
DATA STRUCTURES LABORARTORY 
LAB MANUAL 

 Academic Year  : 2019 - 2020 

 Course Code  : ACSB05 

 Regulations  : IARE – R18 

 Semester  : III 

        Branch  : CSE | IT | ECE | CE | ME 

 

Prepared by 

Dr. J Sirisha Devi 
Associate Professor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

INSTITUTE OF AERONAUTICAL ENGINEERING 
(Autonomous) 

Dundigal, Hyderabad - 500 043 



INSTITUTE OF AERONAUTICAL ENGINEERING 
(Autonomous) 

Dundigal, Hyderabad – 500043 
 

 
Program Outcomes 

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering problems. 

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of mathematics, 
natural sciences, and engineering sciences. 

PO3 Design/development of solutions: Design solutions for complex engineering problems and design 

system components or processes that meet the specified needs with appropriate consideration for 

the public health and safety, and the cultural, societal, and environmental considerations. 

PO4 Conduct investigations of complex problems: Use research-based knowledge and research 

methods including design of experiments, analysis and interpretation of data, and synthesis of the 

information to provide valid conclusions. 

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modeling to complex engineering activities with 

an understanding of the limitations. 

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess 
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the 

professional engineering practice. 

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions 
in societal and environmental contexts, and demonstrate the knowledge of, and need for 

sustainable development. 

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms 

of the engineering practice. 

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in 

diverse teams, and in multidisciplinary settings. 

PO10 Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and write 

effective reports and design documentation, make effective presentations, and give and receive 
clear instructions. 

PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering 

and management principles and apply these to one’s own work, as a member and leader in a team, 

to manage projects and in multidisciplinary environments. 

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in 

independent and life-long learning in the broadest context of technological change. 

Program Specific Outcomes (CSE) 

PSO1 Professional Skills: The ability to understand, analyze and develop computer programs in the areas 

related to algorithms, system software, multimedia, web design, big data analytics, and networking 

for efficient design of computer-based systems of varying complexity. 

PSO2 Problem-Solving Skills: The ability to apply standard practices and strategies in software project 

development using open-ended programming environments to deliver a quality product for business 

success. 

PSO3 Successful Career and Entrepreneurship: The ability to employ modern computer languages, 
environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for 

higher studies. 



INSTITUTE OF AERONAUTICAL ENGINEERING 
(Autonomous) 

Dundigal, Hyderabad – 500043 
 

 
 

ATTAINMENT OF PROGRAM OUTCOMES 

& PROGRAM SPECIFIC OUTCOMES 

S No Experiment Program Outcome  

Attained 

Program Specific 

Outcomes Attained 

1 BASICS OF PYTHON PO1, PO2, PO3 PSO1, PSO3 

2 SEARCHING TECHNIQUES PO1, PO2, PO3 PSO1, PSO3 

3 SORTING TECHNIQUES PO1, PO2, PO3 PSO1, PSO3 

4 IMPLEMENTATION OF STACK AND 
QUEUE 

PO2, PO3 PSO1, PSO3 

5 APPLICATIONS OF STACK PO3, PO4 PSO1, PSO3 

6 IMPLEMENTATION OF SINGLE 
LINKED LIST 

PO2, PO3 PSO1, PSO3 

7 IMPLEMENTATION OF CIRCULAR 
LINKED LIST 

PO2, PO3 PSO1, PSO3 

8 IMPLEMENTATION OF DOUBLE 
LINKED LIST 

PO2, PO3 PSO1, PSO3 

9 IMPLEMENTATION OF STACK 
USING LINKED LIST 

PO3, PO4 PSO1, PSO3 

10 IMPLEMENTATION OF QUEUE 
USING LINKED LIST 

PO3, PO4 PSO1, PSO3 

11 GRAPH TRAVERSAL TECHNIQUES PO2, PO3 PSO1, PSO3 

12 IMPLEMENTATION OF BINARY 
SEARCH TREES 

PO2, PO3 PSO1, PSO3 



4 | P a g e  

 

INSTITUTE OF AERONAUTICAL ENGINEERING 
(Autonomous) 

Dundigal, Hyderabad - 500 043 

 

 

CCeerrttiiffiiccaattee 

 
This is to Certify that it is a bonafied record of Practical work done by 

Sri/Kum. bearing the 

Roll No. of   Class 

Branch in  the 

laboratory during the Academic 

year under our supervision. 
 
 
 
 
 
 
 

Head of the Department Lecture In-Charge 

 

 

 

 

 
External Examiner Internal Examiner 



5 | P a g e 
 

DATA STRUCTURES LABORATORY 

 

III Semester: ME / CSE / IT / ECE / CE | IV Semester AE / EEE 

Course Code Category Hours / Week Credits Maximum Marks 

ACSB05 Core 
L T P C CIA SEE Total 

0 0 3 1.5 30 70 100 

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36 

COURSE OBJECTIVES: 

The course should enable the students to: 

I. Understand various data representation techniques in the real world. 
II. Implement linear and non-linear data structures. 
III. Analyze various algorithms based on their time and space complexity. 
IV. Develop real-time applications using suitable data structure. 

V. Identify suitable data structure to solve various computing problems. 

LIST OF EXPERIMENTS 

Week -1 BASICS OF PYTHON 

Write Python programs for the following: 

a. To find the biggest of given n numbers using control statements and lists 
b. To print the Fibonacci series using functions 
c. To find GCD of two numbers 

Week -2 SEARCHING TECHNIQUES 

Write Python programs for implementing the following searching techniques to arrange a list of integers 

in ascending order. 
a. Linear search 
b. Binary search 

Week -3 SORTING TECHNIQUES 

Write Python programs for implementing the following sorting techniques to arrange a list of integers 

in ascending order. 

a. Bubble sort 
b. Insertion sort 
c. Selection sort 

Week -4 IMPLEMENTATION OF STACK AND QUEUE 

Write Python programs to for the following: 

a. Design and implement Stack and its operations using List. 

b. Design and implement Queue and its operations using List. 

Week -5 APPLICATIONS OF STACK 

Write Python programs for the following: 
a. Uses Stack operations to convert infix expression into postfix expression. 

b. Uses Stack operations for evaluating the postfix expression. 

 

 

 



6 | P a g e 
 

Week-6 IMPLEMENTATION OF SINGLE LINKED LIST 

Write Python programs for the following operations on Single Linked List. 
(i) Creation (ii) insertion (iii) deletion (iv) traversal 

Week -7 IMPLEMENTATION OF CIRCULAR SINGLE LINKED LIST 

Write Python programs for the following operations on Circular Linked List. 
(i) Creation (ii) insertion (iii) deletion (iv) traversal 

Week -8 IMPLEMENTATION OF DOUBLE LINKED LIST 

Write Python programs for the following operations on Double Linked List. 
(i) Creation (ii) insertion (iii) deletion (iv) traversal in both ways. 

Week -9 IMPLEMENTATION OF STACK USING LINKED LIST 

Write a Python program to implement Stack using linked list. 

Week -10 IMPLEMENTATION OF QUEUE USING LINKED LIST 

Write a Python program to implement Linear Queue using linked list. 

Week -11 GRAPH TRAVERSAL TECHNIQUES 

Write Python programs to implement the following graph traversal algorithms: 
a. Depth first search. 

b. Breadth first search. 

Week -12 IMPLEMENTATION OF BINARY SEARCH TREE 

Write a Python program to perform the following: 
a. Create a binary search tree. 
b. Traverse the above binary search tree recursively in pre-order, post-order andin-order. 
c. Count the number of nodes in the binary search tree. 

LIST OF REFERENCE BOOKS: 

1. Rance D. Necaise, “Data Structures and Algorithms using Python”, Wiley, John Wiley & Sons, INC., 
2011. 

2. Benjamin Baka, David Julian, “Python Data Structures and Algorithms”, Packt Publishing Ltd., 2017. 

WEB REFERENCES: 

1. https://docs.python.org/3/tutorial/datastructures.html 
2. http://interactivepython.org/runestone/static/pythonds/index.html 

3. http://www.tutorialspoint.com/data_structures_algorithms 
4. http://www.geeksforgeeks.org/data-structures/ 
5. http://www.studytonight.com/data-structures/ 
6. http://www.coursera.org/specializations/data-structures-algorithms 
7. http://cse01-iiith.vlabs.ac.in/ 

 

 

 

 

 

 

 

 

 

 

 

http://interactivepython.org/runestone/static/pythonds/index.html
http://www.tutorialspoint.com/data_structures_algorithms
http://www.geeksforgeeks.org/data-structures/
http://www.studytonight.com/data-structures/
http://www.coursera.org/specializations/data-structures-algorithms
http://cse01-iiith.vlabs.ac.in/


7 | P a g e 
 

WEEK – 1 

BASICS OF PYTHON 

 
OBJECTIVE: 

a. Write a Python script to find the biggest of the given numbers using control statements and lists 

b. Write a Python script to print the Fibonacci series using functions. 

c. Write a Python script to find the GCD of two numbers. 

