. Many queries

can be computed from the built-in indexes, but for queries that are more complex,

Cloud Datastore requires a custom index. Without a custom index, Cloud Datastore

can't execute these queries efficiently.For example, the Guestbook application filters

by guestbook, and orders by date, using an ancestor query and a sort order. This

requires a custom index to be specified in the application's index.yamlfile. You can

edit this file manually, or you can take care of it automatically by running the queries

in the application locally. After the index is defined in index.yaml, deploying the

application will also deploy the custom index information.

The definition for the query in index.yaml looks like this:

index.yaml

 indexes:

 kind: Greeting

 ancestor: yes

 properties:

 name: date

 direction: desc

You can read all about Cloud Datastore indexes in the Datastore Indexes page. You

can read about the proper specification for index.yaml files in Python Datastore Index

Configuration.

Serving Static Files

This part of the Python Guestbook code walkthrough shows how to serve static files.

App Engine does not serve files directly out of your application's source directory

unless configured to do so. But there are many cases where you want to serve static

files directly to the web browser. Images, CSS stylesheets, JavaScript code, movies,

and Flash animations are all typically stored with a web application and served

directly to the browser.

https://cloud.google.com/appengine/docs/standard/python/memcache
https://cloud.google.com/appengine/docs/standard/python/ndb/queries
https://cloud.google.com/appengine/docs/standard/python/datastore/gqlreference
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/index.yaml
https://cloud.google.com/appengine/docs/standard/python/datastore/indexes
https://cloud.google.com/appengine/docs/standard/python/config/indexconfig
https://cloud.google.com/appengine/docs/standard/python/config/indexconfig
https://cloud.google.com/appengine/docs/standard/python/config/indexconfig

96

This page is part of a multi-page tutorial. To start from the beginning and see

instructions for setting up, go to Creating a Guestbook.

Configuring the app to use static files

The CSS files for the Guestbook app are in the bootstrap/css directory. The template

for the app's web page, index.html, instructs the browser to

load bootstrap.css and bootstrap-responsive.css, which are static files:

index.html

<link type="text/css" rel="stylesheet" href="/bootstrap/css/bootstrap.css">

<link type="text/css" rel="stylesheet" href="/bootstrap/css/bootstrap-responsive.css">

The app.yaml file specifies the bootstrap directory as the location for static files:

app.yaml
handlers:

- url: /favicon\.ico

 static_files: favicon.ico

 upload: favicon\.ico

- url: /bootstrap

 static_dir: bootstrap

- url: /.*

 script: guestbook.app

The handlers section defines two handlers for URLs. When App Engine receives a

request for a URL beginning with /bootstrap, it maps the remainder of the path to files

in the bootstrap directory, and if an appropriate file is found, the contents of the file

are returned to the client. All other URLs match the /.* pattern, and are handled by

the app object in the guestbook module.

URL path patterns are tested in the order they appear in app.yaml. In this case,

the /bootstrappattern matches before the /.* pattern for the appropriate paths. For more

information on URL mapping and other options you can specify in app.yaml, see

the app.yaml reference.

Serving Static Files

This part of the Python Guestbook code walkthrough shows how to serve static files.

App Engine does not serve files directly out of your application's source directory

unless configured to do so. But there are many cases where you want to serve static

files directly to the web browser. Images, CSS stylesheets, JavaScript code, movies,

and Flash animations are all typically stored with a web application and served

directly to the browser.

This page is part of a multi-page tutorial. To start from the beginning and see

instructions for setting up, go to Creating a Guestbook.

Configuring the app to use static files

The CSS files for the Guestbook app are in the bootstrap/css directory. The template

for the app's web page, index.html, instructs the browser to

load bootstrap.css and bootstrap-responsive.css, which are static files:

index.html

<link type="text/css" rel="stylesheet" href="/bootstrap/css/bootstrap.css">

<link type="text/css" rel="stylesheet" href="/bootstrap/css/bootstrap-responsive.css">

The app.yaml file specifies the bootstrap directory as the location for static files:

https://cloud.google.com/appengine/docs/standard/python/getting-started/creating-guestbook
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/index.html
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/app.yaml
https://cloud.google.com/appengine/docs/standard/python/config/appref#handlers
https://cloud.google.com/appengine/docs/standard/python/getting-started/creating-guestbook
https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/index.html

97

app.yaml

handlers:

- url: /favicon\.ico

 static_files: favicon.ico

 upload: favicon\.ico

- url: /bootstrap

 static_dir: bootstrap

- url: /.*

 script: guestbook.app

The handlers section defines two handlers for URLs. When App Engine receives a

request for a URL beginning with /bootstrap, it maps the remainder of the path to files

in the bootstrap directory, and if an appropriate file is found, the contents of the file

are returned to the client. All other URLs match the /.* pattern, and are handled by

the app object in the guestbook module.

