
 
 

 

DATABASE MANAGEMENT SYSTEMS 

LAB MANUAL 

 

Year                          : 2018 - 2019 

Course Code                 : ACS104 

Regulations                   : IARE - R16 

Semester                   : III 

Branch                          :        INFORMATION TECHNOLOGY 

 

 

Prepared By 

Ms. K Laxmi Narayanamma 

Assistant Professor 

                                             Mr.N Bhaswanth 

Assistant Professor 

 

 

 

 

 

INSTITUTE OF AERONAUTICAL ENGINEERING                                                     

 (Autonomous) 

Dundigal, Hyderabad - 500 043 



 

INSTITUTE OF AERONAUTICAL ENGINEERING 
(Autonomous) 

Dundigal - 500 043, Hyderabad. 
 

COMPUTER SCIENCE AND ENGINEERING 
 

1. PROGRAM OUTCOMES: 

B.TECH - PROGRAM OUTCOMES (POS) 

PO-1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, 

and an engineering specialization to the solution of complex engineering problems. 

PO-2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering 

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, 

and engineering sciences. 

PO-3 Design/development of solutions: Design solutions for complex engineering problems and design 

system components or processes that meet the specified needs with appropriate consideration for the 

public health and safety, and the cultural, societal, and environmental considerations .  

PO-4 Conduct investigations of complex problems: Use research-based knowledge and research methods 

including design of experiments, analysis and interpretation of data, and synthesis of the information 

to provide valid conclusions.  

PO-5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modeling to complex engineering activities with an 

understanding of the limitations .  

PO-6 The engineer and society:  Apply reasoning informed by the contextual knowledge to assess societal, 

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional 

engineering practice.  

PO-7 Environment and sustainability:  Understand the impact of the professional engineering solution sin 

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable 

development .  

PO-8 Apply ethical principles and commit to professional ethics and responsibilities and norms of the 

engineering practice (Ethics). 

PO-9 Individual and team work: Function effectively as an individual, and as a member or leader in 

diverse teams, and in multidisciplinary settings.  

PO-10 Communication: Communicate effectively on complex engineering activities with the engineering 

community and with society at large, such as, being able to comprehend and write effective reports 

and design documentation, make effective presentations, and give and receive clear instructions .  

PO-11 Project management and finance :Demonstrate knowledge and understanding of the engineering 

and management principles and apply these to one‟s own work, as a member and leader in a team, to 

manage projects and in multidisciplinary environments .  

PO-12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in 



B.TECH - PROGRAM OUTCOMES (POS) 

independent and life-long learning in the broadest context of technological change. 

2. PROGRAM SPECIFIC OUTCOMES: 

PROGRAM SPECIFIC OUTCOMES (PSO's) 

PSO-1 Professional Skills: The ability to understand, analyze and develop computer programs in the areas 

related to algorithms, system software, multimedia, web design, big data analytics, and networking 

for efficient design of computer-based systems of varying complexity. 

PSO-2 Software Engineering Practices: The ability to apply standard practices and strategies in software 
service management using open-ended programming environments with agility to deliver a quality 

service for business success.  

PSO-3 Successful Career and Entrepreneurship: The ability to employ modern computer languages, 

environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for 
higher studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. ATTAINMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES 

 

S.No  Experiment 
Program Outcomes 

Attained 

Program Specific 

Outcomes Attained 

WEEK-1 Creation of Tables PO3,PO5 PSO1,PSO2 

WEEK-2 Queries using DDL and DML. PO1,PO3,PO5 PSO1,PSO3 

WEEK-3 Queries using aggregate functions. PO1,PO2,PO5 PSO2,PSO3 

WEEK-4 Programs On Pl/Sql PO3,PO4,PO5,PO6 PSO2,PSO3 

WEEK-5 Procedures And Functions PO3,PO4,PO5 PSO2,PSO3 

WEEK-6 Triggers PO3,PO4,PO5 PSO2,PSO3 

WEEK-7 Procedures PO3,PO4,PO5 PSO2,PSO3 

WEEK-8 Cursors PO1,PO2,PO3 PSO1,PSO2,PSO3 

WEEK-9 Case Study: Book Publishing Company PO2,PO3,PO4,PO5 PSO1,PSO2,PSO3 

WEEK-10 Case Study: General Hospital PO2,PO3,PO4,PO5 PSO1,PSO2,PSO3 

WEEK-11 Case Study: Car Rental Company PO2,PO3,PO4,PO5 PSO1,PSO2,PSO3 

WEEK-12 
Case Study: Student Progress Monitoring 

System 

PO2,PO3,PO4,PO5 PSO1,PSO2,PSO3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF 

PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Course 

Objectives 

Program Outcomes 
Program Specific 

Outcomes 

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 
PO 

10 

PO1

1 

PO1

2 

PSO1 PSO2 PSO3 

I √  √  √        √ √  

II √ √   √        √  √ 

III √ √   √         √ √ 

IV √  √  √ √        √ √ 

V   √ √ √        √ √ √ 

VI √ √ √          √ √ √ 

VII√ √ √ √          √ √ √ 



 

5. SYLLABUS: 

DATABASE MANAGEMENT SYSTEMS LABORATORY 

IV Semester: IT 

Course Code Category  Hours / Week 

 
Credits  Maximum Marks 

ACS104 Core 
L T P      C CIA  SEE Total 

- - 3 2 30 70 100 

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes:  36 

OBJECTIVES: 

 The course should enable the students to:  
I. Implement the basic knowledge of SQL queries and relational algebra. 

II. Construct database models for different database applications. 

III. Apply normalization techniques for refining of databases. 
IV. Practice various triggers, procedures, and cursors using PL/SQL. 

LIST OF EXPERIMENTS 

WEEK-1 CREATION OF TABLES 

1. Create a table called Employee with the following structure. 

 

Name  Type 

Empno Number 

Ename Varchar2(20) 

Job Varchar2(20) 

Mgr Number 

Sal Number 

 

a. Add a column commission with domain to the Employee table. 

b. Insert any five records into the table. 
c. Update the column details of job 

d. Rename the column of Employ table using alter command. 

e. Delete the employee whose empno is 19. 
 

2. Create department table with the following structure. 

 

Name Type 

Deptno Number 

Deptname Varchar2(20) 

location Varchar2(20) 

a. Add column designation to the department table. 

b. Insert values into the table. 

c. List the records of emp table grouped by deptno. 
d. Update the record where deptno is 9. 

e. Delete any column data from the table. 

 

3. Create a table called Customer table 
 

Name Type 

Cust name Varchar2(20) 

Cust street Varchar2(20) 

Cust city Varchar2(20) 

 



a. Insert records into the table. 

b. Add salary column to the table. 
c. Alter the table column domain. 

d. Drop salary column of the customer table. 

e. Delete the rows of customer table whose cust_city is „hyd‟. 

 
   4.   Create a table called branch table. 

 

Name Type 

Branch name Varchar2(20) 

Branch city Varchar2(20) 

asserts Number 

 

a. Increase the size of data type for asserts to the branch. 
b. Add and drop a column to the branch table. 

c. Insert values to the table. 

d. Update the branch name column 
e. Delete any two columns from the table 

 

5. Create a table called  sailor table 
 

Name Type 

Sid Number 

Sname Varchar2(20) 

rating Varchar2(20) 

 
a. Add column age to the sailor table. 

b. Insert values into the sailor table. 

c. Delete the row with rating >8. 

d. Update the column details of sailor. 
e. Insert null values into the table. 