 
RESOURCE: 

Python 3.7.3 

 
PROGRAM LOGIC: 

Biggest of the given numbers using control statements and list: 

1. Read a list of integers. 
2. Assume the first number as maximum number. 
3. Compare each number n with the maximum number and if n is bigger than max then 

change max with n. 

4. Repeat this process for all numbers. 
5. Return max 

 
Fibonacci series using function: 

1. Read number of terms n. 

2. Send n to recursive method recur_fibo() 

3. if n <= 1 then return n 

4. otherwise return(recur_fibo(n-1) + recur_fibo(n-2)) 

 
GCD of two numbers: 

1. Read two integers n1 and n2. 

2. Send n to recursive method computeGCD(n1, n2). 

3. Find the smaller number by checking if n1 > n2 then smaller = n2, otherwise smaller = n1 

4. for each number i, compute if((n1 % i == 0) and (n2 % i == 0)) then gcd = i 

5. return gcd 

 
PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 

b. Execute : Go to Run -> Run module (F5) 

 
SOURCE CODE: 

Biggest of the given numbers using control statements and list: 

def large(arr): 

n=len(arr) 

l=0 

for i in range(0,n-1): 

if arr[i]>l: 

l=arr[i] 

print("largest element is %d" %l) 

 
# Driver code 

arr=[3,2,4,1,5,8,6,9,7] 

large(arr) 
 
 

 
 



8 | P a g e 
 

Output: 

Fibonacci series using function: 

def gen_seq(length): 

if(length <= 1): 

return length 

else: 

return (gen_seq(length-1) + gen_seq(length-2)) 

length = int(input("Enter number of terms:")) 

print("Fibonacci sequence using Recursion :") 

for iter in range(length): 

print(gen_seq(iter)) 

 
Output: 

 



9 | P a g e 
 

GCD of two numbers: 

def computeGCD(x, y): 

 
# choose the smaller number 

if x > y: 

smaller = y 

else: 

smaller = x 

for i in range(1, smaller+1): 

if((x % i == 0) and (y % i == 0)): 

gcd= i 

return gcd 

#Driver Code 

num1 = int(input("Enter first number: ")) 

num2 = int(input("Enter second number: ")) 

 
print("The GCD of", num1,"and", num2,"is", computeGCD(num1, num2)) 

 
Output: 

 
PRE LAB VIVA QUESTIONS: 

a. What is Python? What are the benefits of using Python? 

b. How memory is managed in Python? 

c. In Python what is slicing? 

d. What are the different ways of accessing elements in a list? 

e. State any five built-in functions used in lists? 

 
LAB ASSIGNMENT: 

a. Write a Python program to find the factors of a number? 

b. Write a Python program to find the factorial of a number using recursion? 

 



10 | P a g e 
 

c. Write a Python program to check if the input number is prime or not? 
d. Write a Python program to find the sum of natural numbers up to n using recursive function? 
e. Write a Python program to display all the prime numbers within an interval? 

 
POST LAB VIVA QUESTIONS: 

a. What is the difference between list and tuple? 

b. What are the built-in type does python provides? 

c. State the built-in set operators? 

d. Define class, object, attribute and method? 
e. What is lambda in Python? 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



11 | P a g e 
 

WEEK – 2 

SEARCHING TECHNIQUES 

 
 OBJECTIVES: 

a. Write a Python script to implement linear search technique. 
b. Write a Python script to implement binary search technique. 

 
 RESOURCE: 

Python 3.7.3 

 
 PROGRAM LOGIC: 

Linear search technique: 

Given a list of n elements and search a given element x in the list using linear search. 
a. Start from the leftmost element of list a[] and one by one compare x with each 

element of list a[]. 

b. If x matches with an element, return the index. 

a. If x doesn’t match with any of elements, return -1. 
Binary search technique: 

Given a sorted list of a[] of n elements, search a given element x in list. 
a. Search a sorted list by repeatedly dividing the search interval in half. Begin with an 

interval covering the whole list. 

b. If the search key is less than the item in the middle item, then narrow the interval to 
the lower half. Otherwise narrow it to the upper half. 

c. Repeat the procedure until the value is found or the interval is empty. 

 
 PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 
b. Execute : Go to Run -> Run module (F5) 

 
 SOURCE CODE: 

Linear search technique: 

def linear_search(obj, item): 

for i in range(len(obj)): 

if obj[i] == item: 

return i 

return -1 

 
#Driver code 

arr=[1,2,3,4,5,6,7,8] 

x=int(input("what are you searching for?")) 

result=linear_search(arr,x) 

 
if result==-1: 

print ("element does not exist") 

else: 

print ("element exist in position %d" %result) 

 
Output: 

 

 

 

 

 

 
 



12 | P a g e 
 

 

Binary search technique: 

array =[1,2,3,4,5,6,7,8,9] 

 
def binary_search(searchfor,array): 

lowerbound=0 

upperbound=len(array)-1 

found=False 

while found==False and lowerbound<=upperbound: 

midpoint=(lowerbound+upperbound)//2 

if array[midpoint]==searchfor: 

found =True 

return found 

elif array[midpoint]<searchfor: 

lowerbound=midpoint+1 

else: 

upperbound=midpoint-1 

return found 

 
#Driver code 

searchfor=int(input("what are you searching for?")) 

if binary_search(searchfor,array): 

print ("element found") 

else: 

print ("element not found") 

 
Output: 

 

 

 

 

 

 

 

 

 



13 | P a g e 
 

 
 

 PRE LAB VIVA QUESTIONS: 

a. Define searching process? 

b. How many types of searching are there? 

c. Why binary search method is more efficient then liner search? 

d. What is worse case? 

 
 LAB ASSIGNMENT: 

a. A person has registered for voter id, he received a voter number  and he need  to check whether it exist 

in the voter or not. Use a binary searching in a recursive way to find whether the voter number exist in 

the list or not. 

b. Use linear search technique to search for a key value in a given list of characters and print the message 

found or not. 

 
 POST LAB VIVA QUESTIONS: 

a. What do you understand by the term “linear search is unsuccessful”? 

b. Efficiency of linear search? 

c. What is the drawback of linear search? 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 



14 | P a g e 
 

WEEK – 3 

SORTING TECHNIQUES 

 
 OBJECTIVES: 

a. Write a Python script to implement bubble sort. 
b. Write a Python script to implement insertion sort. 
c. Write a Python script to implement selection sort. 

 
 RESOURCE: 

Python 3.7.3 

 
 PROGRAM LOGIC: 

Bubble sort: 

1. Starting with the first element(index = 0), compare the current element with the next element of the 

array. 

2. If the current element is greater than the next element of the array, swap them. 

3. If the current element is less than the next element, move to the next element. Repeat Step 1. 

 
Insertion sort: 

1. It is efficient for smaller data sets, but very inefficient for larger lists. 
2. Insertion Sort is adaptive, that means it reduces its total number of steps if a partially sorted array is 

provided as input, making it efficient. 

3. It is better than Selection Sort and Bubble Sort algorithms. 
4. Its space complexity is less. Like bubble Sort, insertion sort also requires a single additional memory 

space. 

5. It is a stable sorting technique, as it does not change the relative order of elements which are equal. 

 

Selection sort: 

1. Starting from the first element, we search the smallest element in the array, and replace it with the 

element in the first position. 

2. We then move on to the second position, and look for smallest element present in the subarray, starting 

from index 1, till the last index. 

3. We replace the element at the second position in the original array, or we can say at the first position in 

the subarray, with the second smallest element. 