URL path patterns are tested in the order they appear in app.yaml. In this case,

the /bootstrap pattern matches before the /.* pattern for the appropriate paths. For

more information on URL mapping and other options you can specify in app.yaml,

see the app.yaml reference.

PRE LAB VIVA QUESTIONS?

1. What is meant by Google App Engine?

2. How does Google App Engine work ?

3. What are different versions of google App Engine?

4. What is Eclipse IDE?

POST LAB VIVA QUESTIONS?

1. What does Eclipse IDE work ?

2. What is the Eclipse Plugin?

3. What is the use of Eclipse Plugin ?

4. Define the java persistence API ?

https://github.com/GoogleCloudPlatform/appengine-guestbook-python/blob/master/app.yaml
https://cloud.google.com/appengine/docs/standard/python/config/appref#handlers
http://www.eclipse.org/
http://www.eclipse.org/

98

WEEK-14
Develop a Windows Azure Hello World application

In this experiment, we will see how to create a "Hello World!!!" application in Azure

using .Net. I used Visual Studio 2010 along with the Azure SDK 1.3 installed. Start

Visual

 Studio and select a new project. In the cloud template select Windows Azure Cloud

Service.

Once you click OK, it asks for selecting a Role. Here we are adding an ASP.Net Web

role.

It will create two projects, CloudService1 (Azure Service Project) and WebRole1

99

(ASP.Net Project). The Azure service project is used to configure the application, and

to create a deployment package. The ASP.Net project is like a normal web project.

Here i removed header div from the SiteMaster.

And add a text "Hello World!!!!" in the default.aspx

100

 And we are done. Now Select Cloud Service as your startup project and run it. When

you

 run it, the Azure simulation environment is initialized, and it starts development

storage

 and development fabric.

And here you can see your Hello World!!!

101

If you select WebRole1 as your startup project and run the solution, it will run as

normalASP.Net project and hosted locally on localhost.

If you click on the Azure Simulation and select "Show development Fabric UI" then it

will show the Azure services running on your machine.

Here My CloudService1 is running having a single instance of WebRole.

102

PRE LAB VIVA QUESTIONS?
1. What is Microsoft Azure and why it is used?

2. Which service in Azure is used to manage resource in Azure ?

3. What is Availability set?

4. Why is Azure Active Directory used?

POST LAB VIVA QUESTIONS?

1. What is Azure Redis Cache?

2. What is Azure Search?

3. What is the meaning of Application Partitions?

4. What are redis databases?

103

WEEK 15
Create a Mashup using Yahoo! Pipes.

The internet is a great resource for news and updates, and no matter what you‘re

looking to keep track of, you‘re sure to be able to find countless sites that will be able

to keep you up to date with the latest information. To help make it easier to keep track

of new developments, you might make use of an RSS feed to save you having to look

things up manually. You might already be used to using RSS in apps like Google

Reader, but there‘s so much more you can do with RSS feeds.

Pipes is a tool from Yahoo that enables you to take things a step further so you can,

amongst other things, create your own custom RSS feeds that pull in content from a

variety of sources and filter it so that you only see the most relevant news stories. It‘s

a venerable web app, starting off life in a rather Google-ish way of being in a lengthy

period of beta but then living on for years, long enough that many of us have likely

forgotten about it. But it‘s still a great tool, even in 2012, so let‘s dig in and see what

you can do with it.

Getting Started

Ready to get started? Make sure you‘ve got a Yahoo! account (something you likely

already have if you‘ve ever used Flickr). Then, fire up your preferred web browser

and pay a visit to the Yahoo Pipes. Pipes is a tool that lets you take RSS feeds and

mix them together, like pipes mixing two fluids together. Just sign in, and you‘ll be

ready to get started.

