
1 | P a g e

DATA SCIENCE LABORATORY

LAB MANUAL

Year : 2016 - 2017

Course Code : BCS101

Regulations : IARE - R16

Semester : I

Branch : CSE

Prepared By

 Dr. Madhu Bala Myneni, Professor

 Mr.Y SubbaRayudu, Assistant Professor

INSTITUTE OF AERONAUTICAL ENGINEERING

 (Autonomous)

Dundigal, Hyderabad - 500 043

2 | P a g e

VISION AND MISSION OF THE DEPARTMENT

VISION

The Vision of the department is to produce competent graduates suitable for industries and

organizations at global level including research and development with Social responsibility.

MISSION

To provide an open environment to foster professional and personal growth with a strong

theoretical and practical background having an emphasis on hardware and software development

making the graduates industry ready with social ethics.

Further the Department is to provide training and to partner with Global entities in education

and research.

3 | P a g e

INSTITUTE OF AERONAUTICAL

ENGINEERING
(Autonomous)

DUNDIGAL – 500 043, HYDERABAD

COMPUTER SCIENCE AND ENGINEERING

Program Outcomes

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,

and an engineering specialization to the solution of complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences,

and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research methods
including design of experiments, analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with an

understanding of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,
health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional

engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of

the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one‘s own work, as a member and leader in a team, to
manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes

4 | P a g e

PSO1 Professional Skills: The ability to research, understand and implement computer programs in the areas

related to algorithms, system software, multimedia, web design, big data analytics, and networking for

efficient analysis and design of computer-based systems of varying complexity.

PSO2 Problem-Solving Skills: The ability to apply standard practices and strategies in software project
development using open-ended programming environments to deliver a quality product for business

success.

PSO3 Successful Career and Entrepreneurship: The ability to employ modern computer languages,
environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for

higher studies.

Attainment of Program Outcomes and Program Specific Outcomes

S.No Experiment
Program Outcomes

Attained

Program

Specific

Outcomes

Attained

1 R AS CALCULATOR APPLICATION PO1,PO4 PSO1

2 DESCRIPTIVE STATISTICS IN R PO1,PO4 PSO1

3
READING AND WRITING DIFFERENT TYPES OF

DATASETS
PO2,PO3 PSO1

4 VISUALIZATIONS PO6,PO:11 PSO1

5 CORRELATION AND COVARIANCE PO4,PO6 PSO1

6 REGRESSION MODEL PO6,PO11 PSO1, PSO2

7 MULTIPLE REGRESSION MODEL PO6,PO11 PSO1, PSO2

8 REGRESSION MODEL FOR PREDICTION PO6,PO11
PSO1,

PSO2

9 CLASSIFICATION MODEL PO6,PO11
PSO1,

PSO2

10 CLUSTERING MODEL PO6,PO11
PSO1,

PSO2

 Mapping Course Objectives Leading To the Achievement of Program Outcomes

Course

Objectives

Program Outcomes
Program Specific

Outcomes

PO1 PO2 PO3 PO4 PO5 PO6
PO

7
PO8 PO9 PO10

PO1

1

PO1

2

PSO1 PSO2 PSO3

I √ √ √

II √ √ √

III √ √

IV √ √

5 | P a g e

 Data Science Laboratory
SYLLABUS

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 18 STUDENTS:

HARDWARE:

Desktop systems: 30 nos Printers: 02

SOFTWARE:

System Software : Windows 7. Application Software: MS Office.

Programming Languages : R Software

IDE : R Studio Software

DATA SCIENCE LABORATORY

I Semester: CSE

Course Code Category Hours / Week Credits Maximum Marks

BCS101 Core
L T P C CIA SEE Total

- - 3 2 30 70 100

Contact Classes: Nil Total Tutorials: Nil Total Practical Classes: 36 Total Classes: 36

OBJECTIVES:

The course should enable the students to:
I. Illustrate R objects.

II. Make use of different types of datasets for analysis in R.

III. Define relations among variables using correlation and covariance analysis.
IV. Analyze and differentiate the data models for predictions using R.

LIST OF EXPERIMENTS

Week-1 R AS CALCULATOR APPLICATION

a. Using with and without R objects on console

b. Using mathematical functions on console

c. Write an R script, to create R objects for calculator application and save in a specified location in disk

Week-2

DESCRIPTIVE STATISTICS IN R

a. Write an R script to find basic descriptive statistics using summary, str, quartile function on mtcars &
cars datasets.

b. Write an R script to find subset of dataset by using subset (), aggregate () functions on iris dataset.

6 | P a g e

Week-3 READING AND WRITING DIFFERENT TYPES OF DATASETS

a. Reading different types of data sets (.txt, .csv) from web and disk and writing in file in specific disk

location.

b. Reading Excel data sheet in R.

c. Reading XML dataset in R.

Week-4 VISUALIZATIONS

a. Find the data distributions using box and scatter plot.

b. Find the outliers using plot.

c. Plot the histogram, bar chart and pie chart on sample data.

Week-5 CORRELATION AND COVARIANCE

a. Find the correlation matrix.
b. Plot the correlation plot on dataset and visualize giving an overview of relationships among data on

iris data.

c. Analysis of covariance: variance (ANOVA), if data have categorical variables on iris data.

Week-6 REGRESSION MODEL

Import a data from web storage. Name the dataset and now do Logistic Regression to find out relation

between variables that are affecting the admission of a student in a institute based on his or her GRE

score, GPA obtained and rank of the student. Also check the model is fit or not. require (foreign),

require(MASS).

Week-7 MULTIPLE REGRESSION MODEL

Apply multiple regressions, if data have a continuous independent variable. Apply on above dataset.

Week-8

REGRESSION MODEL FOR PREDICTION

Apply regression Model techniques to predict the data on above dataset.

Week-9 CLASSIFICATION MODEL

a. Install relevant package for classification.
b. Choose classifier for classification problem.

c. Evaluate the performance of classifier.

Week-10 CLUSTERING MODEL

a. Clustering algorithms for unsupervised classification.
b. Plot the cluster data using R visualizations.

Reference Books:

Yanchang Zhao, ―R and Data Mining: Examples and Case Studies‖, Elsevier, 1
st
 Edition, 2012.

Web References:

1. http://www.r-bloggers.com/how-to-perform-a-logistic-regression-in-r/

2. http://www.ats.ucla.edu/stat/r/dae/rreg.htm

3. http://www.coastal.edu/kingw/statistics/R-tutorials/logistic.html
4. http://www.ats.ucla.edu/stat/r/data/binary.csv

http://personality-project.org/r/r.205.tutorial.html#correlation
http://personality-project.org/r/r.205.tutorial.html#anova
http://www.r-bloggers.com/how-to-perform-a-logistic-regression-in-r/
http://www.ats.ucla.edu/stat/r/dae/rreg.htm
http://www.coastal.edu/kingw/statistics/R-tutorials/logistic.html
http://www.ats.ucla.edu/stat/r/data/binary.csv

7 | P a g e

INDEX

S.No List of Experiments Page No

1 AS CALCULATOR APPLICATION 8-11

2 DESCRIPTIVE STATISTICS IN R 12-19

3 READING AND WRITING DIFFERENT TYPES OF DATASETS 20-27

4 VISUALIZATIONS 28-36

5 CORRELATION AND COVARIANCE 37-48

6 REGRESSION MODEL 49-50

7 MULTIPLE REGRESSION MODEL 51-52

8 REGRESSION MODEL FOR PREDICTION 53-54

9 CLASSIFICATION MODEL

55-58

10 CLUSTERING MODEL 59-65

8 | P a g e

EXPERIMENTS PROGRAMS

Week-1: R AS CALCULATOR APPLICATION

Objective:

a. Using with and without R objects on console

b. Using Mathematical Functions on console

c. Write an R Script, to create R objects for calculator application and save in a

specified location in disc.

To perform the calculator application the list of arithmetic and logical operators available in R

are shown in table 1&2.

Table1. Arithmetic Operators in R

Logical Operators in R

Operator Description

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== exactly equal to

!= not equal to

!x Not x

x | y x OR y

x & y x AND y

isTRUE(x) test if X is TRUE

9 | P a g e

a. Using with and without R objects on console

Arithmetic operations without R objects

>2+5 #Addition

[1] 7

>34-4 #Subtraction

[1] 30

>3*6 #Multiplication

[1] 18

>25/5 #Division

[1] 5

>25%%2 #Modulus

[1] 1

Arithmetic operations with R objects

>a=5

>b=2

>a+b #Addition

[1] 7

>a-b #Subtraction

[1] 3

>a*b #Multiplication

[1] 10

>c=25

>c/a #Division

[1] 5

>c%%2 #Modulus operation

[1] 1

b. Using Mathematical Functions on console

Built-in Functions:

pi #The value of pi (π), which is approximately 3.142.

x^y # The value of x is raised to the power of y, that is, xy.

sqrt(x) # Square root of x.

abs(x) # Absolute value of x.

factorial(x) # Factorial of x.

log(x, base = n) # Logarithm of x using base = n

log10(x) #Logarithms of x to the base of 10

log2(x) #Logarithms of x to the base of 2.
exp(x) #Exponent of x.

cos(x)
sin(x)

tan(x)

acos(x)
asin(x)

10 | P a g e

atan(x)

Example:

> pi

[1] 3.14

> exp(3) ## provides the cube of e

> log(1.4) ## provides the natural logarithm of the number 1.4

> log10(1.4) ## provides the log to the base of 10

> sqrt(16) ## provides the square root of 16

c. Write an R Script, to create R objects for calculator application and save in a specified

location in disc.