4. This is repeated, until the array is completely sorted. 

 

 PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 

b. Execute : Go to Run -> Run module (F5) 

 
 SOURCE CODE: 

Bubble sort: 

def bubbleSort(arr): 

n = len(arr) 

 
# Traverse through all array elements 

for i in range(n): 

 

# Last i elements are already in place 

for j in range(0, n-i-1): 

 

# traverse the array from 0 to n-i-1 

# Swap if the element found is greater 

# than the next element 

if arr[j] > arr[j+1] : 

arr[j], arr[j+1] = arr[j+1], arr[j] 

 



15 | P a g e 
 

# Driver code to test above 

arr = [64, 34, 25, 12, 22, 11, 90] 

 
bubbleSort(arr) 

 
print ("Sorted array is:") 

for i in range(len(arr)): 

print ("%d" %arr[i]) 

 

Output: 

Insertion sort: 

def insertionSort(arr): 

 
# Traverse through 1 to len(arr) 

for i in range(1, len(arr)): 

key = arr[i] 

 
# Move elements of arr[0..i-1], that are  

# greater than key, to one position ahead 

# of their current position 

j = i-1 

while j >=0 and key < arr[j] : 

arr[j+1] = arr[j] 

j -= 1 

arr[j+1] = key 

 

 
# Driver code to test above 

arr = [12, 11, 13, 5, 6] 

insertionSort(arr) 

print ("Sorted array is:") 

for i in range(len(arr)): 

print ("%d" %arr[i]) 

 



16 | P a g e 
 

Output: 

Selection sort: 

import sys 

A = [64, 25, 12, 22, 11] 

 
# Traverse through all array elements 

for i in range(len(A)): 

 
# Find the minimum element in remaining 

# unsorted array 

min_idx = i 

for j in range(i+1, len(A)): 

if A[min_idx] > A[j]: 

min_idx = j 

 
# Swap the found minimum element with the first element 

A[i], A[min_idx] = A[min_idx], A[i] 

# Driver code to test above 

print ("Sorted array") 

for i in range(len(A)): 

print("%d" %A[i]) 

 
Output: 

 

 

 

 

 

 

 

 

 



17 | P a g e 
 

 
 

 PRE LAB VIVA QUESTIONS: 

a. Explain the term sorting? 

b. What are the different types of sorts in data structures? 

c. Define the bubble sort? 

d. Define the insertion sort? 

e. Define the selection sort? 

 
 LAB ASSIGNMENT: 

a. Formulate a program that implement Bubble sort, to sort a given list of integers in descending order. 
b. Compose a program that implement Insertion sort, to sort a given list of integers in descending order. 

c. Write a program that implement Selection sort, to sort a given list of integers in ascending order. 

d. Formulate a program to sort N names using selection sort. 

e. Write a program to sort N employee records based on their salary using insertion sort. 

f. A class contains 50 students who acquired marks in 10 subjects write a program to display top 10 

students roll numbers and marks in sorted order by using bubble sorting technique. 

 
 POST LAB VIVA QUESTIONS: 

a. How many passes are required in selection sort? 

b. Write the time complexity of insertion sort? 

c. Write the time complexity of selection sort? 

d. Write the time complexity of bubble sort? 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 



18 | P a g e 
 

WEEK – 4 

IMPLEMENTATION OF STACKS AND QUEUES 

 
 OBJECTIVES: 

a. Write a Python script to design and implement stack and its operations using list. 

b. Write a Python script to design and implement queue and its operations using list. 

 
 RESOURCE: 

Python 3.7.3 

 
 PROGRAM LOGIC: 

Stack and its operations using list: 

a. Stack is a linear data structure which works under the principle of last in first out. Basic operations: 

push, pop, display. 
b. PUSH: if (top==MAX), display Stack overflow. Otherwise reading the data and making stack [top] 

=data and incrementing the top value by doing top++. 

c. Pop: if (top==0), display Stack underflow. Otherwise printing the element at the top of the stack and 

decrementing the top value by doing the top. 

d. DISPLAY: If (top==0), display Stack is empty. Otherwise printing the elements in the stack from stack 
[0] to stack [top]. 

 

Queue and its operations using list: 

a. Queue is a linear data structure which works under the principle of first in first out. Basic operations: 

Insertion, deletion, display. 

b. Inserion: if (rear==MAX), display Queue is full. Else reading data and inserting at queue [rear], and 

doing rear++. 

c. Deletion: if (front==rear), display Queue is empty .Else printing element at queue [front] and doing 

front++. 

d. Display: if (front==rear) ,display No elements in the queue .Else printing the elements from 

queue[front] to queue[rear]. 

 

 PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 
b. Execute : Go to Run -> Run module (F5) 

 
 SOURCE CODE: 

Stack and its operations using list: 

# Function to create a stack. It initializes size of stack as 0 

def createStack(): 

stack = [] 

return stack 

 
# Stack is empty when stack size is 0 

def isEmpty(stack): 

return len(stack) == 0 

 
# Function to add an item to stack. It increases size by 1 

def push(stack, item): 

if(len(stack)==size): 

print("overflow") 

return 

stack.append(item) 

 
# Function to remove an item from stack. It decreases size by 1 

def pop(stack): 

if (isEmpty(stack)): 

print("underflow") 

 



19 | P a g e 
 

return 

return stack.pop() 

 

#Function to know peek element 

def peek(stack): 

if(isEmpty(stack)): 

print("stack empty") 

return 

else: 

n=len(stack) 

print("peek element is: ",stack[n-1]) 

 
#Function to display stack 

def display(stack): 

print(stack) 

 
# Driver program to test above functions 

stack = createStack() 

size=int(input("enter the size of stack")) 

 

print("Menu\n1.push(p)\n2.pop(o)\n3.peek(e)") 

choice=1 

while choice!='q': 

print("enter your choice") 

ch=input() 

choice=ch.lower() 

if choice=='p': 

push(stack,int(input("enter a value"))) 

display(stack) 

elif choice=='o': 

pop(stack) 

display(stack) 

elif choice=='e': 

peek(stack) 

else: 

print("enter proper choice or q - quit") 

 

Output: 

 
 



20 | P a g e 
 

 
 

Queue and its operations using list: 

 
def enqueue(a,item): 

global r 

global f 

 
if r==-1 and f==-1: 

r=0 

f=0 

a.insert(r,item) 

 

elif r==(n-1): 

print("overflow") 

return 

else: 

r+=1 

a.insert(r,item) 

display(a) 

def dequeue(a): 

global r 

global f 

if r==(n-1) and f==(n-1): 

item=a[f] 

r=-1 

f=-1 

elif r==-1 and f==-1: 

print("underflow") 

return 

else: 

item=a[f] 

f+=1 

print("deleted item is:",item) 

display(a) 

 
 



21 | P a g e 
 

def display(a): 

print("\ncurrent queue is:") 

for i in range(f,r+1): 

if f==-1 and r==-1: 

print("Queue is empty!") 

return 

print(a[i],end=" ") 

 
#DC 

n=int(input("enter the size of list")) 

a=[] 

r=-1 

f=-1 

print("Menu\n1.enqueue(e)\n2.dequeue(d)\n3.exit(q)") 

 
choice=1 

while choice!='q': 

print("enter your choice") 

ch=input() 

choice=ch.lower() 

if choice=='e': 

enqueue(a,int(input("enter a value"))) 

display(a) 

elif choice=='d': 

dequeue(a) 

display(a) 

 
else: 

print("enter proper choice") 

 

Output: 

 

 

 PRE LAB VIVA QUESTIONS: 

a. What is stack? 

b. What are the operations performed on stack? 

 
 



22 | P a g e 
 

c. How stacks are implemented? 

d. What are the applications of stack? 

e. What is recursion? 

f. Define “Top of stack”. 

g. How to implement stack? 

h. Define a queue? 

i. Define the condition “overflow”. 

j. Define the condition “underflow”. 

k. Define a queue. 

l. Which principle is followed in queue? 

m. List out the applications of queue? 

 
 

 LAB ASSIGNMENT 

a. Write a program to implement stack and its operations using arrays. 

b. Formulate a program to reverse a list of numbers using stack. 

c. Write a program to find the factorial of a number using stack. 

d. Develop a program to check a given expression is balanced or not using stack 

e. Compose a program to implement Queue operations using arrays. 

f. Formulate a program to implement circular queue operations using arrays. 

g. Write a program to implement a priority queue? 

 

 POST LAB VIVA QUESTIONS: 

a. Write the time complexity of PUSH operation? 

b. Write the time complexity of POP operation? 

c. List out the applications of stack? 

d. How to remove an element from stack? 

e. How to insert an element into a stack? 

f. Write the time complexity to insert an element into a queue? 

g. Write the time complexity to delete an element from a queue? 

h. List out the advantage of circular queue over linear queue? 

i. Define a priority queue? 

1. Define DEQUE? 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 



23 | P a g e 
 

WEEK – 5 

APPLICATIONS OF STACKS 

 
 OBJECTIVES: 

a. Write a Python script that uses stack operations to convert infix expression to postfix expression. 

b. Write a Python script that uses stack operations for evaluating the postfix expression. 

 
 RESOURCE: 

Python 3.7.3 

 
 PROGRAM LOGIC: 

Infix expression to postfix expression: 

Let, X is an arithmetic expression written in infix notation. This algorithm finds the equivalent postfix 

expression Y. 
1. Push “(“onto Stack, and add “)” to the end of X. 

2. Scan X from left to right and repeat Step 3 to 6 for each element of X until the Stack is empty. 

3. If an operand is encountered, add it to Y. 

4. If a left parenthesis is encountered, push it onto Stack. 

5. If an operator is encountered ,then: 

1. Repeatedly pop from Stack and add to Y each operator (on the top of Stack) which has the 

same precedence as or higher precedence than operator. 