 

6. Create a table called  reserves table 

Name Type 

Boat id Integer 

sid Integer 

day Integer 

 

a. Insert values into the reserves table. 
b. Add column time to the reserves table. 

c. Alter the column day data type to date. 

d. Drop the column time in the table. 
e. Delete the row of the table with some condition. 

 

WEEK -2 QUERIES USING DDL AND DML 

1.  a. Create a user and grant all permissions to the user. 

         b. Insert the any three records in the employee table and use rollback. Check the result. 
         c. Add primary key constraint and not null constraint to the employee table. 

         d. Insert null values to the employee table and verify the result. 

2.  a. Create a user and grant all permissions to the user. 
         b. Insert values in the department table and use commit. 

         c. Add constraints like unique and not null to the department table. 

         d. Insert repeated values and null values into the table. 

3.  a. Create a user and grant all permissions to the user. 
         b. Insert values into the table and use commit. 



         c. Delete any three records in the department table and use rollback. 

         d. Add constraint primary key and foreign key to the table. 
4.  a. Create a user and grant all permissions to the user. 

         b. Insert records in the sailor table and use commit. 

         c. Add save point after insertion of records and verify save point. 

         d. Add constraints not null and primary key to the sailor table. 
  5.    a. Create a user and grant all permissions to the user. 

         b. Use revoke command to remove user permissions. 

         c. Change password of the user created. 
         d. Add constraint foreign key and not null. 

6.    a. Create a user and grant all permissions to the user. 

 b. Update the table reserves and use savepoint and rollback. 

 c. Add constraint primary key , foreign key and not null to the reserves table 
 d. Delete constraint not null to the table column. 

WEEK -3 QUERIES USING AGGREGATE FUNCTIONS 

1. a. By using the group by clause, display the enames who belongs to deptno 10 along with 

average        

    salary. 
b. Display lowest paid employee details under each department. 

c. Display number of employees working in each department and their department number. 

d. Using built in functions, display number of employees working in each department and their 
department name from dept table. Insert deptname to dept table and insert deptname for each row, do 

the required thing specified above. 

e. List all employees which start with either B or C. 
f. Display only these ename of employees where the maximum salary is greater than or equal to 

5000. 

2. a. Calculate the average salary for each different job. 

b. Show the average salary of each job excluding manager. 
c. Show the average salary for all departments employing more than three people. 

d. Display employees who earn more than the lowest salary in department 30 

e. Show that value returned by sign (n) function. 
f. How many days between day of birth to current date. 

3. a. Show that two substring as single string. 

b. List all employee names, salary and 15% rise in salary. 
c. Display lowest paid emp details under each manager 

d. Display the average monthly salary bill for each deptno. 

e. Show the average salary for all departments employing more than two people. 

f. By using the group by clause, display the eid who belongs to deptno 05 along with average salary. 
4. a. Count the number of employees in department 20 

b. Find the minimum salary earned by clerk. 

c. Find minimum, maximum, average salary of all employees. 
d. List the minimum and maximum salaries for each job type. 

e. List the employee names in descending order. 

f. List the employee id, names in ascending order by empid. 

5. a.  Find the sids ,names of sailors who have reserved all boats called “INTERLAKE 
Find the age of youngest sailor who is eligible to vote for each rating level with at least two such 

sailors. 

b. Find the sname , bid and reservation date for each reservation. 
c. Find the ages of sailors whose name begin and end with B and has at least 3 characters. 

d. List in alphabetic order all sailors who have reserved red boat. 

e. Find the age of youngest sailor for each rating level. 
6. a. List the Vendors who have delivered products within 6 months from order date. 

  b. Display the Vendor details who have supplied both Assembled and Sub parts. 

  c. Display the Sub parts by grouping the Vendor type (Local or Non Local). 

  d. Display the Vendor details in ascending order. 
  e. Display the Sub part which costs more than any of the Assembled parts.  

  f. Display the second maximum cost Assembled part. 



 

WEEK - 4 PROGRAMS ON PL/SQL 

1. a. Write a PL/SQL program to swap two numbers. 

b. Write a PL/SQL program to find the largest of three numbers. 

2.  a. Write a PL/SQL program to find the total and average of 6 subjects and display the grade. 

b. Write a PL/SQL program to find the sum of digits in a given number. 
3. a. Write a PL/SQL program to display the number in reverse order. 

b. Write a PL / SQL program to check whether the given number is prime or not. 

4. a. Write a PL/SQL program to find the factorial of a given number. 
b. Write a PL/SQL code block to calculate the area of a circle for a value of radius 

varying from 3 to 7. Store the radius and the corresponding values of calculated 

area in an empty table named areas, consisting of two columns radius and  area. 
5. a. Write a PL/SQL program to accept a string and remove the vowels from the string. 

(When „hello‟ passed to the program it should display „Hll‟ removing e and o from the 

world Hello). 

b. Write a PL/SQL program to accept a number and a divisor. Make sure the divisor is less 
than or equal to 10. Else display an error message. Otherwise Display the remainder in 

words. 

WEEK -5 PROCEDURES AND FUNCTIONS 

1. Write a function to accept employee number as parameter and return Basic +HRA together as single 

column. 
2. Accept year as parameter and write a Function to return the total net salary spent for a given year. 

3. Create a function to find the factorial of a given number and hence find NCR. 

4. Write a PL/SQL block o pint prime Fibonacci series using local functions. 
5. Create a procedure to find the lucky number of a given birth date. 

6. Create function to the reverse of given number. 

WEEK-6 TRIGGERS 

1. Create a row level trigger for the customers table that would fire for INSERT or UPDATE or 

DELETE operations performed on the CUSTOMERS table. This trigger will display the salary 
difference between the old values and new values: 

 

        CUSTOMERS table: 
 

ID NAME AGE  ADDRESS SALARY 

1 Alive 24 Khammam 2000 

2 Bob 27 Kadappa 3000 

3 Catri 25 Guntur 4000 

4 Dena 28 Hyderabad 5000 

5 Eeshwar 27 Kurnool 6000 

6 Farooq 28 Nellur 7000 

 

2. Creation of insert trigger, delete trigger, update trigger practice triggers using the passenger database. 

Passenger( Passport_ id INTEGER PRIMARY KEY, Name VARCHAR (50) Not NULL, 

Age Integer Not NULL, Sex Char, Address  VARCHAR (50) Not NULL); 
a. Write a Insert Trigger to check the Passport_id is exactly six digits or not. 

b. Write a trigger on passenger to display messages „1 Record is inserted‟, „1 record is deleted‟, „1 

record is updated‟ when insertion, deletion and updation are done on passenger respectively. 
3. Insert row in employee table using Triggers. Every trigger is created with name any trigger have 

same name must be replaced by new name. These triggers can raised before insert, update or delete 

rows on data base. The main difference between a trigger and a stored procedure is that the former is 

attached to a table and is only fired when an INSERT, UPDATE or DELETE occurs. 
4. Convert employee name into uppercase whenever an employee record is inserted or updated. Trigger 



to fire before the insert or update. 

5. Trigger before deleting a record from emp table. Trigger will insert the row to be deleted into table 
called delete _emp and also record user who has deleted the record and date and time of delete. 

6. Create a transparent audit system for a table CUST_MSTR. The system must keep track of the 

records that are being deleted or updated. 

WEEK-7 PROCEDURES 

1. Create the procedure for palindrome of given number. 
2. Create the procedure for GCD: Program should load two registers with two Numbers and then apply 

the logic for GCD of two numbers. GCD of two numbers is performed by dividing the greater 

number by the smaller number till the remainder is zero. If it is zero, the divisor is the GCD if not the 

remainder and the divisors of the previous division are the new set of two numbers. The process is 
repeated by dividing greater of the two numbers by the smaller number till the remainder is zero and 

GCD is found. 