#Open a new R script and save with Calculator.r

R object creation:

Use variable name and use the symbol <- (which is formed by the ―less than‖ symbol followed

immediately by a hyphen) to assign a value to object.

#To create a comment line in R script.

#Create a R object of integer type and assign a value of 2.5

 > x <- 5

To know what is in a variable x

 > x

[1] 5

To see in the console

To store a computed value in another variable y

 > y <- 3*exp(x)

> x <- 3*exp(x)

Declare variables of different types:

my_numeric <- 42

my_character <- "forty-two"

my_logical <- FALSE

Check which type these variables have:

class(my_numeric)

class(my_character)

class(my_logical)

output:

Declare variables of different types:

> my_numeric <- 42

> my_character <- "forty-two"

> my_logical <- FALSE

11 | P a g e

> # Check which type these variables have:

> class(my_numeric)

[1] "numeric"

> class(my_character)

[1] "character"

> class(my_logical)

[1] "logical"

12 | P a g e

Week-2

 DESCRIPTIVE STATISTICS IN R

Objective:

a. Write basic descriptive using str, summary, quartile functions on mtcars and cars dataset.
b. Write an R script to find subset of dataset by using subset (), aggregate () functions on iris dataset.

a) Write basic descriptive using str, summary, quartile functions on mtcars and cars

dataset

str():

library(utils)

Display the internal structure of an R object. Ideally, only one line for each ‗basic‘ structure is

displayed. It is especially well suited to compactly display the (abbreviated) contents of (possibly

nested) lists. The idea is to give reasonable output for any R object. It calls args for (non-

primitive) function objects.

str(object, ...)

Description:

 str(object, max.level = NA,

 vec.len = strO$vec.len, digits.d = strO$digits.d,

 nchar.max = 128, give.attr = TRUE,

 give.head = TRUE, give.length = give.head,

 width = getOption("width"), nest.lev = 0,

 indent.str = paste(rep.int(" ", max(0, nest.lev + 1)), collapse = ".."),

 comp.str = "$ ", no.list = FALSE, envir = baseenv(),

 strict.width = strO$strict.width,

 formatNum = strO$formatNum, list.len = 99, ...)

Arguments

object any R object about which you want to have some information.

max.level maximal level of nesting which is applied for displaying nested structures, e.g., a

list containing sub lists. Default NA: Display all nesting levels.

vec.len numeric (>= 0) indicating how many ‗first few‘ elements are displayed of each

vector. The number is multiplied by different factors (from .5 to 3) depending on

the kind of vector. Defaults to the vec.len component of option "str" (see options)

which defaults to 4.

digits.d number of digits for numerical components (as for print). Defaults to

the digits.d component of option "str" which defaults to 3.

http://127.0.0.1:15361/help/library/utils/help/options
http://127.0.0.1:15361/help/library/utils/help/print

13 | P a g e

nchar.max maximal number of characters to show for character strings. Longer strings are

truncated, see longch example below.

give.attr logical; if TRUE (default), show attributes as sub structures.

give.length logical; if TRUE (default), indicate length (as [1:...]).

give.head logical; if TRUE (default), give (possibly abbreviated) mode/class and length

(as <type>[1:...]).

width the page width to be used. The default is the currently activeoptions("width"); note

that this has only a weak effect, unless strict.width is not "no".

nest.lev current nesting level in the recursive calls to str.

indent.str the indentation string to use.

comp.str string to be used for separating list components.

no.list logical; if true, no ‗list of ...‘ nor the class are printed.

envir the environment to be used for promise (see delayedAssign) objects only.

strict.width string indicating if the width argument's specification should be followed strictly,

one of the values c("no", "cut", "wrap"), which can be abbreviated. Defaults to

the strict.widthcomponent of option "str" (see options) which defaults to"no" for

back compatibility reasons; "wrap" usesstrwrap(*, width =

width) whereas "cut" cuts directly to width. Note that a small vec.length may be

better than setting strict.width = "wrap".

formatNum a function such as format for formatting numeric vectors. It defaults to

the formatNum component of option "str", see ―Usage‖ of strOptions() above,

which is almost back compatible to R <= 2.7.x, however, using formatC may be

slightly better.

list.len numeric; maximum number of list elements to display within a level.

... potential further arguments (required for Method/Generic reasons).

Example: Structure of mtcars dataset using str()

http://127.0.0.1:15361/help/library/utils/help/character
http://127.0.0.1:15361/help/library/utils/help/options
http://127.0.0.1:15361/help/library/utils/help/delayedAssign
http://127.0.0.1:15361/help/library/utils/help/options
http://127.0.0.1:15361/help/library/utils/help/strwrap
http://127.0.0.1:15361/help/library/utils/help/format
http://127.0.0.1:15361/help/library/utils/help/formatC

14 | P a g e

Summary():

library(base)

Description:

summary is a generic function used to produce result summaries of the results of various model

fitting functions. The function invokes particular methods which depend on the class of the first

argument.

Usage:

summary(object, ...)

Default S3 method:

summary(object, ..., digits = max(3, getOption("digits")-3))

S3 method for class 'data.frame'

summary(object, maxsum = 7,digits = max(3, getOption("digits")-3), ...)

S3 method for class 'factor'

summary(object, maxsum = 100, ...)

S3 method for class 'matrix'

summary(object, ...)

Arguments:

object an object for which a summary is desired.

maxsum integer, indicating how many levels should be shown for factors.

digits integer, used for number formatting with signif() (forsummary.default)

or format() (for summary.data.frame).

... additional arguments affecting the summary produced.

Example: Summary of mtcars dataset:

http://127.0.0.1:15361/help/library/base/help/methods
http://127.0.0.1:15361/help/library/base/help/class
http://127.0.0.1:15361/help/library/base/help/factor
http://127.0.0.1:15361/help/library/base/help/signif
http://127.0.0.1:15361/help/library/base/help/format

15 | P a g e

Quantile():

library(stats)

Description:

The generic function quantile produces sample quantiles corresponding to the given

probabilities. The smallest observation corresponds to a probability of 0 and the largest to a

probability of 1.

Usage:

quantile(x, ...)

Default S3 method:

quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,names = TRUE, type = 7, ...)

Arguments:

x numeric vector whose sample quantiles are wanted, or an object of a class for which a

method has been defined (see also ‗details‘). NA and NaNvalues are not allowed in

numeric vectors unless na.rm is TRUE.

probs numeric vector of probabilities with values in [0,1]. (Values up to 2e-14outside that range

are accepted and moved to the nearby endpoint.)

na.rm logical; if true, any NA and NaN's are removed from x before the quantiles are computed.

names logical; if true, the result has a names attribute. Set to FALSE for speedup with

many probs.

type an integer between 1 and 9 selecting one of the nine quantile algorithms detailed below to

be used.

... further arguments passed to or from other methods.

Example:

http://127.0.0.1:15361/help/library/stats/help/NA
http://127.0.0.1:15361/help/library/stats/help/NA
http://127.0.0.1:15361/help/library/stats/help/names

16 | P a g e

b) Write basic descriptive using subset, aggregate on iris

library(base)

Subsetting Vectors, Matrices and Data Frames

Description:

Return subsets of vectors, matrices or data frames which meet conditions.

Usage:

subset(x, ...)

Default S3 method:

subset(x, subset, ...)

S3 method for class 'matrix'

subset(x, subset, select, drop = FALSE, ...)

S3 method for class 'data.frame'

subset(x, subset, select, drop = FALSE, ...)

Arguments:

x object to be subsetted.

subset logical expression indicating elements or rows to keep: missing values are taken as false.

select expression, indicating columns to select from a data frame.

drop passed on to [indexing operator.

... further arguments to be passed to or from other methods.

Examples:

subset(airquality, Temp > 80, select = c(Ozone, Temp))

subset(airquality, Day == 1, select = -Temp)

subset(airquality, select = Ozone:Wind)

with(airquality, subset(Ozone, Temp > 80))

17 | P a g e

aggregate():

library(stats)

Compute Summary Statistics of Data Subsets

Description

Splits the data into subsets, computes summary statistics for each, and returns the result in a

convenient form.

Usage

aggregate(x, ...)

Default S3 method:

aggregate(x, ...)

S3 method for class 'data.frame'

aggregate(x, by, FUN, ..., simplify = TRUE)

S3 method for class 'formula'

aggregate(formula, data, FUN, ...,subset, na.action = na.omit)

S3 method for class 'ts'

aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1,ts.eps = getOption("ts.eps"), ...)

18 | P a g e

Arguments:

x an R object.

by a list of grouping elements, each as long as the variables in the data frame x. The

elements are coerced to factors before use.

FUN a function to compute the summary statistics which can be applied to all data

subsets.

simplify a logical indicating whether results should be simplified to a vector or matrix if

possible.

formula a formula, such as y ~ x or cbind(y1, y2) ~ x1 + x2, where the y variables are

numeric data to be split into groups according to the grouping x variables (usually

factors).

data a data frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NA values.

The default is to ignore missing values in the given variables.

nfrequency new number of observations per unit of time; must be a divisor of the frequency

of x.

ndeltat new fraction of the sampling period between successive observations; must be a

divisor of the sampling interval of x.

ts.eps tolerance used to decide if nfrequency is a sub-multiple of the original frequency.