2. Add operator to Stack. 

[End of If] 
6. If a right parenthesis is encountered ,then: 

1. Repeatedly pop from Stack and add to Y each operator (on the top of Stack) until a left 

parenthesis is encountered. 
2. Remove the left Parenthesis. 

[End of If] 

[End of If] 

7. END. 

 
Evaluation of the postfix expression: 

1. Create a stack to store operands (or values). 

2. Scan the given expression and do following for every scanned element. 

1. If the element is a number, push it into the stack 

2. If the element is a operator, pop operands for the operator from stack. Evaluate the operator and push 

the result back to the stack 

3. When the expression is ended, the number in the stack is the final answer 

 

 PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 

b. Execute : Go to Run -> Run module (F5) 

 

 SOURCE CODE: 

Infix expression to postfix expression: 

 

import string 

class Conversion: 

 

# Constructor to initialize the class variables 

def init (self, capacity): 

self.top = -1 

self.capacity = capacity 

# This array is used a stack 

self.array = [] 

# Precedence setting 
self.output = [] 

self.precedence = {'+':1, '-':1, '*':2, '/':2, '^':3} 

 



24 | P a g e 
 

# check if the stack is empty 

def isEmpty(self): 

return True if self.top == -1 else False 
 

# Return the value of the top of the stack 

def peek(self): 

return self.array[-1] 

 

# Pop the element from the stack 

def pop(self): 

if not self.isEmpty(): 

self.top -= 1 

return self.array.pop() 

else: 

return "$" 
 

# Push the element to the stack 

def push(self, op): 

self.top += 1 

self.array.append(op) 

 

# A utility function to check is the given character 

# is operand 
def isOperand(self, ch): 

return ch.isalpha() 

 
# Check if the precedence of operator is strictly 
# less than top of stack or not 

def notGreater(self, i): 

try: 

a = self.precedence[i] 

b = self.precedence[self.peek()] 

return True if a <= b else False 

except KeyError: 

return False 

 

# The main function that converts given infix expression 

# to postfix expression 

def infixToPostfix(self, exp): 
 

# Iterate over the expression for conversion 

for i in exp: 

# If the character is an operand, 

# add it to output 

if self.isOperand(i): 

self.output.append(i) 

 

# If the character is an '(', push it to stack 

elif i == '(': 

self.push(i) 
 

# If the scanned character is an ')', pop and 

# output from the stack until and '(' is found 

elif i == ')': 

while( (not self.isEmpty()) and self.peek() != '('): 

a = self.pop() 

self.output.append(a) 

if (not self.isEmpty() and self.peek() != '('): 

return -1 

 



25 | P a g e 
 

else: 

self.pop() 

 

# An operator is encountered 

else: 

while(not self.isEmpty() and self.notGreater(i)): 

self.output.append(self.pop()) 

self.push(i) 
 

# pop all the operator from the stack 

while not self.isEmpty(): 

self.output.append(self.pop()) 

 

result= "".join(self.output) 

print(result) 

# Driver program to test above function 

exp = "a+b*(c^d-e)^(f+g*h)-i" 

obj = Conversion(len(exp)) 

obj.infixToPostfix(exp) 

 

Output: 

 
 

Evaluation of the postfix expression: 

class Evaluate: 

 
# Constructor to initialize the class variables 
def init (self, capacity): 

self.top = -1 

self.capacity = capacity 
# This array is used a stack 

self.array = [] 

 
# check if the stack is empty 
def isEmpty(self): 

return True if self.top == -1 else False 

# Return the value of the top of the stack 



26 | P a g e 
 

def peek(self): 
return self.array[-1] 

 

# Pop the element from the stack 

def pop(self): 

if not self.isEmpty(): 

self.top -= 1 
return self.array.pop() 

else: 

return "$" 
 

# Push the element to the stack 
def push(self, op): 

self.top += 1 

self.array.append(op) 

 
 

# The main function that converts given infix expression 

# to postfix expression 

def evaluatePostfix(self, exp): 
 

# Iterate over the expression for conversion 

for i in exp: 

 
# If the scanned character is an operand 
# (number here) push it to the stack 

if i.isdigit(): 

self.push(i) 

 

# If the scanned character is an operator, 

# pop two elements from stack and apply it. 

else: 

val1 = self.pop() 

val2 = self.pop() 

self.push(str(eval(val2 + i + val1))) 

return int(self.pop()) 

# Driver program to test above function 

exp = "231*+9-" 

obj = Evaluate(len(exp)) 

print ("Value of {0} is {1}".format(exp, obj.evaluatePostfix(exp))) 

 

Output: 
 

 

 

 

 

 

 

 

 

 

 

 
 



27 | P a g e 
 

 
 

 PRE-LAB VIVA QUESTIONS: 

a. What is an expression? 
b. Which operator is having highest priority? 

c. Give an example for prefix expression? 

d. Give an example for postfix expression? 

 

 LAB ASSIGNMENT: 

a. Formulate a program to convert infix expression into postfix expression. 
b. Write a program to evaluate any postfix expression. 

c. Compose a program to convert infix expression into prefix expression. 

d. Write a program to convert prefix expression into postfix expression. 

e. Write a program to evaluate any prefix expression. 

 

 POST-LAB VIVA QUESTIONS: 

a. What is the output of the following expression: 2 3 4 5 + * - 

b. What is the advantage of postfix expression? 

c. What is the maximum difference between number of operators and operands? 

d. Which expression doesn’t require parenthesis? 
e. What is the output of the following expression: + * - 2 3 4 5 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 



28 | P a g e 
 

WEEK – 6 

IMPLEMENTATION OF SINGLE LINKED LIST 

 
 OBJECTIVES: 

Write Python programs for the following operations on Single Linked List. 
(i) Creation (ii) insertion (iii) deletion (iv) traversal 

 
 RESOURCE: 

Python 3.7.3 

 
 PROGRAM LOGIC: 

Single Linked List: (i) creation (ii) insertion (iii) deletion (iv) traversal 

(i) Creation 

1. first=new node;{create the 1st node of the list pointed by first}; 

2. Read(Data(first)); 

3. NEXT(First)=NULL; 

4. Far a First;   [point Far to the First] 

5. For I=1 to N-1 repeat steps 6 to 10 

6. X=new node; 

7. Read(Data(X)) 

8. NEXT(X)=NULL; 

9. NEXT(Far)=X; {connect the nodes} 

10. Far=X;[shift the pointer to the last node of the list] 

11. [end of For Loop] 

12. END 

 
(ii) Insertion 

Empty list case: When list is empty, which is indicated by (head ==  NULL)  condition,  the  

insertion is quite simple. Algorithm sets both head and tail to point to the new node. 

 
Add first: In this case, new node is inserted right before the current head node. 

 
It can be done in two steps: 

 
1. Update the next link of a new node, to point to the current head node. 

2. Update head link to point to the new node. 

 
Add last: In this case, new node is inserted right after the current tail node. 

 
It can be done in two steps: 

 
1. Update the next link of the current tail node, to point to the new node 

2. Update tail link to point to the new node. 

 
General case: In general case, new node is always inserted between two nodes, which  are  

already in the list. Head and tail links are not updated in this case. 

 
Such an insert can be done in two steps: 

 
1. Update link of the "previous" node, to point to the new node. 

2. Update link of the new node, to point to the "next" node. 

 
(iii) Deletion 

 

 



29 | P a g e 
 

List has only one node: When list has only one node, which is indicated by the condition, that the 

head points to the same node as the tail, the removal is quite simple. Algorithm disposes the node, 

pointed by head (or tail) and sets both head and tail to NULL. 

 
Remove first: In this case, first node (current head node) is removed from the list. 

 
It can be done in two steps: 

 
1. Update head link to point to the node, next to the head. 

2. Dispose removed node. 

 
Remove last: In this case, last node (current tail node) is removed from  the  list.  This  

operation is a bit trickier, than removing the first node,  because  algorithm should  find  a 

node, which is previous to the tail first. 

 
It can be done in three steps: 

 
1. Update tail link to point to the node, before the tail. In order to find it, list should be traversed 

first, beginning from the head. 

2. Set next link of the new tail to NULL. 

3. Dispose removed node. 

 
General case: In general case, node to be removed is always located between two list nodes. 

Head and tail links are not updated in this case. 