3. Write the PL/SQL programs to create the procedure for factorial of given number. 
4. Write the PL/SQL programs to create the procedure to find sum of N natural number. 

5. Write the PL/SQL programs to create the procedure to find Fibonacci series. 

6. Write the PL/SQL programs to create the procedure to check the given number is perfect or not. 

WEEK-8 CURSORS 

1. Write a PL/SQL block that will display the name, dept  no, salary of fist highest paid employees. 

2. Update the balance stock in the item master table each time a transaction takes place in the item 

transaction table. The change in item master table depends on the item id is already present in the 

item master then update operation is performed to decrease the balance stock by the quantity 
specified in the item transaction in case the item id is not present in the item master table then the 

record is inserted in the item master table. 

3. Write a PL/SQL block that will display the employee details along with salary using cursors. 

4. To write a Cursor to display the list of employees who are working as a Managers or Analyst. 
5. To write a Cursor to find employee with given job and deptno. 

6. Write a PL/SQL block using implicit cursor that will display message, the salaries of all the 

employees in the „employee‟ table are updated. If none of the employee‟s salary are updated we get a 
message 'None of the salaries were updated'. Else we get a message like for example, 'Salaries for 

1000 employees are updated' if there are 1000 rows in „employee‟ table. 

WEEK-9 CASE STUDY: BOOK PUBLISHING COMPANY 

A publishing company produces scientific books on various subjects. The books are written by authors 

who specialize in one particular subject. The company employs editors who, not necessarily being 
specialists in a particular area, each take sole responsibility for editing one or more publications. 

A publication covers essentially one of the specialist subjects and is normally written by a single author. 

When writing a particular book, each author works with on editor, but may submit another work for 

publication to be supervised by other editors. To improve their competitiveness, the company tries to 
employ a variety of authors, more than one author being a specialist in a particular subject for the above 

case study, do the following: 

1. Analyze the data required. 
2. Normalize the attributes. 

Create the logical data model using E-R diagrams. 

WEEK -10 CASE STUDY GENERAL HOSPITAL 

A General Hospital consists of a number of specialized wards (such as Maternity, Pediatric, Oncology, 

etc). Each ward hosts a number of patients, who were admitted on the recommendation of their own GP 
and confirmed by a consultant employed by the Hospital. On admission, the personal details of every 

patient are recorded. A separate register is to be held to store the information of the tests undertaken and 

the results of a prescribed treatment. A number of tests may be conducted for each patient. Each patient 
is assigned to one leading consultant but may be examined by another doctor, if required. Doctors are 

specialists in some branch of medicine and may be leading consultants for a number of patients, not 

necessarily from the same ward. For the above case study, do the following. 

1. Analyze the data required. 



2. Normalize the attributes. 

Create the logical data model using E-R diagrams. 

WEEK -11 CASE STUDY: CAR RENTAL COMPANY 

A database is to be designed for a car rental company. The information required includes a description of 
cars, subcontractors (i.e. garages), company expenditures, company revenues and customers. Cars are to 

be described by such data as: make, model, year of production, engine size, fuel type, number of 

passengers, registration number, purchase price, purchase date, rent price and insurance details. It is the 
company policy not to keep any car for a period exceeding one year. All major repairs and maintenance 

are done by subcontractors (i.e. franchised garages), with whom CRC has long-term agreements. 

Therefore the data about garages to be kept in the database includes garage names, addresses, range of 

services and the like. Some garages require payments immediately after a repair has been made; with 
others CRC has made arrangements for credit facilities. Company expenditures are to be registered for 

all outgoings connected with purchases, repairs, maintenance, insurance etc. Similarly the cash inflow 

coming from all sources: Car hire, car sales, insurance claims must be kept of file. CRC maintains a 
reasonably   stable   client   base. For   this   privileged   category of customers special credit card 

facilities are provided. These customers may also book in advance a particular car. These reservations 

can be made for any period of time up to one month. Casual customers must pay a deposit for an 

estimated time of rental, unless they wish to pay by credit card. All major credit cards are accepted. 
Personal details such as name, address, telephone number, driving license, number about each customer 

are kept in the database. For the above case study, do the following: 

1. Analyze the data required. 
2. Normalize the attributes. 

Create the logical data model using E-R diagrams. 

WEEK-12 CASE STUDY: STUDENT PROGRESS MONITORING SYSTEM 

A database is to be designed for a college to monitor students' progress throughout their course of study. 

The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc) within the framework of the 
modular system. The college provides a number of modules, each being characterized by its code, title, 

credit value, module leader, teaching staff and the department they come from. A module is coordinated 

by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be 
a module leader for) more than one module. Students are free to choose any module they wish but the 

following rules must be observed: Some modules require pre- requisites modules and some degree 

programmes have compulsory modules. The database is also to contain some information about students 

including their numbers, names, addresses, degrees they read for, and their past performance i.e. 
modules taken and examination results. For the above case study, do the following: 

1. Analyze the data required. 

2. Normalize the attributes. 
3. Create the logical data model i.e., ER diagrams. 

4. Comprehend the data given in the case study by creating respective tables with primary keys and 

foreign keys wherever required. 
5. Insert values into the tables created (Be vigilant about Master- Slave tables). 

6. Display the Students who have taken M.Sc course. 

7. Display the Module code and Number of Modules taught by each Lecturer. 

8. Retrieve the Lecturer names who are not Module Leaders. 
9. Display the Department name which offers „English‟ module. 

10. Retrieve the Prerequisite Courses offered by every Department (with Department names). 

11. Present the Lecturer ID and Name who teaches „Mathematics‟. 
12. Discover the number of years a Module is taught. 

13. List out all the Faculties who work for „Statistics‟ Department. 

14. List out the number of Modules taught by each Module Leader. 
15. List out the number of Modules taught by a particular Lecturer. 

16. Create a view which contains the fields of both Department and Module tables. (Hint- The 

fields like Module code, title, credit, Department code and its name). 

17. Update the credits of all the prerequisite courses to 5. Delete the Module „History‟ from the 
Module table. 



Reference Books: 

1. Ramez Elmasri, Shamkant, B. Navathe, “Database Systems”, Pearson Education, 6
th
 Edition, 2013. 

2. Peter Rob, Carles Coronel, “Database System Concepts”, Cengage Learning, 7
th
 Edition, 2008. 

3. M L Gillenson, “Introduction to Database Management”, Wiley Student Edition, 2012. 

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 36 STUDENTS: 

 

HARDWARE: 
Desktop Computer Systems: 36 nos 

 

SOFTWARE: 

Application Software: Oracle RDBMS 

 

 

 

  



6. INDEX 

S.No List of Experiments Page No 

1 INTRODUCTION TO ORACLE 1 

2 CREATION OF TABLES 5 

3 QUERIES USING DDL AND DML 12 

4 QUERIES USING AGGREGATE FUNCTIONS 17 

5 PROGRAMS ON PL/SQL 21 

6 PROCEDURES AND FUNCTIONS 25 

7 TRIGGERS 28 

8 PROCEDURES 33 

9 CURSORS 34 

10 CASE STUDY: BOOK PUBLISHING COMPANY 35 

11 CASE STUDY: GENERAL HOSPITAL 36 

12 CASE STUDY: CAR RENTAL COMPANY 37 

13 CASE STUDY: STUDENT PROGRESS MONITORING SYSTEM 38 

14 VIVA QUESTIONS AND ANSWERS 39 



 

1 | P a g e  

 

INTRODUCTION TO ORACLE  

 

1. DDL: Data Definition Language (DDL) statements are used to define the database structure or 

schema.  

