
 INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION FORM

Course Title COMPILER DESIGN

Course Code A50587

Regulation R13 - JNTUH

Course Structure
Lectures Tutorials Practicals Credits

- - 3 2

Course Coordinator Mr. N V Krishna Rao, Associate Professor, CSE

Team of Instructors
Ms. E Uma Shankari, Assistant Professor, CSE

Ms. G Geetha, Assistant Professor, CSE

I. COURSE OVERVIEW:

A language subset will be defined and used during the lab course. The programming exercises here consist

of implementing the basic components of a compiler. The constructs in this subset are found in most

programming languages.

II. PREREQUISITE(S):

Level Credits Periods/ Week Prerequisites

UG 2 3
Operating Systems,

Computer Programming, Data Structures

III. MARKS DISTRIBUTION:

Sessional Marks
End Semester

Exam

Total

Marks

There shall be a continuous evaluation during the semester for 25

marks. Day-to-day work in the laboratory shall be evaluated for 15

marks and internal practical examination conducted by the concerned

teacher shall be evaluated for 10 marks.

50 75

IV. EVALUATION SCHEME:

S. No Component Duration Marks

1. Day-to-day Evaluation - 15

2. Internal Practical Examination 2.5 hours 10

5. End Semester Examination 2.5 hours 50

V. COURSE OBJECTIVES:

At the end of the course, the students will be able to:

I. Explain the importance of compiler design.

II. Design and implementation of lexical analyzer using lex tools.

III. Explain the top down and bottom up parsing techniques using programming.

IV. Identify the understanding language peculiarities by designing a complete translator for mini
language.

V. Explain that computing science theory can be used as the basis for real applications.

VI. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

1. Understand the working of lex and yacc compiler for debugging of programs.

2. Understand and define the role of lexical analyzer, use of regular expression and transition diagrams.

3. Understand and use Context free grammar, and parse tree construction.

4. Learn & use the new tools and technologies used for designing a compiler.

5. Develop program for solving parser problems.

6. Learn how to write programs that execute faster.

VII. LIST OF EXPERIMENTS:

Division of Experiments List of Experiments

Lexical analyzer

WEEK-1

* Write a C program to identify whether a given line is a comment or not.

WEEK-2

Design a lexical analyzer for given language and the lexical analyzer should

ignore redundant spaces, tabs and new lines. It should also ignore comments.

Although the syntax specification states that identifiers can be arbitrarily

long, you may restrict the length to some reasonable value. Simulate the

same in C language.

WEEK-3

*Write a C program to recognize strings under 'a', 'a*b+', 'abb'.

WEEK-4

*Write a C program to test whether a given identifier is valid or not.

WEEK-5

*Write a C program to simulate lexical analyzer for validating operators.

Lexical analyser-using

LEX

WEEK-6

Implement the lexical analyzer using JLex, flex or other lexical analyzer

generating tools.

Top down parsing

WEEK-7

Write a C program for implementing the functionalities of predictive parser

for the mini language specified in Note 1.

WEEK-8

a) *Write a C program for constructing of LL (1) parsing.

b) *Write a C program for constructing recursive descent parsing.

Bottom up parsing

WEEK-9

Write a C program to implement LALR parsing.

WEEK-10

a) *Write a C program to implement operator precedence parsing.

b) *Write a C program to implement SLR Parsing.

YACC
WEEK-11

Convert the BNF rules into Yacc form and write code to generate abstract

syntax tree for the mini language specified in Note 1.

Syntax tree

WEEK-12

Write a C program to generate machine code from abstract syntax tree

generated by the parser. The instruction set specified in Note 2 may be

considered as the target code.

*Content beyond the university prescribed syllabi

Note 1:

Consider the following mini language, a simple procedural high –level language, only operating on integer

data, with a syntax looking vaguely like a simple C crossed with pascal. The syntax of the language is

defined by the following grammar.

<program>::=<block>

<block>::={<variable definition><slist>}

|{<slist>}

<variabledefinition>::=int <vardeflist>

<vardec>::=<identifier>|<identifier>[<constant>]

<slist>::=<statement>|<statement>;<slist>

<statement>::=<assignment>|<ifstament>|<whilestatement>

|<block>|<printstament>|<empty>

<assignment>::=<identifier>=<expression>

|<identifier>[<expression>]=<expression>

<if statement>::=if<bexpression>then<slist>else<slist>endif

|if<bexpression>then<slisi>endif

<whilestatement>::=while<bexpreession>do<slisi>enddo

<printstatement>:;=print(<expression>)

<expression>::=<expression>::=<expression><addingop><term>|<term>|<addingop>

<term>

<bexprssion>::=<expression><relop><expression>

<relop>::=<|<=|==|>=|>|!=

<addingop>::=+|-

<term>::=<term><multop><factor>|<factor>

<Multop>::=*|/

<factor>::=<constant>|<identifier>|<identifier>[<expression>]

|(<expression>)

<constant>::=<digit>|<digit><constant>

<identifier>::=<identifier><letter or digit>|<letter>

<letter or digit>::=<letter>|<digit>

<letter>:;=a|b|c|d|e|f|g|h|I|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<digit>::=0|1|2|3|4|5|^|7|8|9

<empty>::=has the obvious meaning

Comments(zero or more characters enclosed between the standard C/JAVA Style comment

brackets/*…*/)can be inserted .The language has rudimentary support for1-dimenstional array,the

declaration int a[3] declares an array of three elements,referenced as a[0],a[1] and a[2].Note also you

should worry about the scopping of names.

Note 2:

A simple language written in this language is

{int a[3],t1,t2;

T1=2;

A[0]=1;a[1]=2;a[t]=3;

T2=-(a[2]+t1*6)/(a[2]-t1);

If t2>5then

Print(t2)

Else{

Int t3;

T3=99;

T2=25;

Print(-t1+t2*t3);/*this is a comment on 2 lines*/

}endif}

Prepared by : Ms. E Uma Shankari, Assistant Professor, CSE

 Ms. G Geetha, Assistant Professor, CSE

 Date : 11 June, 2015

HOD, CSE