 
Such a removal can be done in two steps: 

 
1. Update next link of the previous node, to point to the next node, relative to the removed node. 

2. Dispose removed node. 

 
(iv) Traversal 

1. If First=NULL then {print “List empty” STOP}; 

2. count=0; 

3. ptr=First; {point ptr to the 1st node} 

4. While ptr<> NULL repeat Steps 5 to 6 

5. count=count+1; 

6. ptr=NEXT(ptr) [shift ptr to the next node] 

7. print (‘Number of nodes=’, count) 

8. END 

 
 PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 

b. Execute : Go to Run -> Run module (F5) 

 

 SOURCE CODE: 

class Node: 

def init (self,data): 
self.data=data 

self.next=None 

 

class Sll: 
def init (self): 

self.start=None 

def createlist(self): 

n=int(input("enter number of node")) 

for i in range(n): 

 



30 | P a g e 
 

data=int(input("enter value")) 

newnode=Node(data) 

if self.start==None: 

self.start=newnode 

else: 
temp=self.start 
while temp.next!=None: 

temp=temp.next 

temp.next=newnode 

def insertend(self): 

n=int(input("enter value")) 

newnode=Node(n) 

if self.start==None: 

self.start=newnode 

else: 

temp=self.start 

while temp.next!=None: 
temp=temp.next 

temp.next=newnode 

def insertmid(self): 

n=int(input("enter value")) 

newnode=Node(n) 

pos=int(input("enter position")) 

c=self.count() 

if self.start==None: 

self.start=newnode 

else: 

if pos>1 and pos<=c: 
temp=self.start 
prev=temp 

i=1 

while i<pos: 

prev=temp 

temp=temp.next 

i=i+1 

prev.next=newnode 

newnode.next=temp 

 

def count(self): 
nc=0 

temp=self.start 

while temp!=None: 

nc+=1 

temp=temp.next 

print("number of nodes=%d" %nc) 

return nc 

 

def deletemid(self): 

count=1 

if self.start==None: 

print("empty") 

else: 
position=int(input("enter position")) 

c=self.count() 

if position>c: 

print("check position") 

if position>1 and position<c: 

temp=prev=self.start 

while count<position: 

rev=temp 

 



31 | P a g e 
 

temp=temp.next 

count=count+1 

prev.next=temp.next 

del temp 

else: 
print("check position") 

 

def deleteend(self): 

global prev 

if self.start==None: 

print("empty") 

else: 

temp=self.start 

prev=self.start 

while temp.next!=None: 

prev=temp 

temp=temp.next 

prev.next=None 

del temp 
 

def insertbegin(self): 

n=int(input("enter value")) 

newnode=Node(n) 

if self.start==None: 

self.start=newnode 

else: 
temp=self.start 
newnode.next=temp 

self.start=newnode 

 

def deletebegin(self): 

global prev 

if self.start==None: 

print("empty") 

else: 

temp=self.start 

newstart=self.start.next 

del temp 

self.start=newstart 
 

def display(self): 

print("elements in single linked list are:") 

if self.start==None: 
print("empty") 

else: 

temp=self.start 

print("%d" %(temp.data)) 

while temp.next!=None: 

temp=temp.next 

print("%d" %(temp.data)) 
 

### OUTSIDE CLASS 

def menu(): 

print("1. create list \n2. insert begin \n3. insertend \n4. insertmid \n5. deletebegin \n6. deleteend \n7. 

deletemid \n8. count \n9. display \n10. exit") 

 

def stop(): 

print("u r about to terminate program") 

exit() 

 

 



32 | P a g e 
 

s=Sll() 

 

def default(): 

print("check ut input") 

 

 

menu() 

while True: 

menu={ 

1: s.createlist, 

2: s.insertbegin, 

3: s.insertend, 

4: s.insertmid, 

5: s.deletebegin, 

6: s.deleteend, 

7: s.deletemid, 

8: s.count, 
9: s.display, 

10: stop} 

option=int(input("enter ur choice")) 

menu.get(option)() 

 

Output: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 | P a g e 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



34 | P a g e 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



35 | P a g e 
 

 
 

     PRE-LAB VIVA QUESTIONS: 

a. What is linked list? 

b. What type of memory allocation is used in linked list? 
c. How many self referential pointers are used in single linked list? 
d. What is double linked list? 

e. Which node contains NULL pointer in a single linked list? 

f. How many nodes you can have in a single linked list? 

g. What are the components of a polynomial expression? 

 

 LAB ASSIGNMENT: 

a. Formulate a program to create a singly linked list and perform insertion, deletion and traversing 

operations on a singly linked list. 
b. Write a program to merge two linked list? 
c. Compose a program to print odd nodes of a linked list? 

 



36 | P a g e 
 

d. Write a program to divide the linked list into two parts into odd and even list? 

e. Formulate a program to convert a single linked to circular linked list? 

f. Compose a program to store and add two polynomial expressions in memory using linked list. 

 

 POST-LAB VIVAQUESTIONS: 

a. What is the time complexity to insert a node at the beginning of linked list? 
b. What is the time complexity to traverse a linked list? 

c. How many modifications are required to delete a node at the beginning? 

d. How many modifications are required to insert a node in the middle of the linked list? 

e. What are the types of linked list? 

f. What are the applications of a linked list? 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



37 | P a g e 
 

WEEK – 7 

IMPLEMENTATION OF CIRCULAR LINKED LIST 

 
OBJECTIVE: 

Write Python script for the following operations on Circular Linked List. 

(i) Creation (ii) insertion (iii) deletion (iv) traversal 

 
RESOURCE: 

Python 3.7.3 

 
 PROGRAM LOGIC: 

Circular Linked List: 

(i) Creation 

Init_circular_linked_list(key) 

z= new node 

z.data=key 

z.next=z 

c=new circular_linked_list 

c.last=z 

return c 

(ii) Insertion 

Insert_after(n,a) 

n.next=a.next 

a.next=n 

insert_at_last(L,n) 

n.next=L.last.next 

L.last.next=n 

L.last=n 

(iii) Deletion 

Delete(L,n) 

temp=L.last 

while temp.next!=n 

temp=temp.next           

if n==L.last 

if n.next==n 

L.last=NULL 

 

 

 
else 

else  
temp.next=n.next 

L.last=temp 

temp.next=n.next 

 
(iv) Traversal 

Node temp = this.last; 

print temp.data 

temp = temp.next; 

 
while(temp != this.last) { 

print temp.data 

temp = temp.next; 
 

 

 
 



38 | P a g e 
 

PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 

b. Execute : Go to Run -> Run module (F5) 

 
SOURCE CODE: 

class Node: 

def init (self,data): 

self.next=None 

self.data=data 

print("Node created",data) 

 
class CLList: 

def init (self): 

self.head=None 

self.ctr=0 

def insert_beg(self,data): 

node=Node(data) 

if self.head==None: 

self.head=node 

node.next=self.head 

else: 

temp=self.head 

while temp.next is not self.head: 

temp=temp.next 

temp.next=node 

node.next=self.head 

self.head=node 

print("Node inserted",data) 

self.ctr+=1 

return 

def insert_end(self,data): 

node=Node(data) 

if self.head==None: 

self.head=node 

node.next=self.head 

else: 

temp=self.head 

while temp.next is not self.head: 

temp=temp.next 

temp.next=node 

node.next=self.head 

self.ctr+=1 

print("Node inserted",data) 

return 

def insert_inter(self,pos,data): 

node=Node(data) 

if pos<1 or pos>self.ctr: 

print("invalid position") 

else: 

temp=self.head 

i=1 

while i<pos: 
 



39 | P a g e 
 

temp=temp.next 

i+=1 

node.next=temp.next 

temp.next=node 

self.ctr+=1 

print("Node Insered",data) 

return 

def delete_beg(self): 

if self.head==None: 

print("No Nodes exist") 

elif self.ctr==1: 

print("Node deleted",self.head.data) 

self.head=None 

self.ctr-=1 

else: 

print("Node deleted",self.head.data) 

temp=self.head 

while temp.next is not self.head: 

temp=temp.next 

self.head=self.head.next 

temp.next=self.head 

self.ctr-=1 

return 

def delete_end(self): 

if self.head==None: 

print("No Nodes exist") 

elif self.ctr==1: 

print("Node deleted",self.head.data) 

self.head=None 

self.ctr-=1 

else: 

temp=self.head 

prev=temp 

while temp.next is not self.head: 

prev=temp 

temp=temp.next 

print("Node deleted",temp.data) 

prev.next=temp.next 

self.ctr-=1 

return 

def delete_inter(self,pos): 

if self.head==None: 

print("No nodes exist") 

elif pos<1 or pos>self.ctr: 

print("Invalid position") 

elif self.ctr==1: 

print("Node deleted",self.head.data) 

self.head=None 

self.ctr-=1 

else: 

temp=self.head 

prev=temp 

 