DDL Commands:  Create, Alter, Drop, Rename, Truncate 

CREATE - to create objects in the database  

ALTER - alters the structure of the database  

DROP - delete objects from the database  

TRUNCATE - remove all records from a table, including all spaces allocated for the records are removed  

RENAME - rename an object  

2. DML: Data Manipulation Language (DML) statements are used for managing data within schema 

objects and to manipulate data of a database objects. 

DML Commands:   Insert, Update, Delete, Select 

INSERT - insert data into a table  

UPDATE - updates existing data within a table  

DELETE - deletes all records from a table, the space for the records remain  

SELECT - retrieve data from the a database  

3. DCL: Data Control Language (DCL) statements are used to create roles, permissions, and referential 

integrity as well it is used to control access to database by securing it. To control the data of a database. 

DCL Commands:   Grant, Revoke 

GRANT - gives user's access privileges to database  

REVOKE -withdraw access privileges given with the GRANT command  

4. TCL: Transaction Control (TCL) statements are used to manage the changes made by DML 

statements. It allows statements to be grouped together into logical transactions.  

TCL Commands:  Commit, Rollback, Save point 

COMMIT - save work done  

SAVEPOINT - identify a point in a transaction to which you can later roll back  

ROLLBACK - restore database to original since the last COMMIT 

 



 

2 | P a g e  

 

Syntax with examples 

1. DDL (Data Definition Language) Commands: CREATE, ALTER and DROP. 

CREATE: This command useful for creating creating table. 

Syntax:  

create table [table name] (column1 datatype[size], column 2 datatype[size],…   column n datatype[size] ); 

Ex:  

SQL >create table student (s_rollno number(10) primary key,s_name varchar2(10), gender varchar2(5),dob 

date,addr1 varchar2(10),addr2 varchar2(10),city varchar2(10), percentage number(4)); 

SQL> DESC STUDENT; 

 Name                                      Null?              Type 

 -----------------                    --------------     ------------------- 

 S_ROLLNO                      NOT NULL  NUMBER(10) 

 S_NAME                                              VARCHAR2(10) 

 GENDER                                              VARCHAR2(5) 

 DOB                                                 DATE 

 ADDR1                                               VARCHAR2(10) 

 ADDR2                                               VARCHAR2(10) 

 CITY                                               VARCHAR2(10) 

 PERCENTAGE                                         NUMBER(4) 

SQL > select s_rollno,s_name from student; 

no rows selected. 

Create table by using Constraints: 

Constraints are two types: 

1. Table Level Constraints. 

2. Column Level Constraints. 

1. NOT NULL: 

a) Not null constraint at column level. 

Syntax: 



 

3 | P a g e  

 

<col><datatype>(size)not null 

SQL > create table emp(e_id varchar(5) NOT NULL,e_name varchar(10), e_design varchar(10),dept 

varchar(10),mgr varchar(10),salary number(10)); 

2. UNIQUE :  

Unique constraint at column level. 

Syntax: <col><datatype>(size)unique 

Ex:- 

SQL > create table depositor(customer_name varchar(10),acc_no number(15) UNIQUE, brach_name 

varchar(10)); 

Unique constraint at table level: 

Syntax: 

Create table tablename(col=format,col=format,unique(<col1>,<col2>)); 

Ex:- 

SQL > create table depositor1(customer_name varchar(10),acc_no number(15), brach_name 

varchar(10),UNIQUE(acc_no)); 

3. PRIMARY KEY: 

Primary key constraint at column level 

Syntax: 

<col><datatype>(size)primary key; 

Ex:- 

SQL> create table customer(customer_id number (5) PRIMARY KEY, customer_name 

varchar(10),customer_street varchar(10),brach_name varchar(10)); 

Primary key constraint at table level. 

Syntax: 

Create table tablename(col=format,col=format primary key(col1>,<col2>); 

Ex:- 

SQL > create table customer1(customer_id number (5),customer_name varchar(10),customer_street 

varchar(10),brach_name varchar(10),PRIMARY KEY(customer_id)); 

4. CHECK: 



 

4 | P a g e  

 

Check constraint constraint at column level. 

Syntax: <col><datatype>(size) check(<logical expression>) 

Ex:-create table loan(loan_no varchar(10),customer_name varchar(10), balance number (10) 

CHECK(balance>1000)); 

Check constraint constraint at table level. 

Syntax: check(<logical expression>) 

Ex:- create table loan1(loan_no varchar(10),customer_name varchar(10), balance number (10), 

CHECK(balance>1000)); 

5. FOREIGN KEY: 

Foreign key constraint at column level. 

Syntax: 

Column_name  Datatype(size) REFERENCES  parent_table_name (parent_column_name)  

Ex:- CREATE TABLE books (book_id  NUMBER(3), book_title VARCHAR2(30), book_price         
 

NUMBER(3),  book_author_id NUMBER(3)  REFERENCES author(author_id ) );        

   

Foreign key constraint at table level 

Syntax: 

CONSTRAINT constraint_name  FOREIGN KEY(child_table_column) REFERENCES 

Parent_table_name(parent_table_column)         

Ex:-CREATE TABLE books (book_id  NUMBER(3)  CONSTRAINT  bok_bi_pk  PRIMARY 
KEY, book_title   VARCHAR2(30), book_price  NUMBER(3), book_author_id   

NUMBER(3),CONSTRAINT  bok_ai_fk  FOREIGN KEY  (book_author_id) REFERENCES  

author(author_id) ); 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 



 

5 | P a g e  

 

WEEK-1 

CREATION OF TABLES 

 

1) Create a table called Employee with the following structure. 

 

Name  Type 

Empno Number 

Ename Varchar2(10) 

Job Varchar2(10) 

Mgr Number 

Sal Number 

 

a. Add a column commission with domain to the Employee table. 

b. Insert any five records into the table. 

c. Update the column details of job 

d. Rename the column of Employ table using alter command. 

e. Delete the employee whose Empno is 105. 

 

SOLUTION: 

SQL> create table employee(empno number,ename varchar2(10),job varchar2(10),mgr 

number,sal number); 

Table created. 

SQL> desc employee; 

 Name                             Null?       Type 

 --------------------------- -------- ---------------------------- 

 EMPNO                                              NUMBER 

 ENAME                                              VARCHAR2(10) 

 JOB                                                     VARCHAR2(10) 

 MGR                                                   NUMBER 

 SAL                                                    NUMBER 

 

a. Add a column commission with domain to the Employee table. 

 

SQL> alter table employee add(commission number); 

Table altered. 

SQL> desc employee; 

 Name                                      Null?    Type 

 ----------------------------------------- -------- ---------------------------- 

 EMPNO                                              NUMBER 

 ENAME                                              VARCHAR2(10) 

 JOB                                                 VARCHAR2(10) 

 MGR                                                 NUMBER 

 SAL                                                 NUMBER 

 COMMISSION                                 NUMBER 

 

b. Insert any five records into the table. 

 

SQL> insert into employee values(&empno,'&ename','&job',&mgr,&sal,'&commission'); 

Enter value for empno: 101 

Enter value for ename: abhi 

Enter value for job: manager 



 

6 | P a g e  

 

Enter value for mgr: 1234 

Enter value for sal: 10000 

Enter value for commission: 70 

old   1: insert into employee values(&empno,'&ename','&job',&mgr,&sal,'&commission') 

new   1: insert into employee values(101,'abhi','manager',1234,10000,'70') 

1 row created. 