You‘ll be presented with a blank workspace and this is where you will be creating

your pipes in a visual, drag and drop based environment. To the left you‘ll see a list

of Sources and these are what you will use to pull in data from other web sites. The

pipe we‘re going to create is going to filter news from existing RSS feeds, so start by

dragging a Fetch Feed module from the left on the workspace.

http://pipes.yahoo.com/
http://pipes.yahoo.com/

104

Yahoo Pipes provides you with a blank canvas on which to work on your creation

In the text field, enter the URL of an RSS feed you would like to work with and then

repeat the process of adding a Fetch Feed module and a feed for as many feeds as

you need. You can check that the feeds are working correctly by dragging the

debugger pane up from the bottom of the screen; click on of the Fetch Feed modules

and the output of the feed will be displayed here.

105

Use the debugger to check that your feeds are working as expected

Filtering Feeds

Now we‘re going to add a filter to each feed to control which news stories are

displayed. Click the Operators link to the left to expand the group and then drag and

drop three Filter modules to the workspace. You will now need to join each of

the Fetch Feed modules to a Filteroperator – just click on the white dot at the bottom

of a Fetch Feed module and drag to a white dot at the top of a Filter box to establish

a link.

106

Modules need to be linked together in order for filters and other operators to take

effect

Once links have been set up you can use the drop down menu in each of

the Filter boxes to choose to block or permit different content and you can then

specify keywords that will be looked for in titles, authors and other parts of feed

items. As well as permitting and block content based on individual keywords, you can

also configure multiple rules that must be matched before content of displayed or

blocked.

107

Filter modules can be used to tightly control which news items appear in your pipe

feeds

Unifying Filtered Feeds

Additional operations can be applied to feeds, but for the purposes of this guide, we‘ll

start to tie thing up. Back in the Operators section to the left, drag a Union module

onto the workspace. You can then join each of the Filter modules to the nodes on the

top of the Union module, before joining this to the Pipe Output module at the bottom

of the workspace.

You should use the debugger to check that your filters are working correctly and if

you‘re happy with the output, click the untitled tab at the top of page and enter a

suitable new name before clicking OK.

108

A Union module can be used to bring all of your filtered content together

Click the Save button to the upper right of the page and then click the Properties

button. In the pop up window that appears you can enter a description for your pipe as

well as a number of keywords to enable other people to search for and make use of it.

A tags and a description so that other people can track down the pipes you make.

109

To check how your pipe looks, click the Run Pipe link – you can also visit the My

Pipessection of the web site and then click the pipe you are interested in. If you find

that you need to make any changes or additions, just click the Edit Source link, but

otherwise you can make use of the pipe as a feed by clicking the Get as RSS link

The My Pipes section of Yahoo Pipes provides access to your creations

Browsing Premade Pipes

Creating your own pipes can be fun and rewarding but, depending on what you are

looking for them to do, it can also be a complex and frustrating experience. Before

you spend an age creating a complicated pipe, it is worth taking look through what

other users have put together – even if you do not find something that precisely meets

your needs, you may well stumble across something that could be adapted, or at least

gives you an idea of how to achieve what you‘re looking to create.

Once you‘re logged into your account you can either use the search box to the upper

right of the page to look for something matching certain criteria, or you can click

the Browse button in the upper navigation bar to take a look through other people‘s

creations.

110

There are a wealth of readymade pipes that you can use as-is or adapt to suit your

needs

Yahoo Pipes is an extremely versatile service that can be twisted and tweaked to work

in a huge variety of ways. If you are a programmer, there is great scope for getting

your hands dirty with interactive pipes that enable you to get more form the web, but

even the most simple creations are very useful. But even if you‘ve never coded in

your life, Yahoo Pipes makes it easy to get the data you want from the web, mixed up

and sorted just the way you want it.

Have you ever used Yahoo Pipes, or is this your first time to try it? It‘d be fun to hear

some of the ways our readers are using Yahoo Pipes to make feeds that work best for

them.

111

PRE LAB VIVA QUESTIONS?

1. What are good alternatives to yahoo pipe?

2. How to delete RSS feeds from yahoo pipes?

3. What kind of things can you build with yahoo pipes?

4. How to salvage logic and data from yahoo pipes?

POST LAB VIVA QUESTIONS?

1. Which source model in yahoo pipe is most suitable for feeding data to a

yahoo filter?

2. How can I setup multiple tabs/RSS Feeds in blogger?

3. Is it possible to create keywords based RSS feeds?

4. How can I get a RSS Feed for a custom page?