... further arguments passed to or used by methods.

Examples:

Formulas, one ~ one, one ~ many, many ~ one, and many ~ many:

aggregate(weight ~ feed, data = chickwts, mean)

aggregate(breaks ~ wool + tension, data = warpbreaks, mean)

aggregate(cbind(Ozone, Temp) ~ Month, data = airquality, mean)

aggregate(cbind(ncases, ncontrols) ~ alcgp + tobgp, data = esoph, sum)

Dot notation:

aggregate(. ~ Species, data = iris, mean)

http://127.0.0.1:15361/help/library/stats/help/formula

19 | P a g e

20 | P a g e

Week-3

 READING AND WRITING DIFFERENT TYPES OF DATASETS

Objective:

a. Reading different types of data sets (.txt, .csv) from web and disk and writing in file in

specific disk location.

b. Reading Excel data sheet in R.

c. Reading XML dataset in R.

a). Reading different types of data sets(.txt, .csv) from web and disk and writing in file in

specific disk location

read.table()

library(utils)

Data Input

Description:

Reads a file in table format and creates a data frame from it, with cases corresponding to lines

and variables to fields in the file.

Usage:

read.table(file, header = FALSE, sep = "", quote = "\"'",

 dec = ".", numerals = c("allow.loss", "warn.loss", "no.loss"),

 row.names, col.names, as.is = !stringsAsFactors,

 na.strings = "NA", colClasses = NA, nrows = -1,

 skip = 0, check.names = TRUE, fill = !blank.lines.skip,

 strip.white = FALSE, blank.lines.skip = TRUE,

 comment.char = "#",

 allowEscapes = FALSE, flush = FALSE,

 stringsAsFactors = default.stringsAsFactors(),

 fileEncoding = "", encoding = "unknown", text, skipNul = FALSE)

read.csv(file, header = TRUE, sep = ",", quote = "\"",

 dec = ".", fill = TRUE, comment.char = "", ...)

read.csv2(file, header = TRUE, sep = ";", quote = "\"",

 dec = ",", fill = TRUE, comment.char = "", ...)

read.delim(file, header = TRUE, sep = "\t", quote = "\"",

 dec = ".", fill = TRUE, comment.char = "", ...)

read.delim2(file, header = TRUE, sep = "\t", quote = "\"",

 dec = ",", fill = TRUE, comment.char = "", ...)

21 | P a g e

Arguments:

file the name of the file which the data are to be read from. Each row of the table

appears as one line of the file. If it does not contain an absolute path, the file

name is relativeto the current working directory, getwd(). Tilde-expansion is

performed where supported. This can be a compressed file (see file).

Alternatively, file can be a readable text-mode connection(which will be

opened for reading if necessary, and if soclosed (and hence destroyed) at the

end of the function call). (If stdin() is used, the prompts for lines may be

somewhat confusing. Terminate input with a blank line or an EOF signal, Ctrl-

D on Unix and Ctrl-Z on Windows. Any pushback on stdin() will be cleared

before return.)

file can also be a complete URL. (For the supported URL schemes, see the

‗URLs‘ section of the help for url.)

header a logical value indicating whether the file contains the names of the variables

as its first line. If missing, the value is determined from the file

format: header is set to TRUE if and only if the first row contains one fewer

field than the number of columns.

sep the field separator character. Values on each line of the file are separated by

this character. If sep = "" (the default forread.table) the separator is ‗white

space‘, that is one or more spaces, tabs, newlines or carriage returns.

quote the set of quoting characters. To disable quoting altogether, use quote = "".

See scan for the behaviour on quotes embedded in quotes. Quoting is only

considered for columns read as character, which is all of them

unlesscolClasses is specified.

dec the character used in the file for decimal points.

numerals string indicating how to convert numbers whose conversion to double precision

would lose accuracy, seetype.convert. Can be abbreviated.

row.names a vector of row names. This can be a vector giving the actual row names, or a

single number giving the column of the table which contains the row names, or

character string giving the name of the table column containing the row names.

If there is a header and the first row contains one fewer field than the number

of columns, the first column in the input is used for the row names. Otherwise

if row.names is missing, the rows are numbered.

Using row.names = NULL forces row numbering. Missing

or NULL row.names generate row names that are considered to be ‗automatic‘

(and not preserved byas.matrix).

col.names a vector of optional names for the variables. The default is to use "V" followed

by the column number.

as.is the default behavior of read.table is to convert character variables (which are

http://127.0.0.1:15361/help/library/utils/help/getwd
http://127.0.0.1:15361/help/library/utils/help/file
http://127.0.0.1:15361/help/library/utils/help/connection
http://127.0.0.1:15361/help/library/utils/help/close
http://127.0.0.1:15361/help/library/utils/help/stdin
http://127.0.0.1:15361/help/library/utils/help/url
http://127.0.0.1:15361/help/library/utils/help/scan
http://127.0.0.1:15361/help/library/utils/help/type.convert
http://127.0.0.1:15361/help/library/utils/help/as.matrix

22 | P a g e

not converted to logical, numeric or complex) to factors. The

variable as.is controls the conversion of columns not otherwise specified

bycolClasses. Its value is either a vector of logicals (values are recycled if

necessary), or a vector of numeric or character indices which specify which

columns should not be converted to factors.

Note: to suppress all conversions including those of numeric columns,

set colClasses = "character".

Note that as.is is specified per column (not per variable) and so includes the

column of row names (if any) and any columns to be skipped.

na.strings a character vector of strings which are to be interpreted asNA values. Blank

fields are also considered to be missing values in logical, integer, numeric and

complex fields.

colClasses character. A vector of classes to be assumed for the columns. Recycled as

necessary. If named and shorter than required, names are matched to the

column names with unspecified values are taken to be NA.

Possible values are NA (the default, when type.convertis used), "NULL" (when

the column is skipped), one of the atomic vector classes (logical, integer,

numeric, complex, character, raw), or "factor", "Date" or "POSIXct".

Otherwise there needs to be an as method (from packagemethods) for

conversion from "character" to the specified formal class.

Note that colClasses is specified per column (not per variable) and so includes

the column of row names (if any).

nrows integer: the maximum number of rows to read in. Negative and other invalid

values are ignored.

skip integer: the number of lines of the data file to skip before beginning to read

data.

check.names logical. If TRUE then the names of the variables in the data frame are checked

to ensure that they are syntactically valid variable names. If necessary they are

adjusted (bymake.names) so that they are, and also to ensure that there are no

duplicates.

fill logical. If TRUE then in case the rows have unequal length, blank fields are

implicitly added. See ‗Details‘.

strip.white logical. Used only when sep has been specified, and allows the stripping of

leading and trailing white space from unquoted character fields (numeric fields

are always stripped). See scan for further details (including the exact meaning

of ‗white space‘), remembering that the columns may include the row names.

blank.lines.skip logical: if TRUE blank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character or an

empty string. Use "" to turn off the interpretation of comments altogether.

http://127.0.0.1:15361/help/library/utils/help/NA
http://127.0.0.1:15361/help/library/utils/help/type.convert
http://127.0.0.1:15361/help/library/utils/help/make.names
http://127.0.0.1:15361/help/library/utils/help/scan

23 | P a g e

allowEscapes logical. Should C-style escapes such as \n be processed or read verbatim (the

default)? Note that if not within quotes these could be interpreted as a delimiter

(but not as a comment character). For more details see scan.

flush logical: if TRUE, scan will flush to the end of the line after reading the last of

the fields requested. This allows putting comments after the last field.

stringsAsFactors logical: should character vectors be converted to factors? Note that this is

overridden by as.is and colClasses, both of which allow finer control.

fileEncoding character string: if non-empty declares the encoding used on a file (not a

connection) so the character data can be re-encoded. See the ‗Encoding‘ section

of the help for file, the ‗R Data Import/Export Manual‘ and ‗Note‘.

encoding encoding to be assumed for input strings. It is used to mark character strings as

known to be in Latin-1 or UTF-8 (seeEncoding): it is not used to re-encode the

input, but allowsR to handle encoded strings in their native encoding (if one of

those two). See ‗Value‘ and ‗Note‘.

text character string: if file is not supplied and this is, then data are read from the

value of text via a text connection. Notice that a literal string can be used to

include (small) data sets within R code.

skipNul logical: should nuls be skipped?

... Further arguments to be passed to read.table.