40 | P a g e 
 

i=0 

while i<pos: 

prev=temp 

temp=temp.next 

i+=1 

prev.next=temp.next 

print("Node deleted",temp.data) 

self.ctr-=1 

return 

def traverse(self): 

temp=self.head 

i=0 

while i<self.ctr: 

print(temp.data) 

temp=temp.next 

i+=1 

return 

 
def Menu(): 

print("1.Insert at beginning") 

print("2.Insert at middle") 

print("3.Insert at end") 

print("4.Delete at beginning") 

print("5.Delete at middle") 

print("6.Delete at end") 

print("7.Traverse Forward") 

print("8.Number of nodes") 

print("9.Exit") 

ch=int(input("Enter choice:")) 

return ch 

 
c=CLList() 

print("****************Circular Linked List**************") 

while True: 

ch=Menu() 

if ch==1: 

data=input("Enter data:") 

c.insert_beg(data) 

elif ch==2: 

data=input("Enter data:") 

pos=int(input("Enter position:")) 

c.insert_inter(pos,data) 

elif ch==3: 

data=input("Enter data:") 

c.insert_end(data) 

elif ch==4: 

c.delete_beg() 

elif ch==5: 

pos=int(input("Enter position:")) 

c.delete_inter(pos) 

elif ch==6: 

c.delete_end() 

 



41 | P a g e 
 

elif ch==7: 

c.traverse() 

elif ch==8: 

print("Number of Nodes",c.ctr) 

else: 

print("Exit") 

break 

 
Output: 

 

 

 

 

 

 



42 | P a g e 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



43 | P a g e 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



44 | P a g e 
 

 

 
PRE-LAB VIVA QUESTIONS: 

 

a. What is circular linked list? 

b. What type of memory allocation is used in linked circular list? 

c. How many self referential pointers are used in circular single linked list? 

d. What is double linked list? 

e. Which node contains NULL pointer in a circular single linked list? 

f. How many nodes you can have in a circular single linked list? 

 

LAB ASSIGNMENT: 
 

a. Formulate a program to create a circular singly linked list and perform insertion, deletion and 

traversing operations on a singly linked list. 

b. Write a program to merge two linked list? 

 
 



45 | P a g e 
 

c. Compose a program to print odd nodes of a circular linked list? 

d. Write a program to divide the circular linked list into two parts into odd and even list? 

e. Formulate a program to convert a single linked to circular linked list? 

 

POST-LAB VIVA QUESTIONS: 
 

a. What is the time complexity to insert a node at the beginning of circular linked list? 

b. What is the time complexity to traverse a circular linked list? 

c. How many modifications are required to delete a node at the beginning? 

d. How many modifications are required to insert a node in the middle of the circular linked list? 

e. What are the types of linked list? 

f. What are the applications of a circular linked list? 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



46 | P a g e 
 

WEEK – 8 

IMPLEMENATION OF DOUBLE LIKED LIST 

 
 OBJECTIVE: 

Write Python programs for the following operations on Double Linked List. 

(i) Creation (ii) insertion (iii) deletion (iv) traversal in both ways. 

 
 RESOURCE: 

Python 3.7.3 

 
 PROGRAM LOGIC: 

Double Linked List 

(i) Creation 

(ii) Insertion 

(iii) Deletion 

(iv) Traversal in both ways 

 
 PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 

b. Execute : Go to Run -> Run module (F5) 

 
 SOURCE CODE: 

class Node: 

def init (self,data): 

self.data=data 

self.next=self.prev=None 
 

class DLinkedList: 

def init (self): 

self.head=None 

self.ctr=0 

def insert_beg(self,data): 

node=Node(data) 

if self.head==None: 

self.head=node 

else: 

node.next=self.head 
self.head.prev=node 

self.head=node 

self.ctr +=1 

print("Nodes inserted",data) 

return 

def insert_end(self,data): 

node=Node(data) 

if self.head==None: 

self.head=node 

else: 

temp=self.head 

while(temp.next is not None): 

temp=temp.next 
temp.next=node 
node.prev=temp 

self.ctr +=1 

print("Node inserted",data) 

return 

def delete_beg(self): 

if self.head==None: 

 



47 | P a g e 
 

print("No node exist") 

else: 

print("Node deleted",self.head.data) 

self.head=self.head.next 

self.head.prev=None 

self.ctr -=1 

return 

def delete_end(self): 

if self.head==None: 

print("No nodes exist") 
elif self.ctr==1: 

self.ctr=0 

print ("Node deleted",self.head.data) 

self.head=None 

else: 

temp=self.head 

while temp.next is not None: 
temp=temp.next 

print("Node deleted",temp.data) 

temp=temp.prev 

temp.next=None 

self.ctr -=1 

return 

def insert_pos(self,pos,data): 

if pos==0: 

self.insert_beg(data) 

elif pos==self.ctr: 

self.insert_end(data) 
else: 

node=Node(data) 

temp=self.head 

i=1 

while i<pos-1: 

temp=temp.next 

i +=1 

node.next=temp.next 

temp.next.prev=node 

temp.next=node 

node.prev=temp 

self.ctr +=1 

print("Node inserted",data) 

return 

def delete_pos(self,pos): 

if self.head==None: 

print("Node is empty") 

else: 

if pos==0: 

self.delete_beg() 

elif pos==self.ctr: 

self.delete_end() 

else: 
temp=self.head 

i=0 

while i<pos: 

temp=temp.next 

i+=1 

print("node deleted",temp.data) 

temp.prev.next=temp.next 

temp.next.prev=temp.prev 

temp.next=None 

 



48 | P a g e 
 

temp.preve=None 

self.ctr -=1 

return 

def traverse_f(self): 

if self.head==None: 
print("No nodes exist") 

temp=self.head 

i=0 

while i<self.ctr: 

print(temp.data) 

temp=temp.next 

i+=1 

return 

def traverse_r(self): 

if self.head==None: 

print("No nodes exist") 

temp=self.head 

while temp.next is not None: 

temp=temp.next 

while temp is not None: 
print(temp.data) 

temp=temp.prev 

def menu(): 

print("1.Insert at beginning") 

print("2.Insert at position") 

print("3.Insert at end") 

print("4.Delete at beginning") 

print("5.Delete at position") 

print("6.Delete at end") 

print("7.Count no of nodes") 

print("8.Traverse forward") 

print("9.Traverse reverse") 

print("10.Quit") 

ch=eval(input("Enter choice:")) 
return ch 

 

print("******************Double linked list**************") 

d=DLinkedList() 

while True : 
ch=menu() 
if ch==1: 

data=eval(input("Enter data:")) 

d.insert_beg(data) 

elif ch==2: 

data=eval(input("Enter data:")) 

pos=int(input("Enter position:")) 

d.insert_pos(pos,data) 

elif ch==3: 

data=eval(input("Enter data:")) 

d.insert_end(data) 

elif ch==4: 
d.delete_beg() 

elif ch==5: 

pos=int(input("Enter position:")) 

d.delete_pos(pos) 

elif ch==6: 

d.delete_end() 

elif ch==7: 

print("Number of nodes",d.ctr) 
elif ch==8: 

 



49 | P a g e 
 

d.traverse_f() 

elif ch==9: 

d.traverse_r() 

else: 

print("Exit") 
break 

 

Output: 

 
 

 

 

 

 

 

 

 
 



50 | P a g e 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



51 | P a g e 
 

 

 PRE-LAB VIVA QUESTIONS: 

 

a. What is double linked list 

b. How to represent a node in double linked list 

c. Differentiate between single and double linked list 

 

 LAB ASSIGNMENT: 

 

a. Write a program to insert a node at first , last and at specified position of double linked list? 

b. Write a program to eliminate duplicates from double linked list? 

c. Write a program to delete a node from first, last and at specified position of double linked list? 

 

 POST-LAB VIVA QUESTIONS: 

 

a. How to represent double linked list? 

 



52 | P a g e 
 

b. How will you traverse double linked list? 

c. List the advantages of double linked list over single list? 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



53 | P a g e 
 

WEEK – 9 

IMPLEMENTATION OF STACK USING LINKED LIST 

 
OBJECTIVE: 

Write a Python script to implement Stack using linked list. 

 
RESOURCE: 

Python 3.7.3 

 
PROGRAM LOGIC: 

create() 

Define a 'Node' structure with two members data and next. 
Define a Node pointer 'top' and set it to NULL. 

Implement the main method by displaying Menu with list of operations and make suitable function calls 

in the main method. 

 

push(value) - Inserting an element into the Stack 

Create a newNode with given value. 

Check whether stack is Empty (top == NULL) 
If it is Empty, then set newNode → next = NULL. 

If it is Not Empty, then set newNode → next = top. 

Finally, set top = newNode. 

 

pop() - Deleting an Element from a Stack 

Check whether stack is Empty (top == NULL). 

If it is Empty, then display "Stack is Empty!!! Deletion is not possible!!!" and terminate the function 

If it is Not Empty, then define a Node pointer 'temp' and set it to 'top'. 

Then set 'top = top → next'. 

Finally, delete 'temp'. (free(temp)). 

 

display() - Displaying stack of elements 
Check whether stack is Empty (top == NULL). 

If it is Empty, then display 'Stack is Empty!!!' and terminate the function. 

If it is Not Empty, then define a Node pointer 'temp' and initialize with top. 