 

SQL> / 

Enter value for empno: 102 

Enter value for ename: rohith 

Enter value for job: analyst 

Enter value for mgr: 2345 

Enter value for sal: 9000 

Enter value for commission: 65 

old   1: insert into employee values(&empno,'&ename','&job',&mgr,&sal,'&commission') 

new   1: insert into employee values(102,'rohith','analyst',2345,9000,'65') 

1 row created. 

SQL> / 

Enter value for empno: 103 

Enter value for ename: david 

Enter value for job: analyst 

Enter value for mgr: 3456 

Enter value for sal: 9000 

Enter value for commission: 65 

old   1: insert into employee values(&empno,'&ename','&job',&mgr,&sal,'&commission') 

new   1: insert into employee values(103,'david','analyst',3456,9000,'65') 

1 row created. 

 

SQL> / 

Enter value for empno: 104 

Enter value for ename: rahul 

Enter value for job: clerk 

Enter value for mgr: 4567 

Enter value for sal: 7000 

Enter value for commission: 55 

old   1: insert into employee values(&empno,'&ename','&job',&mgr,&sal,'&commission') 

new   1: insert into employee values(104,'rahul','clerk',4567,7000,'55') 

1 row created. 

 

SQL> / 

Enter value for empno: 105 

Enter value for ename: pramod 

Enter value for job: salesman 

Enter value for mgr: 5678 

Enter value for sal: 5000 

Enter value for commission: 50 

old   1: insert into employee values(&empno,'&ename','&job',&mgr,&sal,'&commission') 

new   1: insert into employee values(105,'pramod','salesman',5678,5000,'50') 

1 row created. 

 

SQL> select * from employee; 



 

7 | P a g e  

 

 

     EMPNO ENAME      JOB               MGR        SAL COMMISSION 

---------- ---------- ---------- ---------- ---------- ---------- 

       101 abhi       manager          1234      10000         70 

       102 rohith     analyst          2345       9000         65 

       103 david      analyst          3456       9000         65 

       104 rahul      clerk            4567       7000         55 

       105 pramod     salesman         5678       5000         50 

 

c. Update the column details of job 

 

SQL> update employee set job='trainee'  where empno=103; 

1 row updated. 

 

SQL> select * from employee; 

     EMPNO ENAME      JOB               MGR        SAL COMMISSION 

---------- ---------- ---------- ---------- ---------- ---------- 

       101 abhi       manager          1234      10000         70 

       102 rohith     analyst          2345       9000         65 

       103 david      trainee          3456       9000         65 

       104 rahul      clerk            4567       7000         55 

       105 pramod     salesman         5678       5000         50 

 

d. Rename the column of Employ table using alter command. 

 

SQL> alter table employee rename column mgr to manager_no; 

 

Table altered. 

 

SQL> desc employee; 

 Name                                      Null?    Type 

 ----------------------------------------- -------- ---------------------------- 

 EMPNO                                              NUMBER 

 ENAME                                              VARCHAR2(10) 

 JOB                                                  VARCHAR2(10) 

 MANAGER_NO                                 NUMBER 

 SAL                                                      NUMBER 

 COMMISSION                                    NUMBER 

 

e. Delete the employee whose Empno is 105. 

 

SQL> delete employee where empno=105; 

1 row deleted. 

 

SQL> select * from employee; 

     EMPNO ENAME      JOB        MANAGER_NO        SAL COMMISSION 

---------- ---------- ---------- ---------- ---------- ---------- 

       101 abhi       manager          1234      10000         70 

       102 rohith     analyst          2345       9000            65 

       103 david      trainee          3456       9000            65 

       104 rahul      clerk            4567       7000         55 



 

8 | P a g e  

 

 

2) Create department table with the following structure. 

 

Name Type 

Deptno Number 

Deptname Varchar2(10) 

location Varchar2(10) 

 

a. Add column designation to the department table. 

b. Insert values into the table. 

c. List the records of dept table grouped by deptno. 

d. Update the record where deptno is 9. 

e. Delete any column data from the table. 

 

SOLUTION: 

SQL> create table department(deptno number,deptname varchar2(10),location varchar2(10)); 

Table created. 

 

SQL> desc department; 

 Name                                      Null?    Type 

 ----------------------------------------- -------- ---------------------------- 

 DEPTNO                                             NUMBER 

 DEPTNAME                                       VARCHAR2(10) 

 LOCATION                                         VARCHAR2(10) 

 

a. Add column designation to the department table. 

 

SQL> alter table department add(designation varchar2(10)); 

Table altered. 

 

SQL> desc department; 

 Name                                       Null?     Type 

 ----------------------------------------- -------- ---------------------------- 

 DEPTNO                                              NUMBER 

 DEPTNAME                                            VARCHAR2(10) 

 LOCATION                                            VARCHAR2(10) 

 DESIGNATION                                         VARCHAR2(10) 

 

b. Insert values into the table. 

 

SQL> insert into department values(&deptno,'&deptname','&location','&designation'); 

Enter value for deptno: 9 

Enter value for deptname: accounting 

Enter value for location: hyderabad 

Enter value for designation: manager 

old   1: insert into department values(&deptno,'&deptname','&location','&designation') 

new   1: insert into department values(9,'accounting','hyderabad','manager') 

 

1 row created. 

 

SQL> / 



 

9 | P a g e  

 

Enter value for deptno: 10 

Enter value for deptname: research 

Enter value for location: chennai 

Enter value for designation: professor 

old   1: insert into department values(&deptno,'&deptname','&location','&designation') 

new   1: insert into department values(10,'research','chennai','professor') 

 

1 row created. 

SQL> / 

Enter value for deptno: 11 

Enter value for deptname: sales 

Enter value for location: banglore 

Enter value for designation: salesman 

old   1: insert into department values(&deptno,'&deptname','&location','&designation') 

new   1: insert into department values(11,'sales','banglore','salesman') 

1 row created. 

SQL> / 

Enter value for deptno: 12 

Enter value for deptname: operations 

Enter value for location: mumbai 

Enter value for designation: operator 

old   1: insert into department values(&deptno,'&deptname','&location','&designation') 

new   1: insert into department values(12,'operations','mumbai','operator') 

1 row created. 

 

SQL> insert into department values(&deptno,'&deptname','&location','&designation'); 

Enter value for deptno: 9 

Enter value for deptname: accounting 

Enter value for location: chennai 

Enter value for designation: manager 

old   1: insert into department values(&deptno,'&deptname','&location','&designation') 

new   1: insert into department values(9,'accounting','chennai','manager') 

1 row created. 

 

SQL> select * from department ; 

 

    DEPTNO  DEPTNAME   LOCATION   DESIGNATION 

---------------- ------------------- -----------------    ------------------- 

         9  accounting  hyderabad   manager 

        10  research    chennai     professor 

        11  sales       banglore    salesman 

        12  operations  mumbai      operator 

         9  accounting  chennai     manager 

 

c. List the records of dept table grouped by deptno. 

 

SQL> select deptno,deptname from department group by deptno,deptname; 

 

    DEPTNO DEPTNAME 

---------- ---------- 

         9 accounting 



 

10 | P a g e  

 

        12 operations 

        10 research 

        11 sales 

 

d. Update the record where deptno is 9. 

 

SQL> update  department set designation='accountant' where deptno=9; 

 

2 rows updated. 