Example: Reading dataset from disk by choosing location dynamically

Reading dataset from disk by specifying file path

>chennaifloodtweets=read.csv("C:/Users/rohit/Desktop/chennaifloods.csv")

b). Reading Excel data sheet in R

XLConnect: It might be slow for large dataset but very powerful otherwise.

require (XLConnect)

wb <- loadWorkbook("myfile.xlsx")

http://127.0.0.1:15361/help/library/utils/help/scan
http://127.0.0.1:15361/help/library/utils/help/file
http://127.0.0.1:15361/help/library/utils/help/Encoding

24 | P a g e

myDf <- readWorksheet(wb, sheet = "Sheet1", header = TRUE)

xlsx: Prefer the read.xlsx2() over read.xlsx(), it‘s significantly faster for large dataset.

require(xlsx)

read.xlsx2("myfile.xlsx", sheetName = "Sheet1")

c). Reading XML dataset in R

> install.packages("XML")

>install.packages("plyr")

>library("plyr", lib.loc="~/R/win-library/3.2")

> library("XML", lib.loc="~/R/win-library/3.2")

> fileurl<-"http://www.w3schools.com/xml/simple.xml"

> doc<-xmlParse(fileurl,useInternalNodes=TRUE)

> class(doc)

[1] "XMLInternalDocument" "XMLAbstractDocument"

> doc

<?xml version="1.0" encoding="UTF-8"?>

<breakfast_menu>

 <food>

 <name>Belgian Waffles</name>

 <price>$5.95</price>

 <description>Two of our famous Belgian Waffles with plenty of real maple

syrup</description>

 <calories>650</calories>

 </food>

 <food>

 <name>Strawberry Belgian Waffles</name>

 <price>$7.95</price>

 <description>Light Belgian waffles covered with strawberries and whipped

 cream</description>

 <calories>900</calories>

 </food>

 <food>

 <name>Berry-Berry Belgian Waffles</name>

 <price>$8.95</price>

 <description>Light Belgian waffles covered with an assortment of fresh berries and

 whipped cream</description>

 <calories>900</calories>

 </food>

 <food>

 <name>French Toast</name>

 <price>$4.50</price>

 <description>Thick slices made from our homemade sourdough bread</description>

 <calories>600</calories>

 </food>

 <food>

25 | P a g e

 <name>Homestyle Breakfast</name>

 <price>$6.95</price>

 <description>Two eggs, bacon or sausage, toast, and our ever-popular hash

 browns</description>

 <calories>950</calories>

 </food>

</breakfast_menu>

 ### XML to List

> xl<-xmlToList(doc)

> class(xl)

[1] "list"

> xl

$food

$food$name

[1] "Belgian Waffles"

$food$price

[1] "$5.95"

$food$description

[1] "Two of our famous Belgian Waffles with plenty of real maple syrup"

$food$calories

[1] "650"

$food

$food$name

[1] "Strawberry Belgian Waffles"

$food$price

[1] "$7.95"

$food$description

[1] "Light Belgian waffles covered with strawberries and whipped cream"

$food$calories

[1] "900"

$food

$food$name

[1] "Berry-Berry Belgian Waffles"

$food$price

[1] "$8.95"

$food$description

[1] "Light Belgian waffles covered with an assortment of fresh berries and whipped cr

26 | P a g e

$food$calories

[1] "900"

$food

$food$name

[1] "French Toast"

$food$price

[1] "$4.50"

$food$description

[1] "Thick slices made from our homemade sourdough bread"

$food$calories

[1] "600"

$food

$food$name

[1] "Homestyle Breakfast"

$food$price

[1] "$6.95"

$food$description

[1] "Two eggs, bacon or sausage, toast, and our ever-popular hash browns"

$food$calories

[1] "950"

> data<-ldply(xl,data.frame)

> head(data)

 id Name Price

1 food Belgian Waffles $5.95

2 food Strawberry Belgian Waffles $7.95

3 food Berry- Berry Belgian Waffles $8.95

4 food French Toast $4.50

5 food Homestyle Breakfast $6.95

 Description

1 Two of our famous Belgian Waffles with plenty of real maple syrup

2 Light Belgian waffles covered with strawberries and whipped cream

3 Light Belgian waffles covered with an assortment of fresh berries and whipped cream

4 Thick slices made from our homemade sourdough bread

5 Two eggs, bacon or sausage, toast, and our ever-popular hash browns

27 | P a g e

Calories
1 650

2 900

3 900

4 600

5 950

28 | P a g e

Week-4

 VISUALIZATIONS

Objective:

a. Find the data distributions using box and scatter plot.

b. Find the outliers using plot.

c. Plot the histogram, bar chart and pie chart on sample data.

a) Find the data distributions using box and scatter plot

 boxplot

 library(graphics)

Description:

Produce box-and-whisker plot(s) of the given (grouped) values.

Usage:

boxplot(x, ...)

S3 method for class 'formula'

boxplot(formula, data = NULL, ..., subset, na.action = NULL)

Default S3 method:

boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,

 notch = FALSE, outline = TRUE, names, plot = TRUE,

 border = par("fg"), col = NULL, log = "",

 pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),

 horizontal = FALSE, add = FALSE, at = NULL)

Arguments:

formula a formula, such as y ~ grp, where y is a numeric vector of data values to be split

into groups according to the grouping variable grp (usually a factor).

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain NAs. The

default is to ignore missing values in either the response or the group.

x for specifying data from which the boxplots are to be produced. Either a

numeric vector, or a single list containing such vectors. Additional unnamed

arguments specify further data as separate vectors (each corresponding to a

29 | P a g e

component boxplot). NAs are allowed in the data.

... For the formula method, named arguments to be passed to the default method.

For the default method, unnamed arguments are additional data vectors

(unless x is a list when they are ignored), and named arguments are arguments

and graphical parameters to be passed to bxp in addition to the ones given by

argument pars(and override those in pars). Note that bxp may or may not make

use of graphical parameters it is passed: see its documentation.

range this determines how far the plot whiskers extend out from the box. If range is

positive, the whiskers extend to the most extreme data point which is no more

thanrange times the interquartile range from the box. A value of zero causes the

whiskers to extend to the data extremes.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the

square-roots of the number of observations in the groups.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches of

two plots do not overlap this is ‗strong evidence‘ that the two medians differ

(Chamberset al, 1983, p. 62). See boxplot.stats for the calculations used.

outline if outline is not true, the outliers are not drawn (as points whereas S+ uses lines).

Examples:

boxplot on a formula:

boxplot(count ~ spray, data = InsectSprays, col = "lightgray")

 # *add* notches (somewhat funny here):

boxplot(count ~ spray, data = InsectSprays, notch = TRUE, add = TRUE, col = "blue")

http://127.0.0.1:43127/help/library/graphics/help/NA
http://127.0.0.1:43127/help/library/graphics/help/graphical%20parameters
http://127.0.0.1:43127/help/library/graphics/help/bxp
http://127.0.0.1:43127/help/library/graphics/help/boxplot.stats

30 | P a g e

 boxplot(decrease ~ treatment, data = OrchardSprays,log = "y", col = "bisque")

 rb <- boxplot(decrease ~ treatment, data = OrchardSprays, col = "bisque")

 title("Comparing boxplot()s and non-robust mean +/- SD")

mn.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, mean)

sd.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, sd)

xi <- 0.3 + seq(rb$n)

points(xi, mn.t, col = "orange", pch = 18)

arrows(xi, mn.t - sd.t, xi, mn.t + sd.t,

code = 3, col = "pink", angle = 75, length = .1)

31 | P a g e

boxplot on a matrix:

mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),

`5T` = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))

boxplot(as.data.frame(mat),

main = "boxplot(as.data.frame(mat), main = ...)")

par(las = 1) # all axis labels horizontal

boxplot(as.data.frame(mat), main = "boxplot(*, horizontal = TRUE)",

horizontal = TRUE)

Using 'at = ' and adding boxplots -- example idea by Roger Bivand :

boxplot(len ~ dose, data = ToothGrowth,

 boxwex = 0.25, at = 1:3 - 0.2,

 subset = supp == "VC", col = "yellow",

 main = "Guinea Pigs' Tooth Growth",

 xlab = "Vitamin C dose mg",

 ylab = "tooth length",

 xlim = c(0.5, 3.5), ylim = c(0, 35), yaxs = "i")

 boxplot(len ~ dose, data = ToothGrowth, add = TRUE,

 boxwex = 0.25, at = 1:3 + 0.2,

 subset = supp == "OJ", col = "orange")

 legend(2, 9, c("Ascorbic acid", "Orange juice"),

 fill = c("yellow", "orange"))

32 | P a g e

c) Find the outliers using plot

####outliers

v=c(2,5,3,7,10,8,4,77,99,200)

boxplot(v)

d) Plot the histogram, bar chart and pie chart on sample data

hist()

library(graphics)

Description:

The generic function hist computes a histogram of the given data values. If plot = TRUE, the

resulting object of class "histogram" is plotted by plot.histogram, before it is returned.

Usage:

hist(x, ...)

Default S3 method:

hist(x, breaks = "Sturges",

 freq = NULL, probability = !freq,

http://127.0.0.1:43127/help/library/graphics/help/class
http://127.0.0.1:43127/help/library/graphics/help/plot.histogram

33 | P a g e

 include.lowest = TRUE, right = TRUE,

 density = NULL, angle = 45, col = NULL, border = NULL,

 main = paste("Histogram of" , xname),

 xlim = range(breaks), ylim = NULL,

 xlab = xname, ylab,

 axes = TRUE, plot = TRUE, labels = FALSE,

 nclass = NULL, warn.unused = TRUE, ...)

Arguments:

x a vector of values for which the histogram is desired.

breaks one of:

 a vector giving the breakpoints between histogram cells,

 a function to compute the vector of breakpoints,

 a single number giving the number of cells for the histogram,

 a character string naming an algorithm to compute the number of cells

(see ‗Details‘),

 a function to compute the number of cells.