Display 'temp → data --->' and move it to the next node. Repeat the same until temp reaches to the first 

node in the stack. (temp → next != NULL). 

Finally! Display 'temp → data ---> NULL'. 

 
PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 

b. Execute : Go to Run -> Run module (F5) 

 
SOURCE CODE: 

class StackNode: 

 
# Constructor to initialize a node 

def init (self, data): 

self.data = data 

self.next = None 

 
class Stack: 

 
# Constructor to initialize the root of linked list 

def init (self): 

self.root = None 
 



54 | P a g e 
 

def isEmpty(self): 

return True if self.root is None else False 

 
def push(self, data): 

newNode = StackNode(data) 

newNode.next = self.root 

self.root = newNode 

print ("%d pushed to stack" %(data)) 

 
def pop(self): 

if (self.isEmpty()): 

return float("-inf") 

temp = self.root 

self.root = self.root.next 

popped = temp.data 

return popped 

 
def peek(self): 

if self.isEmpty(): 

return float("-inf") 

return self.root.data 

 
# Driver program to test above class 

stack = Stack() 

stack.push(10) 

stack.push(20) 

stack.push(30) 

 
print ("%d popped from stack" %(stack.pop())) 

print ("Top element is %d " %(stack.peek())) 

 
Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 | P a g e 
 

 

PRE-LAB VIVA QUESTIONS: 
 

a. What do you mean by stack overflow? 

b. What are the basic operations of a stack? 

c. How to implement stack? 

 

LAB ASSIGNMENT: 

 

a. Formulate a program to reverse a list of numbers using stack. 

b. Write a program to find the factorial of a number using stack. 

c. Develop a program to check a given expression is balanced or not using stack 

 

POST-LAB VIVA QUESTIONS: 
 

a. How to remove an element from stack? 

b. How to insert an element using a stack? 

c. Is it possible to store any number of data elements in stack? 

d. What are the demerits of stack? 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



56 | P a g e 
 

WEEK – 10 

IMPLEMENTATION OF QUEUE USING LINKED LIST 

 
 OBJECTIVE: 

Write a Python program to implement Linear Queue using linked list. 

 
 RESOURCE: 

Python 3.7.3 

 
 PROGRAM LOGIC: 

Queue using linked list: 

Create(): 

Define a 'Node' structure with two members data and next. 

Define two Node pointers 'front' and 'rear' and set both to NULL. 

Implement the main method by displaying Menu of list of operations and make suitable function calls in 

the main method to perform user selected operation. 

 
enQueue(value) - Inserting an element into the Queue 

Create a newNode with given value and set 'newNode → next' to NULL. 

Check whether queue is Empty (rear == NULL) 

If it is Empty then, set front = newNode and rear = newNode. 

If it is Not Empty then, set rear → next = newNode and rear = newNode. 

 
deQueue() - Deleting an Element from Queue 

Check whether queue is Empty (front == NULL). 

If it is Empty, then display "Queue is Empty!!! Deletion is not possible!!!" and terminate from the 

function 

If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'. 

Then set 'front = front → next' and delete 'temp' (free(temp)). 

 
display() - Displaying the elements of Queue  

Check whether queue is Empty (front == NULL). 

If it is Empty then, display 'Queue is Empty!!!' and terminate the function. 

If it is Not Empty then, define a Node pointer 'temp' and initialize with front. 

Display 'temp → data --->' and move it to the next node. Repeat the same until 'temp' reaches to 'rear' 

(temp → next != NULL). 

Finally! Display 'temp → data ---> NULL'. 

 
 PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 

b. Execute : Go to Run -> Run module (F5) 

 
 SOURCE CODE: 

class Node: 

def init (self,data): 

self.data=data 

self.next=None 

 
class Queue: 

def init (self): 

self.front=None 

self.ctr=0 

 



57 | P a g e 
 

self.rear=None 

def Enqueue(self,data): 

node=Node(data) 

if self.front==None: 

self.front=node 

self.rear=node 

else: 

self.rear.next=node 

self.rear=node 

print("Node enqueued to queue",data) 

self.ctr+=1 

return 

def Dequeue(self): 

if self.front==None: 

print("No Nodes exist") 

else: 

print("Dequeued from queue",self.front.data) 

self.front=self.front.next 

self.ctr-=1 

return 

def Traverse(self): 

if self.front==None: 

print("No Nodes exist") 

return 

temp=self.front 

while temp is not None: 

print(temp.data) 

temp=temp.next 

 
def Menu(): 

print("1.Enqueue\n2.Dequeue\n3.Traverse\n4.Number of nodes\n5.Exit") 

ch=int(input("Enter choice:")) 

return ch 

 
print("*******************Queue*************") 

s=Queue() 

while True: 

ch=Menu() 

if ch==1: 

data=input("Enter data:") 

s.Enqueue(data) 

elif ch==2: 

s.Dequeue() 

elif ch==3: 

s.Traverse() 

elif ch==4: 

print("Number of nodes",s.ctr) 

else: 

print('Quit') 

break 

 
Output: 

 
 



58 | P a g e 
 

 
 

 PRE-LAB VIVA QUESTIONS: 

a. Which principle is followed in queue? 

b. What are the applications of queue? 

 

 LAB ASSIGNMENT: 

a. Write a program to implement Queue operations using linked list. 
b. Formulate a program to implement circular queue operations using arrays. 
c. Write a program to implement a priority queue? 

 

 POST-LAB VIVA QUESTIONS: 

a. What is the advantage of circular queue over linear queue? 
b. Where priority queues are used? 

c. What is DEQUE? 

 

 

 



59 | P a g e 
 

WEEK – 11 

IMPLEMENTATION OF QUEUE USING LINKED LIST 

 
 OBJECTIVE: 

a. Write a Python script to implement depth first search 

b. Write a Python script to implement breadth first search 

 
 RESOURCE: 

Python 3.7.3 

 
 PROGRAM LOGIC: 

Depth first search 

1. Define a Stack of size total number of vertices in the graph. 

2. Select any vertex as starting point for traversal. Visit that vertex and push it on to the Stack. 

3. Visit any one of the non-visited adjacent vertices of a vertex which is at the top of stack and push it 

on to the stack. 

4. Repeat step 3 until there is no new vertex to be visited from the vertex which is at the top of the 

stack. 

5. When there is no new vertex to visit then use back tracking and pop one vertex from the stack. 

6. Repeat steps 3, 4 and 5 until stack becomes Empty. 

7. When stack becomes Empty, then produce final spanning tree by removing unused edges from the 

graph 

 
Breadth first search 

1. Define a Queue of size total number of vertices in the graph. 

2. Select any vertex as starting point for traversal. Visit that vertex and insert it into the Queue. 

3. Visit all the non-visited adjacent vertices of the vertex which is at front of the Queue and insert 

them into the Queue. 

4. When there is no new vertex to be visited from the vertex which is at front of the Queue then  

delete that vertex. 

5. Repeat steps 3 and 4 until queue becomes empty. 

6. When queue becomes empty, then produce final spanning tree by removing unused edges from the 

graph 

 
 PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 
b. Execute : Go to Run -> Run module (F5) 

 
 SOURCE CODE: 

Depth first search 

from collections import defaultdict 

class Graph: 

 
# Constructor 

def init (self): 

 
# default dictionary to store graph 

self.graph = defaultdict(list) 

 
# function to add an edge to graph 

def addEdge(self,u,v): 

self.graph[u].append(v) 
 
 



60 | P a g e 
 

# A function used by DFS 

def DFSUtil(self,v,visited): 

 
# Mark the current node as visited and print it 

visited[v]= True 

print (v), 

 
# Recur for all the vertices adjacent to this vertex 

for i in self.graph[v]: 

if visited[i] == False: 

self.DFSUtil(i, visited) 

 

 
# The function to do DFS traversal. It uses 

# recursive DFSUtil() 

def DFS(self,v): 

 
# Mark all the vertices as not visited 

visited = [False]*(len(self.graph)) 

 
# Call the recursive helper function to print 

# DFS traversal 

self.DFSUtil(v,visited) 

 

 
# Driver code 

# Create a graph given in the above diagram 

g = Graph() 

g.addEdge(0, 1) 

g.addEdge(0, 2) 

g.addEdge(1, 2) 

g.addEdge(2, 0) 

g.addEdge(2, 3) 

g.addEdge(3, 3) 

 
print ("Following is DFS from (starting from vertex 2)") 

g.DFS(2) 

 
Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



61 | P a g e 
 

 

Breadth first search 

from collections import defaultdict 

class Graph: 

 
# Constructor 

def init (self): 

 
# default dictionary to store graph 

self.graph = defaultdict(list) 

 
# function to add an edge to graph 

def addEdge(self,u,v): 

self.graph[u].append(v) 

 
# Function to print a BFS of graph 

def BFS(self, s): 

 
# Mark all the vertices as not visited 

visited = [False]*(len(self.graph)) 

 
# Create a queue for BFS 

queue = [] 

 
# Mark the source node as visited and enqueue it 

queue.append(s) 

visited[s] = True 

while queue: 

# Dequeue a vertex from queue and print it 

s = queue.pop(0) 

print (s) 
 

 



62 | P a g e 
 

# Get all adjacent vertices of the dequeued 

# vertex s. If a adjacent has not been visited, 

# then mark it visited and enqueue it 

for i in self.graph[s]: 

if visited[i] == False: 

queue.append(i) 

visited[i] = True 

 

 
# Driver code 

# Create a graph given in the above diagram 

g = Graph() 

g.addEdge(0, 1) 

g.addEdge(0, 2) 

g.addEdge(1, 2) 

g.addEdge(2, 0) 

g.addEdge(2, 3) 

g.addEdge(3, 3) 

 
print ("Following is Breadth First Traversal (starting from vertex 2)") 

g.BFS(2) 

 
Output: 

 PRE-LAB VIVA QUESTIONS: 

a. What is graph? 

b. List various ways of representations of graph? 

c. How many graph traversal algorithms are there? 