SQL> select * from department; 

    DEPTNO DEPTNAME   LOCATION   DESIGNATION 

---------------- ------------------- -----------------    ------------------- 

         9   accounting  hyderabad   accountant 

        10  research    chennai     professor 

        11  sales       banglore    salesman 

        12  operations  mumbai      operator 

         9  accounting  chennai     accountant 

 

e. Delete any column data from the table. 

 

SQL> alter table department drop(designation); 

Table altered. 

SQL> select * from department; 

    DEPTNO  DEPTNAME   LOCATION 

----------             ---------------     ---------- 

         9    accounting     hyderabad 

        10  research        chennai 

        11  sales              banglore 

        12  operations     mumbai 

         9  accounting    Chennai 

 

LAB ASSIGNMENT:       

 

1. Create a table called Customer table 

 

Name Type 

Cust name Varchar2(20) 

Cust street Varchar2(20) 

Cust city Varchar2(20) 

 

a. Insert records into the table. 

b. Add salary column to the table. 

c. Alter the table column domain. 

d. Drop salary column of the customer table. 

e. Delete the rows of customer table whose cust_city is „hyd‟. 

 

2. Create a table called branch table. 

 

Name Type 

Branch name Varchar2(20) 

Branch city Varchar2(20) 



 

11 | P a g e  

 

asserts Number 

 

a. Increase the size of data type for asserts to the branch. 

b. Add and drop a column to the branch table. 

c. Insert values to the table. 

d. Update the branch name column 

e. Delete any two columns from the table 

 

3. Create a table called  sailor table 

Name Type 

Sid Number 

Sname Varchar2(20) 

rating Varchar2(20) 

 

a. Add column age to the sailor table. 

b. Insert values into the sailor table. 

c. Delete the row with rating >8. 

d. Update the column details of sailor. 

e. Insert null values into the table. 

 

4. Create a table called  reserves table 

Name Type 

Boat id Integer 

sid Integer 

day Integer 

 

a. Insert values into the reserves table. 

b. Add column time to the reserves table. 

c. Alter the column day data type to date. 

d. Drop the column time in the table. 

e. Delete the row of the table with some condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 | P a g e  

 

WEEK -2 

QUERIES USING DDL AND DML 

 

1.    a. Create a user and grant all permissions to the user. 

         b. Insert the any three records in the employee table and use rollback. Check the result. 

         c. Add primary key constraint and not null constraint to the employee table. 

         d. Insert null values to the employee table and verify the result. 

 

SOLUTION: 

 

a) create a user and grant all permissions to the user. 

 

CONNECT <USER-NAME>/<PASSWORD>@<DATABASE NAME>; 

 

--Create user query 

 

CREATE USER <USER NAME> IDENTIFIED BY <PASSWORD>; 

 

--Provide roles 

 

GRANT CONNECT,RESOURCE,DBA TO <USER NAME>; 

 

--Assigning privileges 

 

GRANT CREATE SESSION GRANT ANY PRIVILEGE TO <USER NAME>; 

 GRANT UNLIMITED TABLESPACE TO <USER NAME>; 

 

--Provide access to tables. 

 

GRANT SELECT, UPDATE, INSERT, DELETE ON <TABLE NAME> TO <USER NAME>; 

 

 

b) Insert the any three records in the employee table and use rollback. Check the result. 

 

SQL> SELECT * FROM EMPLOYEE; 

     EMPNO   ENAME         JOB        MANAGER_NO     SAL  COMMISSION 

----------------  ----------       ----------    ---------------------    ------  ------------------- 

       101  abhi       manager          1234               1100          70 

       102  rohith       analyst           2345                      9000          65 

       103  david      trainee            3456                      9000          65 

       104  rahul          clerk             4567                     7000          55 

 

SQL> insert into employee values(&empno,'&ename','&job',&manager_no,&sal,&commission); 

Enter value for empno: 105 

Enter value for ename: aravind 

Enter value for job: salesman 

Enter value for manager_no: 5678 

Enter value for sal: 5000 

Enter value for commission: 50 

old   1: insert into employee values(&empno,'&ename','&job',&manager_no,&sal,&commission) 

new   1: insert into employee values(105,'aravind','salesman',5678,5000,50) 



 

13 | P a g e  

 

1 row created. 

 

SQL> rollback; 

Rollback complete. 

 

SQL> SELECT * FROM EMPLOYEE; 

     EMPNO   ENAME         JOB        MANAGER_NO     SAL  COMMISSION 

----------------  ----------       ----------    ---------------------    ------  ------------------- 

       101  abhi       manager          1234               1100          70 

       102  rohith       analyst           2345                      9000          65 

       103  david      trainee            3456                      9000          65 

       104  rahul          clerk             4567                     7000          55 

 

 

c) Add primary key constraint and not null constraint to the employee table. 

SQL> alter table employee modify(empno number primary key, ename varchar2(10) not null); 

Table altered. 

SQL> desc employee; 

 Name                           Null?                Type 

 -------------------------- --------             ------------------- 

 EMPNO                     NOT NULL  NUMBER 

 ENAME                     NOT NULL  VARCHAR2(10) 

 JOB                                                 VARCHAR2(10) 

 MANAGER_NO                                NUMBER 

 SAL                                                     NUMBER 

 COMMISSION                                   NUMBER 

 

d) Insert null values to the employee table and verify the result. 

SQL> desc employee; 

 Name                                      Null?     Type 

 --------------------               ------------------   ---------------------------- 

 EMPNO                                NOT NULL  NUMBER 

 ENAME                                NOT NULL  VARCHAR2(10) 

 JOB                                       NOT NULL  VARCHAR2(10) 

 MANAGER_NO                                          NUMBER 

 SAL                                       NOT NULL  NUMBER 

 COMMISSION                                          NUMBER 

 

SQL> insert into employee values(&empno,'&ename','&job',&manager_no,&sal,&commission); 

Enter value for empno: 105 

Enter value for ename: mohith 

Enter value for job: salesman 

Enter value for manager_no: 5678 

Enter value for sal: null 

Enter value for commission: 50 

old   1: insert into employee values(&empno,'&ename','&job',&manager_no,&sal,&commission) 

new   1: insert into employee values(105,'mohith','salesman',5678,null,50) 

insert into employee values(105,'mohith','salesman',5678,null,50) 

                                                         * 

 

 



 

14 | P a g e  

 

2.      a. create a user and grant all permissions to the user. 

         b. Insert values in the department table and use commit. 

         c. Add constraints like unique and not null to the department table. 

         d. Insert repeated values and null values into the table. 

 

SOLUTION: 

 

a) create a user and grant all permissions to the user. 

 

CONNECT <USER-NAME>/<PASSWORD>@<DATABASE NAME>; 

 

--Create user query 

 

CREATE USER <USER NAME> IDENTIFIED BY <PASSWORD>; 

 

--Provide roles 

 

GRANT CONNECT,RESOURCE,DBA TO <USER NAME>; 

 

--Assigning privileges 

 

GRANT CREATE SESSION GRANT ANY PRIVILEGE TO <USER NAME>; 

 GRANT UNLIMITED TABLESPACE TO <USER NAME>; 

 

--Provide access to tables. 

 

GRANT SELECT, UPDATE, INSERT, DELETE ON <TABLE NAME> TO <USER NAME>; 

 

 b) Insert values in the department table and use commit. 

 

SQL> insert into department values(&deptno,'&deptname','&location'); 

Enter value for deptno: 13 

Enter value for deptname: sales 

Enter value for location: delhi 

old   1: insert into department values(&deptno,'&deptname','&location') 

new   1: insert into department values(13,'sales','delhi') 

1 row created. 