In the last three cases the number is a suggestion only; the breakpoints will

be set to pretty values. If breaks is a function, the x vector is supplied to it

as the only argument.

freq logical; if TRUE, the histogram graphic is a representation of frequencies,

thecounts component of the result; if FALSE, probability densities,

componentdensity, are plotted (so that the histogram has a total area of one).
Defaults to TRUE if and only if breaks are equidistant (and probabilityis not

specified).

probability an alias for !freq, for S compatibility.

include.lowest logical; if TRUE, an x[i] equal to the breaks value will be included in the

first (or last, for right = FALSE) bar. This will be ignored (with a warning)

unless breaks is a vector.

right logical; if TRUE, the histogram cells are right-closed (left open) intervals.

density the density of shading lines, in lines per inch. The default value

of NULLmeans that no shading lines are drawn. Non-positive values

of density also inhibit the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-

clockwise).

col a colour to be used to fill the bars. The default of NULL yields unfilled

bars.

border the color of the border around the bars. The default is to use the standard

foreground color.

http://127.0.0.1:43127/help/library/graphics/help/pretty

34 | P a g e

main, xlab, ylab these arguments to title have useful defaults here.

xlim, ylim the range of x and y values with sensible defaults. Note that xlim is notused

to define the histogram (breaks), but only for plotting (when plot = TRUE).

axes logical. If TRUE (default), axes are draw if the plot is drawn.

plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks

and counts is returned. In the latter case, a warning is used if (typically

graphical) arguments are specified that only apply to the plot = TRUEcase.

labels logical or character string. Additionally draw labels on top of bars, if

notFALSE; see plot.histogram.

nclass numeric (integer). For S(-PLUS) compatibility only, nclass is equivalent

tobreaks for a scalar or character argument.

warn.unused logical. If plot = FALSE and warn.unused = TRUE, a warning will be

issued when graphical parameters are passed to hist.default().

... further arguments and graphical parameters passed to plot.histogramand

thence to title and axis (if plot = TRUE).

Examples:

op <- par(mfrow = c(2, 2))

hist(islands)

utils::str(hist(islands, col = "gray", labels = TRUE))

hist(sqrt(islands), breaks = 12, col = "lightblue", border = "pink")

##-- For non-equidistant breaks, counts should NOT be graphed unscaled:

r <- hist(sqrt(islands), breaks = c(4*0:5, 10*3:5, 70, 100, 140),

 col = "blue1")

text(r$mids, r$density, r$counts, adj = c(.5, -.5), col = "blue3")

sapply(r[2:3], sum)

sum(r$density * diff(r$breaks)) # == 1

http://127.0.0.1:43127/help/library/graphics/help/plot.histogram
http://127.0.0.1:43127/help/library/graphics/help/graphical%20parameters
http://127.0.0.1:43127/help/library/graphics/help/plot.histogram
http://127.0.0.1:43127/help/library/graphics/help/title
http://127.0.0.1:43127/help/library/graphics/help/axis

35 | P a g e

lines(r, lty = 3, border = "purple") # -> lines.histogram(*)

par(op)

require(utils) # for str

str(hist(islands, breaks = 12, plot = FALSE)) #-> 10 (~= 12) breaks

str(hist(islands, breaks = c(12,20,36,80,200,1000,17000), plot = FALSE))

hist(islands, breaks = c(12,20,36,80,200,1000,17000), freq = TRUE,

main = "WRONG histogram") # and warning

require(stats)

set.seed(14)

x <- rchisq(100, df = 4)

Comparing data with a model distribution should be done with qqplot()!

qqplot(x, qchisq(ppoints(x), df = 4)); abline(0, 1, col = 2, lty = 2)

if you really insist on using hist() ... :

hist(x, freq = FALSE, ylim = c(0, 0.2))

curve(dchisq(x, df = 4), col = 2, lty = 2, lwd = 2, add = TRUE)

36 | P a g e

37 | P a g e

Week-5

 CORRELATION AND COVARIANCE

Objective:

a. Find the correlation matrix.

b. Plot the correlation plot on dataset and visualize giving an overview of relationships among

data on iris data.

c. Analysis of covariance: variance (ANOVA), if data have categorical variables on iris data.

a. Find the correlation matrix

cor()

library(stats)

Correlation, Variance and Covariance (Matrices)

Description:

var, cov and cor compute the variance of x and the covariance or correlation of x and y if these

are vectors. If x and y are matrices then the covariances (or correlations) between the columns

of xand the columns of y are computed.

cov2cor scales a covariance matrix into the corresponding correlation matrix efficiently.

Usage:

var(x, y = NULL, na.rm = FALSE, use)

cov(x, y = NULL, use = "everything",

 method = c("pearson", "kendall", "spearman"))

cor(x, y = NULL, use = "everything",

 method = c("pearson", "kendall", "spearman"))

cov2cor(V)

Arguments:

x a numeric vector, matrix or data frame.

y NULL (default) or a vector, matrix or data frame with compatible dimensions to x. The

default is equivalent to y = x (but more efficient).

na.rm logical. Should missing values be removed?

use an optional character string giving a method for computing covariances in the presence

of missing values. This must be (an abbreviation of) one of the

http://personality-project.org/r/r.205.tutorial.html#correlation
http://personality-project.org/r/r.205.tutorial.html#anova
http://personality-project.org/r/r.205.tutorial.html#correlation

38 | P a g e

strings "everything","all.obs", "complete.obs", "na.or.complete",

or"pairwise.complete.obs".

method a character string indicating which correlation coefficient (or covariance) is to be

computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated.

V symmetric numeric matrix, usually positive definite such as a covariance matrix.

Examples:

var(1:10) # 9.166667

var(1:5, 1:5) # 2.5

Two simple vectors

cor(1:10, 2:11) # == 1

Correlation Matrix of Multivariate sample:

Cl <- cor(longley)

Graphical Correlation Matrix:

symnum(Cl) # highly correlated

39 | P a g e

Spearman's rho and Kendall's tau

symnum(clS <- cor(longley, method = "spearman"))

symnum(clK <- cor(longley, method = "kendall"))

How much do they differ?

i <- lower.tri(Cl)

cor(cbind(P = Cl[i], S = clS[i], K = clK[i]))

40 | P a g e

cov2cor() scales a covariance matrix by its diagonal

to become the correlation matrix.

cov2cor # see the function definition {and learn ..}

stopifnot(all.equal(Cl, cov2cor(cov(longley))),

 all.equal(cor(longley, method = "kendall"),

 cov2cor(cov(longley, method = "kendall"))))

##--- Missing value treatment:

C1 <- cov(swiss)

range(eigen(C1, only.values = TRUE)$values) # 6.19 1921

swM := "swiss" with 3 "missing"s :

swM <- swiss

colnames(swM) <- abbreviate(colnames(swiss), min=6)

swM[1,2] <- swM[7,3] <- swM[25,5] <- NA # create 3 "missing"

Consider all 5 "use" cases :

(C. <- cov(swM)) # use="everything" quite a few NA's in cov.matrix

try(cov(swM, use = "all")) # Error: missing obs...

C2 <- cov(swM, use = "complete")

stopifnot(identical(C2, cov(swM, use = "na.or.complete")))

range(eigen(C2, only.values = TRUE)$values) # 6.46 1930

C3 <- cov(swM, use = "pairwise")

range(eigen(C3, only.values = TRUE)$values) # 6.19 1938

41 | P a g e

Kendall's tau doesn't change much:

symnum(Rc <- cor(swM, method = "kendall", use = "complete"))

symnum(Rp <- cor(swM, method = "kendall", use = "pairwise"))

symnum(R. <- cor(swiss, method = "kendall"))

"pairwise" is closer componentwise,

summary(abs(c(1 - Rp/R.)))

summary(abs(c(1 - Rc/R.)))

but "complete" is closer in Eigen space:

EV <- function(m) eigen(m, only.values=TRUE)$values

summary(abs(1 - EV(Rp)/EV(R.)) / abs(1 - EV(Rc)/EV(R.)))

a) Plot the correlation plot on dataset and visualize giving an overview of relationships

among data on iris data.

corrplot()

library(corrplot)

A visualization of a correlation matrix.

Description:

A graphical display of a correlation matrix, confidence interval. The details are paid great

attention to. It can also visualize a general matrix by setting is.corr = FALSE.

Usage:

corrplot (corr,

method = c("circle", "square", "ellipse", "number", "shade", "color", "pie"),

type = c("full", "lower", "upper"),

add = FALSE,

col = NULL,

bg = "white",

title = "",

is.corr = TRUE,

diag = TRUE,

outline = FALSE,

mar = c(0, 0, 0, 0),

addgrid.col = NULL,

addCoef.col = NULL,

addCoefasPercent = FALSE,

order = c("original", "AOE", "FPC", "hclust", "alphabet"),

hclust.method = c("complete", "ward", "ward.D", "ward.D2", "single", "average",

"mcquitty", "median", "centroid"),

42 | P a g e

addrect = NULL,

rect.col = "black",

rect.lwd = 2,

tl.pos = NULL,

tl.cex = 1,

tl.col = "red",

tl.offset = 0.4,

tl.srt = 90,

cl.pos = NULL,

cl.lim = NULL,

cl.length = NULL,

cl.cex = 0.8,

cl.ratio = 0.15,

cl.align.text = "c",

cl.offset = 0.5,

number.cex = 1,

number.font = 2,

number.digits = NULL,

addshade = c("negative", "positive", "all"),

shade.lwd = 1,

shade.col = "white",

p.mat = NULL,

sig.level = 0.05,

insig = c("pch", "p-value", "blank", "n"),

pch = 4,

pch.col = "black",

pch.cex = 3,

plotCI = c("n", "square", "circle", "rect"),

lowCI.mat = NULL,

uppCI.mat = NULL,

na.label = "?",

na.label.col = "black", ...)