 

 LAB ASSIGNMENT: 

a. Find DFS traversal of the following graph 
 

 

 

 

 



63 | P a g e 
 

 
b. Deduce the time complexity of DFS algorithm 

 

 POST-LAB VIVA QUESTIONS: 

a. What is the advantage of circular queue over linear queue? 

b. Where priority queues are used? 

c. What is DEQUE? 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



64 | P a g e 
 

WEEK – 12 

BASICS OF PYTHON 

 
 OBJECTIVE: 

Write a Python script to perform the following: 
a. Create a binary search tree. 
b. Traverse the above binary search tree recursively in pre-order, post-order and in-order. 

c. Count the number of nodes in the binary search tree. 

 
 RESOURCE: 

Python 3.7.3 

 
 PROGRAM LOGIC: 

Binary search tree: 

Create(): 

If root == NULL 

return NULL; 
If number == root->data 

return root->data; 

If number < root->data 
return search(root->left) 

If number > root->data 

return search(root->right) 
Inorder(tree): 

1. Traverse the left subtree, i.e., call Inorder(left-subtree) 

2. Visit the root. 

3. Traverse the right subtree, i.e., call Inorder(right-subtree) 

Preorder(tree): 

1. Visit the root. 

2. Traverse the left subtree, i.e., call Preorder(left-subtree) 

3. Traverse the right subtree, i.e., call Preorder(right-subtree) 

Postorder(tree): 

1. Traverse the left subtree, i.e., call Postorder(left-subtree) 

2. Traverse the right subtree, i.e., call Postorder(right-subtree) 

3. Visit the root. 

Number of nodes in BST: 

CountNodes(node x) 

set n=1  //global variable 

If x=NULL 

return 0 

If(x->left!=NULL) 

n=n+1 

CountNode(x->left) 

If(x->right!=NULL) 

n=n+1 

CountNode(x->right) 

return n 

 
 PROCEDURE: 

a. Create : Open a new file in Python shell, write a program and save the program with .py extension. 
b. Execute : Go to Run -> Run module (F5) 

 
 SOURCE CODE: 

 



65 | P a g e 
 

Binary search tree: 

class Node: 

def init (self,info): #constructor of class 

self.info = info #information for node 

self.left = None #left leef 

self.right = None #right leef 

self.level = None #level none defined 

 
def str (self): 

return str(self.info) #return as string 

 
class searchtree: 

def init (self): #constructor of class 

self.root = None 

 
def create(self,val): #create binary search tree nodes 

if self.root == None: 

self.root = Node(val) 

else: 

current = self.root 

while 1: 

if val < current.info: 

if current.left: 

current = current.left 

else: 

current.left = Node(val) 

break; 

elif val > current.info: 

if current.right: 

current = current.right 

else: 

current.right = Node(val) 

break; 

else: 

break 

 
def bft(self): #Breadth-First Traversal 

self.root.level = 0 

queue = [self.root] 

out = [] 

current_level = self.root.level 

while len(queue) > 0: 

current_node = queue.pop(0) 

if current_node.level > current_level: 

current_level += 1 

out.append("\n") 

out.append(str(current_node.info) + " ") 

if current_node.left: 
 



66 | P a g e 
 

current_node.left.level = current_level + 1 

queue.append(current_node.left) 

if current_node.right: 

current_node.right.level = current_level + 1 

queue.append(current_node.right) 

 
result= "".join(out) 

print (result) 

 

 
def inorder(self,node): 

if node is not None: 

self.inorder(node.left) 

print (node.info) 

self.inorder(node.right) 

 
def preorder(self,node): 

if node is not None: 

 
print (node.info) 

self.preorder(node.left) 

self.preorder(node.right) 

 
def postorder(self,node): 

if node is not None: 

self.postorder(node.left) 

self.postorder(node.right) 

print (node.info) 

 
#Driver  code 

tree = searchtree() 

arr = [8,3,1,6,4,7,10,14,13] 

for i in arr: 

tree.create(i) 

print ('Breadth-First Traversal') 

tree.bft() 

print ('Inorder Traversal') 

tree.inorder(tree.root) 

print ('Preorder Traversal') 

tree.preorder(tree.root) 

print ('Postorder Traversal') 

tree.postorder(tree.root) 

 
Output: 

 

 

 

 

 
 



67 | P a g e 
 

 

 
 

Count the number of nodes in BST: 

class BinaryTree: 
 

def init (self, data): 

self.data = data 

self.left = None 
self.right = None 

 

def insert_left(self, new_data): 

if self.left == None: 

self.left = BinaryTree(new_data) 
else: 

t = BinaryTree(new_data) 
t.left = self.left 

self.left = t 
 

def insert_right(self, new_data): 

if self.right == None: 

self.right = BinaryTree(new_data) 

else: 

t = BinaryTree(new_data) 
t.right = self.right 

self.right = t 
 

def get_left(self): 

return self.left 
 

def get_right(self): 

return self.right 
 

def set_data(self, data): 

self.data = data 

 



68 | P a g e 
 

def get_data(self): 

return self.data 

 
def size(my_tree): 

if not my_tree: 

return 0 

return 1 + size(my_tree.get_left()) + size(my_tree.get_right()) 
 

#Driver Code 

a = BinaryTree(1) 

a.insert_left(2) 
a.insert_right(3) 

print(size(a)) 

 
Output: 

 
 PRE-LAB VIVA QUESTIONS: 

a. Define tree traversal and mention types of traversal? 
b. Define a tree? 

c. Define height of a tree? 

d. Define depth of a tree? 

e. Define degree of a node? 
f. Define Degree of a tree? 

g. Define Terminal node or leaf node? 

h. Define Non-terminal node? 

i. Define Sibling? 

j. Define Binary Tree? 

k. Write the properties of Binary Tree? 

l. Find the minimum and maximum height of a binary tree? 

 
 

 LAB ASSIGNMENT: 

a. Formulate a program to create a Binary Tree of integers? 
b. Write a recursive program, for traversing a binary tree in preorder, inorder and postorder? 

c. Compose a non-recursive program, for traversing a binary tree in preorder, inorder and postorder? 
 



69 | P a g e 
 

d. Write a program to check balance property of a tree? 

 
 

 POST-LAB VIVA QUESTIONS: 

a. Write the balance factor of a Binary Tree? 
b. What is a spanning Tree? 
c. Define a Complete Binary Tree? 

d. List out the applications of Binary Tree? 

e. Write the two approaches for Binary Tree Traversal? 

f. Write the various operations performed in the binary search tree? 

g. List out few of the Application of tree data-structure? 

h. Define pre-order traversal. 

i. Define post-order traversal. 

j. Define in-order traversal. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 


	Academic Year  : 2019 - 2020
	Course Code  : ACSB05
	Regulations  : IARE – R18
	Semester  : III
	Branch  : CSE | IT | ECE | CE | ME
	(Autonomous) Dundigal, Hyderabad - 500 043
	(Autonomous)
	Dundigal, Hyderabad – 500043

	(Autonomous) (1)
	Dundigal, Hyderabad – 500043

	WEEK – 2 SEARCHING TECHNIQUES
	WEEK – 3 SORTING TECHNIQUES
	WEEK – 4 IMPLEMENTATION OF STACKS AND QUEUES
	WEEK – 5 APPLICATIONS OF STACKS
	WEEK – 6 IMPLEMENTATION OF SINGLE LINKED LIST
	WEEK – 7 IMPLEMENTATION OF CIRCULAR LINKED LIST
	WEEK – 8 IMPLEMENATION OF DOUBLE LIKED LIST
	WEEK – 9
	WEEK – 10
	WEEK – 11
	WEEK – 12 BASICS OF PYTHON