 

SQL> commit; 

Commit complete. 

 

SQL> select * from department; 

    DEPTNO  DEPTNAME   LOCATION 

----------            --------------       ---------------- 

         9  accounting  hyderabad 

        10  research    chennai 

        11  sales       banglore 

        12  operations  mumbai 

         9  accounting  chennai 

        13  sales       delhi 

 



 

15 | P a g e  

 

6 rows selected. 

c) Add constraints like unique and not null to the department table. 

 

SQL> alter table department modify(deptno number unique); 

 

Table altered. 

 

SQL> alter table department modify(location varchar2(10) not null); 

 

Table altered. 

 

SQL> DESC DEPARTMENT; 

 Name                                      Null?     Type 

 --------------------               ----------------        ------------------- 

 DEPTNO                                              NUMBER 

 DEPTNAME                                            VARCHAR2(10) 

 LOCATION                       NOT NULL VARCHAR2(10) 

        

d) Insert repeated values and null values into the table. 

 

SQL> insert into department values(&deptno,'&deptname','&location'); 

Enter value for deptno: 10 

Enter value for deptname: research 

Enter value for location: 

old   1: insert into department values(&deptno,'&deptname','&location') 

new   1: insert into department values(10,'research','') 

insert into department values(10,'research','') 

SQL> insert into department values(&deptno,'&deptname','&location'); 

Enter value for deptno: 10 

Enter value for deptname: research 

Enter value for location: hyderabad 

old   1: insert into department values(&deptno,'&deptname','&location') 

new   1: insert into department values(10,'research','hyderabad') 

insert into department values(10,'research','hyderabad') 

 

LAB ASSIGNMENT: 

 

1       a. create a user and grant all permissions to the user. 

         b. Insert values into the table and use commit. 

         c. Delete any three records in the department table and use rollback. 

         d. Add constraint primary key and foreign key to the table. 

 

2       a. create a user and grant all permissions to the user. 

         b. Insert records in the sailor table and use commit. 

         c. Add save point after insertion of records and verify save point. 

         d. Add constraints not null and primary key to the sailor table. 

  

 3      a. create a user and grant all permissions to the user. 

         b. Use revoke command to remove user permissions. 

         c. Change password of the user created. 

         d. Add constraint foreign key and not null. 



 

16 | P a g e  

 

 

4      a. create a user and grant all permissions to the user. 

        b. Update the table reserves and use savepoint and rollback. 

        c. Add constraint primary key, foreign key and not null to the reserves table 

        d. Delete constraint not null to the table column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

17 | P a g e  

 

WEEK -3 

QUERIES USING AGGREGATE FUNCTIONS 

 

AIM :- Queries using aggregate functions(COUNT,AVG,MIN,MAX,SUM),Group 

by,Order by,Having. 

 

E_id E_name Age Salary 

101 Anu 22 9000 

102 Shane 29 8000 

103 Rohan 34 6000 

104 Scott 44 10000 

105 Tiger 35 8000 

106 Alex 27 7000 

107 Abhi 29 8000 

 

(i) Create Employee table containing all Records. 

SQL> create table emp(eid number,ename varchar2(10),age number,salary number); 

           Table created. 

SQL> desc emp; 

 Name                            Null?                              Type 

 -----------------------       --------                ---------------------------- 

 EID                                                                  NUMBER 

 ENAME                                                          VARCHAR2(10) 

 AGE                                                                 NUMBER 

 SALARY                                                         NUMBER 

 

(ii)Count number of employee names from employee table. 

      SQL> select count(ename) from emp; 

                COUNT(ENAME) 

               ------------------------- 

                            7 

(iii)Find the Maximum age from employee table. 

        SQL> select max(age) from emp; 

                    MAX(AGE) 

                    ----------------- 

                            44 

(iv)Find the Minimum age from employee table.  

        SQL>  select min(age) from emp; 

                     MIN(AGE) 

                     ---------------- 

                             22 

(v)Display the Sum of age employee table. 

      SQL> select sum(age) from emp; 

                 SUM(AGE) 

                 ---------------- 

                        220 



 

18 | P a g e  

 

(vi)Display the Average of age from Employee table. 

       SQL>  select avg(age) from emp; 

                   AVG(AGE) 

                   ---------------- 

                   31.4285714 

(vii)Create a View for age in employee table. 

        SQL> create or replace view A as select age from emp where age<30;  

                     View created. 

(viii)Display views 

         SQL> select * from A; 

                    AGE 

                 ------------- 

                      22 

                      29 

                      27 

                      29 

(ix)Find grouped salaries of employees.(group by clause) 

       SQL> select salary from emp group by salary; 

                  SALARY 

                  -------------- 

                       9000 

                      10000 

                        8000 

                        6000 

                        7000 

(x).Find salaries of employee in Ascending Order.(order by clause) 

       SQL> select ename,salary from emp order by salary; 

                  ENAME          SALARY 

                  ------------        ------------- 

                      rohan            6000 

                       alex             7000 

                      shane            8000 

                       abhi             8000 

                       tiger            8000 

                       anu              9000 

                       scott           10000 

 

                          7 rows selected. 

(xi) Find salaries of employee in Descending Order. 

       SQL> select ename,salary from emp order by salary desc; 

                  ENAME          SALARY 

                 --------------      --------------- 

                     scott               10000 

                     anu                 9000 



 

19 | P a g e  

 

                     shane              8000 

                     abhi                8000 

                     tiger               8000 

                     alex                7000 

                     rohan              6000 

                    7 rows selected. 

(xii)Having Clause. 

         SQL> select ename,salary from emp where age<29 group by ename,salary having  

salary<10000; 

         ENAME          SALARY 

         -----------         -------------- 

             alex             7000 

             anu              9000 

 

LAB ASSIGNMENT: 

 

Case Study 1: 

a) By using the group by clause, display the enames who belongs to deptno 10 along with 

average     salary. 

b)  Display lowest paid employee details under each department. 

c) Display number of employees working in each department and their department number. 

d) Using built in functions, display number of employees working in each department and their 

department name from dept table. Insert deptname to dept table and insert deptname for each row, 

do the required thing specified above. 

e) List all employees which start with either B or C. 

f) Display only these ename of employees where the maximum salary is greater than or equal to 

5000. 

Case Study 2: 

a) Calculate the average salary for each different job. 

b) Show the average salary of each job excluding manager. 

c) Show the average salary for all departments employing more than three people. 

d) Display employees who earn more than the lowest salary in department 30 

e) Show that value returned by sign (n) function. 

f)  How many days between day of birth to current date. 

Case Study 3: 

a)  Show that two substring as single string. 

b) List all employee names, salary and 15% rise in salary. 

c)  Display lowest paid emp details under each manager 

d) Display the average monthly salary bill for each deptno. 

e)  Show the average salary for all departments employing more than two people. 

f)  By using the group by clause, display the eid who belongs to deptno 05 along with average salary. 

 

Case Study 4: 

a) Count the number of employees in department 20 

b) Find the minimum salary earned by clerk. 

c)  Find minimum, maximum, average salary of all employees. 

d) List the minimum and maximum salaries for each job type. 



 

20 | P a g e  

 

e) List the employee names in descending order. 

f)  List the employee id, names in ascending order by empid. 

 

Case Study 5: 

a) Find the sids ,names of sailors who have reserved all boats called “INTERLAKE 

b) Find the age of youngest sailor who is eligible to vote for each rating level with at least two such 
sailors. 

c) Find the sname , bid and reservation date for each reservation. 

d)  Find the ages of sailors whose name begin and end with B and has at least 3 characters. 

e) List in alphabetic order all sailors who have reserved red boat. 

f) Find the age of youngest sailor for each rating level. 