Arguments:

corr The correlation matrix to visualize, must be square if order is not"original". For

general matrix, please using is.corr = FALSE to convert.

method Character, the visualization method of correlation matrix to be used. Currently,

it supports seven methods,

named "circle" (default),"square", "ellipse", "number", "pie", "shade" and "color

". See examples for details.

The areas of circles or squares show the absolute value of corresponding

correlation coefficients. Method "pie" and "shade" came from Michael

Friendly's job (with some adjustment about the shade added on),

and"ellipse" came from D.J. Murdoch and E.D. Chow's job, see in section

43 | P a g e

References.

type Character, "full" (default), "upper" or "lower", display full matrix, lower

triangular or upper triangular matrix.

add Logical, if TRUE, the graph is added to an existing plot, otherwise a new plot is

created.

col Vector, the color of glyphs. It is distributed uniformly in cl.lim. If

NULL,col will be colorRampPalette(col2)(200), see example about col2.

bg The background color.

title Character, title of the graph.

is.corr Logical, whether the input matrix is a correlation matrix or not. We can

visualize the non-correlation matrix by setting is.corr = FALSE.

diag Logical, whether display the correlation coefficients on the principal diagonal.

outline Logical or character, whether plot outline of circles, square and ellipse, or the

color of these glyphs. If outline is TRUE, the default value is"black".

mar See par.

addgrid.col The color of the grid. If NA, don't add grid. If NULL the default value is

chosen. The default value depends on method, if method is color orshade, the

color of the grid is NA, that is, not draw grid; otherwise"grey".

addCoef.col Color of coefficients added on the graph. If NULL (default), add no coefficients.

addCoefasPer

cent

Logic, whether translate coefficients into percentage style for spacesaving.

order Character, the ordering method of the correlation matrix.

 "original" for original order (default).

 "AOE" for the angular order of the eigenvectors.

 "FPC" for the first principal component order.

 "hclust" for the hierarchical clustering order.

 "alphabet" for alphabetical order.

See function corrMatOrder for details.

hclust.method Character, the agglomeration method to be used when order is hclust. This

should be one

of "ward", "ward.D", "ward.D2", "single","complete", "average", "mcquitty", "

median" or "centroid".

addrect Integer, the number of rectangles draws on the graph according to the

hierarchical cluster, only valid when order is hclust. If NULL (default), then add

no rectangles.

rect.col Color for rectangle border(s), only valid when addrect is equal or greater than 1.

http://127.0.0.1:43127/help/library/corrplot/help/par
http://127.0.0.1:43127/help/library/corrplot/help/corrMatOrder
http://127.0.0.1:43127/help/library/corrplot/help/hclust

44 | P a g e

rect.lwd Numeric, line width for borders for rectangle border(s), only valid

whenaddrect is equal or greater than 1.

tl.pos Character or logical, position of text labels. If character, it must be one

of"lt", "ld", "td", "d" or "n". "lt"(default if type=="full") means left and

top, "ld"(default if type=="lower") means left and diagonal,"td"(default

if type=="upper") means top and diagonal(near), "d"means diagonal, "n" means

don't add textlabel.

tl.cex Numeric, for the size of text label (variable names).

tl.col The color of text label.

tl.offset Numeric, for text label, see text.

tl.srt Numeric, for text label string rotation in degrees, see text.

cl.pos Character or logical, position of color labels; If character, it must be one

of"r" (default if type=="upper" or "full"), "b" (default iftype=="lower")

or "n", "n" means don't draw colorlabel.

cl.lim The limits (x1, x2) in the colorlabel.

cl.length Integer, the number of number-text in colorlabel, passed tocolorlegend.

If NULL, cl.length is length(col) + 1 whenlength(col) <=20; cl.length is 11

when length(col) > 20

cl.cex Numeric, cex of number-label in colorlabel, passed to colorlegend.

cl.ratio Numeric, to justify the width of colorlabel, 0.1~0.2 is suggested.

cl.align.text Character, "l", "c" (default) or "r", for number-label in colorlabel, "l"means

left, "c" means center, and "r" means right.

cl.offset Numeric, for number-label in colorlabel, see text.

number.cex The cex parameter to send to the call to text when writing the correlation

coefficients into the plot.

number.font the font parameter to send to the call to text when writing the correlation

coefficients into the plot.

number.digits indicating the number of decimal digits to be added into the plot. Non-negative

integer or NULL, default NULL.

addshade Character for shade style, "negative", "positive" or "all", only valid

when method is "shade". If "all", all correlation coefficients' glyph will be

shaded; if "positive", only the positive will be shaded; if"negative", only the

negative will be shaded. Note: the angle of shade line is different, 45 degrees for

positive and 135 degrees for negative.

shade.lwd Numeric, the line width of shade.

shade.col The color of shade line.

http://127.0.0.1:43127/help/library/corrplot/help/text
http://127.0.0.1:43127/help/library/corrplot/help/text
http://127.0.0.1:43127/help/library/corrplot/help/colorlegend
http://127.0.0.1:43127/help/library/corrplot/help/colorlegend
http://127.0.0.1:43127/help/library/corrplot/help/text

45 | P a g e

p.mat Matrix of p-value, if NULL, arguments sig.level, insig, pch,pch.col, pch.cex is

invalid.

sig.level Significant level, if the p-value in p-mat is bigger than sig.level, then the

corresponding correlation coefficient is regarded as insignificant.

insig Character, specialized insignificant correlation coefficients, "pch"(default), "p-

value", "blank" or "n". If "blank", wipe away the corresponding glyphs; if "p-

value", add p-values the corresponding glyphs; if "pch", add characters

(see pch for details) on corresponding glyphs; if "n", don't take any measures.

pch Add character on the glyphs of insignificant correlation coefficients(only valid

when insig is "pch"). See par.

pch.col The color of pch (only valid when insig is "pch").

pch.cex The cex of pch (only valid when insig is "pch").

plotCI Character, method of ploting confidence interval. If "n", don't plot confidence

interval. If "rect", plot rectangles whose upper side means upper bound and

lower side means lower bound, respectively, and meanwhile correlation

coefficients are also added on the rectangles. If "circle", first plot a circle with

the bigger absolute bound, and then plot the smaller. Warning: if the two bounds

are the same sign, the smaller circle will be wiped away, thus forming a ring.

Method "square" is similar to "circle".

lowCI.mat Matrix of the lower bound of confidence interval.

uppCI.mat Matrix of the upper bound of confidence interval.

na.label Label to be used for rendering NA cells. Default is "?". If "square", then the cell

is rendered as a square with the na.label.col color.

na.label.col Color used for rendering NA cells. Default is "black".

... Additional arguments passing to function text for drawing text lable.

##corrplot Examples

data(mtcars)

M <- cor(mtcars)

different color series

col1 <- colorRampPalette(c("#7F0000","red","#FF7F00","yellow","white",

 "cyan", "#007FFF", "blue","#00007F"))

col2 <- colorRampPalette(c("#67001F", "#B2182B", "#D6604D", "#F4A582", "#FDDBC7",

 "#FFFFFF", "#D1E5F0", "#92C5DE", "#4393C3", "#2166AC", "#053061"))

col3 <- colorRampPalette(c("red", "white", "blue"))

col4 <- colorRampPalette(c("#7F0000","red","#FF7F00","yellow","#7FFF7F",

 "cyan", "#007FFF", "blue","#00007F"))

wb <- c("white","black")

http://127.0.0.1:43127/help/library/corrplot/help/par

46 | P a g e

par(ask = TRUE)

different color scale and methods to display corr-matrix

corrplot(M, method = "number", col = "black", cl.pos = "n")

corrplot(M, method = "number")

corrplot(M)

corrplot(M, order = "AOE")

corrplot(M, order = "AOE", addCoef.col = "grey")

corrplot(M, method="color", col=col1(20), cl.length=21,order = "AOE",

addCoef.col="grey")

corrplot(M, method="square", col=col2(200),order = "AOE")

47 | P a g e

corrplot(M, method="ellipse", col=col1(200),order = "AOE")

corrplot(M, method="shade", col=col3(20),order = "AOE")

corrplot(M, method="pie", order = "AOE")

mixed methods: It's more efficient if using function "corrplot.mixed"

circle + ellipse

corrplot(M,order="AOE",type="upper",tl.pos="d")

corrplot(M,add=TRUE,type="lower",method="ell",order="AOE",diag=FALSE,tl.pos="n

", cl.pos="n")

order is hclust and draw rectangles

corrplot(M, order="hclust")

corrplot(M, order="hclust", addrect = 2)

corrplot(M, order="hclust", addrect = 3, rect.col = "red")

corrplot(M, order="hclust", addrect = 4, rect.col = "blue")

corrplot(M, order="hclust", hclust.method="ward", addrect = 4)

48 | P a g e

b) Analysis of covariance: variance (ANOVA), if data have categorical variables on iris

data.

anova():

library(stats)

Description:

Compute analysis of variance (or deviance) tables for one or more fitted model objects.

Usage:

anova(object, ...)

Arguments:

objec

t

an object containing the results returned by a model fitting function

(e.g., lm orglm).

... additional objects of the same type.

> fit=lm(iris$Sepal.Length ~ iris$Petal.Length)

> anova(fit)

Analysis of Variance Table

Response: iris$Sepal.Length

 Df Sum Sq Mean Sq F value Pr(>F)

iris$Petal.Length 1 77.643 77.643 468.55 < 2.2e-16 ***

Residuals 148 24.525 0.166

Signif. codes: 0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1

http://personality-project.org/r/r.205.tutorial.html#anova

49 | P a g e

Week-6

 REGRESSION MODEL

Objective:

Import a data from web storage. Name the dataset and now do Logistic Regression to find out

relation between variables that are affecting the admission of a student in a institute based on his

or her GRE score, GPA obtained and rank of the student. Also check the model is fit or not.

require (foreign), require(MASS).

Regression analysis mainly focuses on :

• Finding a relationship between a dependent variable and one or more independent

variables.

• Predict the value of a dependent variable

• Finding the impact of changes in an independent variable on the dependent variable.

Y = f(X, β)

where Y is the dependent variable ,X is the independent variable ,β is the unknown coefficient

– Simple Linear Regression

–

Y= α + βX + ε
α = intercept coefficients

β = slope coefficients

ε = residuals

– Multiple Linear Regression

Y= α + β1X1+ β2X2+ β3X3 + …..+βkXk + ε

50 | P a g e

 A researcher is interested in how variables, such as GRE (Graduate Record Exam scores),

GPA (grade point average) and prestige of the undergraduate institution, affect admission

into graduate school.

 This data set has a binary response (outcome, dependent) variable called admit, which is

equal to 1 if the individual was admitted to graduate school, and 0 otherwise.

 There are three predictor variables: gre, gpa, and rank.

 Treat the variables gre and gpa as continuous. The variable rank takes on the values 1

through 4.

 Institutions with a rank of 1 have the highest prestige, while those with a rank of 4 have

the lowest.

 The outcome variable, admit/don't admit, is binary.

51 | P a g e

Week-7

 MULTIPLE REGRESSION MODEL

Objective:

Apply multiple regressions, if data have a continuous independent variable. Apply on above

dataset.

In the output above:

 What the model we ran was, what options we specified, etc.

 Residuals, which are a measure of model fit.

 This part of output shows the distribution of the deviance residuals for individual cases

 used in the model.

 The next part of the output shows the coefficients, their standard errors, the z-statistic

 (sometimes called a Wald z-statistic), and the associated p-values.

** Both gre and gpa are statistically significant, as are the three terms for rank. The logistic

regression coefficients give the change in the log odds of the outcome for a one unit increase

in the predictor variable.

**For every one unit change in gre, the log odds of admission (versus non-admission)

increases by 0.002.

**For a one unit increase in gpa, the log odds of being admitted to graduate school increases

by 0.804.

52 | P a g e

**The indicator variables for rank have a slightly different interpretation. For example, having

attended an undergraduate institution with rank of 2, versus an institution with a rank of 1,

changes the log odds of admission by -0.675.

53 | P a g e

Week-8

 REGRESSION MODEL FOR PREDICTION

Objective:

Apply regression Model techniques to predict the data on above dataset

Source code:

install.packages("DMwR")

library("DMwR")

train <- centralImputation(raw_data)

raw_data$Attendance <- as.numeric(raw_data$Attendance)

sum(raw_data$UG.CGPA)

mean_Attendance <- mean(train$Attendance)

train <- subset(train, train$Attendance > 90)

train2 <- subset(train, train$UG.CGPA > 3)

descriptive visualizations

hist(train$Attendance)

train$Birth.Year <- as.integer(train$Birth.Year)

plot(train$PG.CGPA, train$Attendance)

cor(train$PG.CGPA, train$Attendance)

cor(train, method ="pearson")

max(train$Work.Exp.)

linear regression

model <- lm(PG.CGPA ~ ., train)

summary(model)

plot(model)

hist(model$residuals)

test <- read.csv("C:/Users/sarang.venukala/Desktop/data/sample_data3.csv")

colnames(test)

predictions <- predict(model, newdata = test)

predictions <- as.data.frame(predict(model, newdata = test))

class(test)

class(predictions)

test2 <- cbind(test, predictions)

library("car")

sqrt(vif(model)) > 2

54 | P a g e

model3 <- lm(PG.CGPA ~ Attendance, train)

plot(model2)

summary(model3)

model2$residuals

predictions <- predict(model3, newdata = test)

predictions <- as.data.frame(predict(model3, newdata = test))

test2 <- cbind(test2, predictions)

##########################

model4 <- lm(PG.CGPA ~ UG.CGPA, train)

summary(model4)

model2$residuals

predictions <- predict(model4, newdata = test)

predictions <- as.data.frame(predict(model4, newdata = test))

test2 <- cbind(test2, predictions)

##########################

model5 <- step(model)

summary(model5)

model2$residuals

predictions <- predict(model5, newdata = test)

predictions <- as.data.frame(predict(model5, newdata = test))

test2 <- cbind(test2, predictions)

test2 <- cbind(test2, (as.data.frame(train$PG.CGPA)))

###################################

test_new_sem <- read.csv("C:/Users/sarang.venukala/Desktop/data/test_data.csv")

predictions_new_sem <- as.data.frame(predict(model5, newdata = test_new_sem))

test_new_sem_2 <- cbind(test_new_sem, predictions_new_sem)

students_target <- subset(test_new_sem_2, test_new_sem_2$`predict(model5,

newdata = test_new_sem)` < 2.6)

hist(train$PG.CGPA)

55 | P a g e

Week-9

 CLASSIFICATION MODEL

Objective:

a. Install relevant package for classification.

b. Choose classifier for classification problem.

c. Evaluate the performance of classifier.

install.packages("rpart.plot")

install.packages("tree")

install.packages("ISLR")

install.packages("rattle")

library(tree)

library(ISLR)

library(rpart.plot)

library(rattle)

attach(Hitters)

View(Hitters)

Remove NA data

Hitters<-na.omit(Hitters)

log transform Salary to make it a bit more normally distributed

hist(Hitters$Salary)

Hitters$Salary <- log(Hitters$Salary)

hist(Hitters$Salary)

> tree.fit <- tree(Salary~Hits+Years, data=Hitters)

56 | P a g e

> summary(tree.fit)

Regression tree:

tree(formula = Salary ~ Hits + Years, data = Hitters)

Number of terminal nodes: 8

Residual mean deviance: 101200 = 25820000 / 255

Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max.

-1238.00 -157.50 -38.84 0.00 76.83 1511.00

plot(tree.fit, uniform=TRUE,margin=0.2)

text(tree.fit, use.n=TRUE, all=TRUE, cex=.8)

#plot(tree.fit)

> split <- createDataPartition(y=Hitters$Salary, p=0.5, list=FALSE)

> train <- Hitters[split,]

> test <- Hitters[-split,]

#Create tree model

> trees <- tree(Salary~., train)

> plot(trees)

> text(trees, pretty=0)

Cross validate to see whether pruning the tree will improve

 performance

57 | P a g e

#Cross validate to see whether pruning the tree will improve performance

> cv.trees <- cv.tree(trees)

> plot(cv.trees)

> prune.trees <- prune.tree(trees, best=4)

> plot(prune.trees)

> text(prune.trees, pretty=0)

> yhat <- predict(prune.trees, test)

> plot(yhat, test$Salary)

> abline(0,1

[1] 150179.7

> mean((yhat - test$Salary)^2)

[1] 150179.7

58 | P a g e

> mean((yhat - test$Salary)^2)

[1] 150179.7

59 | P a g e

Week-10

 CLUSTERING MODEL

Objective:

a. Clustering algorithms for unsupervised classification.

b. Plot the cluster data using R visualizations.

1. Clustering algorithms for unsupervised classification.

Partitioning Around Medoids(PAM)

library(cluster)

Description:

Partitioning (clustering) of the data into k clusters ―around medoids‖, a more robust version

of K-means.

Usage:

pam(x, k, diss = inherits(x, "dist"), metric = "euclidean",

 medoids = NULL, stand = FALSE, cluster.only = FALSE,

 do.swap = TRUE,

 keep.diss = !diss && !cluster.only && n < 100,

 keep.data = !diss && !cluster.only,

 pamonce = FALSE, trace.lev = 0)

Arguments:

x data matrix or data frame, or dissimilarity matrix or object, depending on

the value of the diss argument.

In case of a matrix or data frame, each row corresponds to an

observation, and each column corresponds to a variable. All variables

must be numeric. Missing values (NAs) are allowed—as long as every

pair of observations has at least one case not missing.

In case of a dissimilarity matrix, x is typically the output of daisy or dist.

Also a vector of length n*(n-1)/2 is allowed (where n is the number of

observations), and will be interpreted in the same way as the output of

the above-mentioned functions. Missing values (NAs) are not allowed.

k positive integer specifying the number of clusters, less than the number

of observations.

diss logical flag: if TRUE (default for dist or dissimilarity objects), then xwill

be considered as a dissimilarity matrix. If FALSE, then x will be

http://127.0.0.1:28666/help/library/cluster/help/NA
http://127.0.0.1:28666/help/library/cluster/help/daisy
http://127.0.0.1:28666/help/library/cluster/help/dist

60 | P a g e

considered as a matrix of observations by variables.

metric character string specifying the metric to be used for calculating

dissimilarities between observations.

The currently available options are "euclidean" and "manhattan".

Euclidean distances are root sum-of-squares of differences, and

manhattan distances are the sum of absolute differences. If x is already a

dissimilarity matrix, then this argument will be ignored.

medoids NULL (default) or length-k vector of integer indices (in 1:n) specifying

initial medoids instead of using the ‗build‘ algorithm.

stand logical; if true, the measurements in x are standardized before

calculating the dissimilarities. Measurements are standardized for each

variable (column), by subtracting the variable's mean value and dividing

by the variable's mean absolute deviation. If x is already a dissimilarity

matrix, then this argument will be ignored.

cluster.only logical; if true, only the clustering will be computed and returned, see

details.

do.swap logical indicating if the swap phase should happen. The default, TRUE,

correspond to the original algorithm. On the other hand, the swap phase

is much more computer intensive than the build one for large n, so can

be skipped by do.swap = FALSE.

keep.diss,

keep.data

logicals indicating if the dissimilarities and/or input data x should be

kept in the result. Setting these to FALSE can give much smaller results

and hence even save memory allocation time.

pamonce logical or integer in 0:2 specifying algorithmic short cuts as proposed by

Reynolds et al. (2006), see below.

trace.lev integer specifying a trace level for printing diagnostics during the build

and swap phase of the algorithm. Default 0 does not print anything;

higher values print increasingly more.

Details:

The basic pam algorithm is fully described in chapter 2 of Kaufman and Rousseeuw(1990).

Compared to the k-means approach in kmeans, the function pam has the following features: (a) it

also accepts a dissimilarity matrix; (b) it is more robust because it minimizes a sum of

dissimilarities instead of a sum of squared euclidean distances; (c) it provides a novel graphical

display, the silhouette plot (see plot.partition) (d) it allows to select the number of clusters

using mean(silhouette(pr)[, "sil_width"]) on the result pr <- pam(..), or directly its

component pr$silinfo$avg.width, see also pam.object.

When cluster.only is true, the result is simply a (possibly named) integer vector specifying the

clustering, i.e.,

http://127.0.0.1:28666/help/library/cluster/help/silhouette
http://127.0.0.1:28666/help/library/cluster/help/pam.object

61 | P a g e

pam(x,k, cluster.only=TRUE) is the same as

pam(x,k)$clustering but computed more efficiently.

The pam-algorithm is based on the search for k representative objects or medoids among the

observations of the dataset. These observations should represent the structure of the data. After

finding a set of k medoids, k clusters are constructed by assigning each observation to the nearest

medoid. The goal is to find k representative objects which minimize the sum of the

dissimilarities of the observations to their closest representative object.

By default, when medoids are not specified, the algorithm first looks for a good initial set of

medoids (this is called the build phase). Then it finds a local minimum for the objective

function, that is, a solution such that there is no single switch of an observation with a medoid

that will decrease the objective (this is called the swap phase).

When the medoids are specified, their order does not matter; in general, the algorithms have been

designed to not depend on the order of the observations.

The pamonce option, new in cluster 1.14.2 (Jan. 2012), has been proposed by Matthias Studer,

University of Geneva, based on the findings by Reynolds et al. (2006).

The default FALSE (or integer 0) corresponds to the original ―swap‖ algorithm,

whereas pamonce = 1 (or TRUE), corresponds to the first proposal and pamonce =

2 additionally implements the second proposal as well.

Value

an object of class "pam" representing the clustering. See ?pam.object for details.

Note

For large datasets, pam may need too much memory or too much computation time since both

are O(n^2). Then, clara() is preferable, see its documentation.

There is hard limit currently, n <= 65536, at 2^{16} because for larger n, n(n-1)/2 is larger than

the maximal integer (.Machine$integer.max = 2^{31} - 1).

Author(s)

Kaufman and Rousseeuw's orginal Fortran code was translated to C and augmented in several

ways, e.g. to allow cluster.only=TRUE or do.swap=FALSE, by Martin Maechler.

Matthias Studer, Univ.Geneva provided the pamonce implementation.

References

Reynolds, A., Richards, G., de la Iglesia, B. and Rayward-Smith, V. (1992) Clustering rules: A

comparison of partitioning and hierarchical clustering algorithms; Journal of Mathematical

Modelling and Algorithms 5, 475–504 (http://dx.doi.org/10.1007/s10852-005-9022-1).

http://127.0.0.1:28666/help/library/cluster/help/pam.object
http://127.0.0.1:28666/help/library/cluster/help/clara
http://127.0.0.1:28666/help/library/cluster/help/.Machine
http://dx.doi.org/10.1007/s10852-005-9022-1

62 | P a g e

See Also

agnes for background and references; pam.object, clara, daisy, partition.object,plot.partition, dist.

Examples

> set.seed(20)

> irisCluster <- kmeans(iris[, 3:4], 3, nstart = 20)

nstart = 20. This means that R will try 20 different random starting assignments and then select

the one with the lowest within cluster variation.

> irisCluster

K-means clustering with 3 clusters of sizes 50, 52, 48

Cluster means:

 Petal.Length Petal.Width

1 1.462000 0.246000

2 4.269231 1.342308

3 5.595833 2.037500

Clustering vector:

 [1] 1

 [42] 1 1 1 1 1 1 1 1 1 2 3 2 2 2 2

 [83] 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3

[124] 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3

Within cluster sum of squares by cluster:

[1] 2.02200 13.05769 16.29167

 (between_SS / total_SS = 94.3 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

> irisCluster$cluster <- as.factor(irisCluster$cluster)

> ggplot(iris, aes(Petal.Length, Petal.Width, color = irisCluster$cluster)) + geom_point()

http://127.0.0.1:28666/help/library/cluster/help/agnes
http://127.0.0.1:28666/help/library/cluster/help/pam.object
http://127.0.0.1:28666/help/library/cluster/help/clara
http://127.0.0.1:28666/help/library/cluster/help/daisy
http://127.0.0.1:28666/help/library/cluster/help/partition.object
http://127.0.0.1:28666/help/library/cluster/help/plot.partition
http://127.0.0.1:28666/help/library/cluster/help/dist

63 | P a g e

Hierarchical clustering

> d <- dist(as.matrix(mtcars)) # find distance matrix

> hc <- hclust(d) # apply hirarchical clustering

> plot(hc) # plot the dendrogram

2. Plot the cluster data using R visualizations.

generate 25 objects, divided into 2 clusters.

x <- rbind(cbind(rnorm(10,0,0.5), rnorm(10,0,0.5)),

 cbind(rnorm(15,5,0.5), rnorm(15,5,0.5)))

 clusplot(pam(x, 2))

add noise, and try again :

64 | P a g e

x4 <- cbind(x, rnorm(25), rnorm(25))

clusplot(pam(x4, 2))

Viva-Voce Questions

Week 1:

1.Specify various features of R.

2.Explain various data types, Numeric, Character, date with suitable examples.

3.Explain how the following will be defined in R script:

a)data frame b) array c) matrix

4.Write R script to Read Datasets: Choose any data set as you like.

5.Explain how can you work with .txt and .csv files.

6.Write R script to handle .txt and .csv file through proper examples.

7.What do you understand about Combining Data sets?. Explain it.

8.Write R script to combine two data sets.

9.Explain R functions and R loops with examples.

10.Write Rscript to find out the factorial of any given number.

11.What is the goal of the R?

12.What is Data set?

13.What does the word Unified in UMRL mean?

14.What is R Script?

15.What is a package in R?

16.What is the difference between the array and matrix?.Explain with examples.

17.Explain the procedure to write R script to combine two data sets.

18.What is RStudio?. Explain its features.

19.Explain Rfunctions with suitable examples?

Week-2:

1. Distinguish between SQL and NoSQL.

2. Expain how to execute R code from an Excel spreadsheet

3. Why NoSQL is preferred than SQL?. Explain.

4. What is NoSQL?

5. What is SQL?

6. How no SQL is faster than SQL?

7. What are the applications o NoSQL ?

8. What is data storage model?

9. What did you understand about schemas?

10. What do you mean by data manipu

65 | P a g e

Week 3:

1. What is a Regression Analysis?. Explain how will you practically do it.

2. What is OLS Regression? Explain.

3. What is Regression Modelling?Explain how will you do it.

4. What did you understand about Regression residuals?Explain.

5. What is Correlation? How can you find out correlated items in a dataset.Explain.

6. Explain Correlation and Covariance.

7. Explain Autocorrelation in detail.

8. What did you understand about Multiple Regression? Explain.

9. What is Residual Plots? Explain.

10. Explain a)Correlation b)Auto correlation
11. What is Correlation Coefficients?

Week: 4:

1. Explain basic regression analysis.

2. Explain OLS regression.

Week 5:

1. Explain Regression Modelling in detail.
2. What is Heteroscedasticity ?. Explain.

3. What Autocorrelation and Multicollinearity ?Explain.

Week 6:

1. What is Machine Learning algorithm?

2. What is Hypothesis Testing ?

3. Explain supervised learning and unsupervised learning.

4. Listout Machine learning tasks and explain.

5. Explain about support vector machine

Week 7:

1. Distinguish between machine learning and data mining.

2. Explain the KDD task in detail

3. Explain Train model using machine learning algorithms, Test model.

4. What are steps followed in Machine Learning Algorithm? Explain.

Week 8:

1. What are practical uses of Machine Learning?

2. Why is Machine Learning joined with Data Analytics?

3. What is Train Model and Test Model? Explain

Week 9:

1. What is Supervised learning ?

2. What is reinforcement learning ?

Week 10:

1. What is unsupervised learning ?

2. List different clustering algorithms