 

Case Study 6: 

a) List the Vendors who have delivered products within 6 months from order date. 

b) Display the Vendor details who have supplied both Assembled and Sub parts. 

c) Display the Sub parts by grouping the Vendor type (Local or Non Local). 

d)  Display the Vendor details in ascending order. 

e)  Display the Sub part which costs more than any of the Assembled parts.  

f) Display the second maximum cost Assembled part. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

21 | P a g e  

 

WEEK – 4 

PROGRAMS ON PL/SQL 
 

1 a) Write a PL/SQL block to find the maximum number from given three numbers. 

declare 

a number; 

b number; 

c number; 

begin 

a:=&a; 

b:=&b; 

c:=&c; 

  if  (a>b and a>c) then 

   dbms_output.put_line('a is maximum ' || a); 

 elsif (b>a and b>c) then 

  dbms_output.put_line('b is maximum ' || b); 

 else 

    dbms_output.put_line('c is maximum ' || c); 

 end if; 

end; 

 / 

1b) write a PL/SQL program for swapping 2 numbers. 

declare 

a number(3); 

b number(3); 

begin 

a:=&a; 

b:=&b; 

dbms_output.put_line(„Before swapping a= „||a||‟ and b= „||b); 

a:=a+b; 

b:=a-b; 

a:=a-b; 

dbms_output.put_line(„After swapping a= „||a||‟ and b= „||b); 

end; 
 / 

2 a) Write a PL/SQL program to find the total and average of 4 subjects and display the 

grade 

declare 

 java number(10); 

 dbms number(10); 

 co number(10); 

 mfcs number(10); 

 total number(10); 

 avgs number(10); 

 per number(10); 

 begin 

        dbms_output.put_line('ENTER THE MARKS'); 



 

22 | P a g e  

 

        java:=&java; 

        dbms:=&dbms; 

        co:=&co; 

        mfcs:=&mfcsl; 

        total:=(java+dbms+co+mfcs); 

        per:=(total/600)*100; 

        if java<40 or dbms<40 or co<40 or mfcs<40 then 

         dbms_output.put_line('FAIL'); 

        if per>75 then 

dbms_output.put_line('GRADE A'); 

        elsif per>65 and per<75 then 

        dbms_output.put_line('GRADE B'); 

        elsif per>55 and per<65 then 

               dbms_output.put_line('GRADE C'); 

        else 

dbms_output.put_line('INVALID INPUT'); 

     end if; 

dbms_output.put_line('PERCENTAGE IS '||per); 

end; 
/ 

2 b) Write a program to accept a number and find the sum of the digits 

declare 

n number(5):=&n; 

s number:=0; 

r number(2):=0; 

begin 

while n !=0 

loop 

r:=mod(n,10); 

s:=s+r; 

n:=trunc(n/10); 

end loop; 

dbms_output.put_line('sum of digits of given number is '||s); 

end; 

/ 

3 a) PL/SQL Program to accept a number from user and print number in reverse order. 

declare 

  num1 number(5); 

  num2 number(5);  

  rev number(5); 

begin 

  num1:=&num1; 

  rev:=0; 

  while num1>0 

  loop 

    num2:=num1 mod 10; 

    rev:=num2+(rev*10); 

    num1:=floor(num1/10); 

  end loop; 



 

23 | P a g e  

 

  dbms_output.put_line('Reverse number is: '||rev); 

end; 

/ 

3b) Write a PL / SQL program to check whether the given number is prime or not. 

  declare 

       num number; 

       i number:=1; 

       c number:=0; 

  begin 

        num:=&num; 

       for i in 1..num 

       loop 

          if((mod(num,i))=0) 

           then 

              c:=c+1; 

         end if; 

      end loop; 

     if(c>2) 

     then 

         dbms_output.put_line(num||' not a prime'); 

     else 

        dbms_output.put_line(num||' is prime'); 

     end if; 

  end; 

 / 

4 a) Write a PL/SQL program to find the factorial of a given number. 

declare 

       i number(4):=1; 

       n number(4):=&n; 

       f number(4):=1; 

 begin 

    for i in 1..n 

    loop 

       f:=f*i; 

     end loop; 

    Dbms_output.put_line('the factorial of '||n||' is:'||f); 

   end; 

 / 

4 b) calculate the area of a circle for a value of radius varying from 3 to 7. Store the radius 

and the corresponding values of calculated area in table areas. Consisting of two columns 

radius and area 

Declare 

pi constant number(4,2) := 3.14; 

radius number(5); 

area number(14,2); 

Begin 

radius := 3; 

While radius <=7 

Loop 

area := pi* power(radius,2); 

Insert into areas values (radius, area); 



 

24 | P a g e  

 

radius:= radius+1; 

end loop; 

end; 

/ 

5a) Write a PL/SQL program to accept a string and remove the vowels from the string. 

(When ‘hello’ passed to the program it should display ‘Hll’ removing e and o from the 

world Hello). 

set serveroutput on 

set verify off 

accept vstring prompt "Please enter your string: "; 

declare 

   vnewstring varchar2(100); 

begin 

   vnewstring := regexp_replace('&vstring', '[aeiouAEIOU]',''); 

   dbms_output.put_line('The new string is: ' || vnewstring); 

end; 

/ 

5 b) Write a PL/SQL program to accept a number and a divisor. Make sure the divisor is 

less than or equal to 10. Else display an error message. Otherwise Display the remainder. 

 

select remainder(37,5) "remainder" from dual ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

25 | P a g e  

 

WEEK -5 

PROCEDURES AND FUNCTIONS 

 

 

1) calculate the net salary and year salary if da is 30% of basic, hra is 10% of basic and pf is 

7% if basic salary is less than 8000, pf is 10% if basic sal between 8000 to 160000. 

declare 

    ename varchar2(15); 

    basic number; 

    da number; 

    hra number; 

    pf number; 

    netsalary number; 

    yearsalary number; 

begin 

    ename:='&ename'; 

    basic:=&basic; 

    da:=basic * (30/100); 

    hra:=basic * (10/100); 

        if (basic < 8000) 

    then 

          pf:=basic * (8/100); 

        elsif (basic >= 8000 and basic <= 16000) 

    then 

        pf:=basic * (10/100); 

          

end if; 

        netsalary:=basic + da + hra - pf; 

        yearsalary := netsalary*12; 

  

dbms_output.put_line('Employee name : ' || ename); 

dbms_output.put_line('Providend Fund : ' || pf); 

dbms_output.put_line('Net salary : ' || netsalary); 

dbms_output.put_line('Year salary : '|| yearsalary); 

end; 

/ 

2) Create a function to find the factorial of a given number and hence find NCR. 

 SQL> create or replace function fact(n number) 

 return number is 

 a number:=n; 

 f number:=1; 

 i number; 

 begin 

 for i in 1..n 

 loop 

  f:=f*a; 

  a:=a-1; 

 end loop; 

 return f; 

 end; 

 / 



 

26 | P a g e  

 

 

SQL> create or replace function ncr(n number ,r number) 

 return number is 

 n1 number:=fact(n); 

 r1 number:=fact(r); 

 nr1 number:=fact(n-r); 

 result number; 

 begin 

 result:=(n1)/(r1*nr1); 

 return result; 

 end; 

 / 

 

3) Print Fibonacci series using local functions. 

sql>create or replace function fib (n positive) return integer is 

begin 

if (n = 1) or (n = 2) then -- terminating condition 

return 1; 

else 

return fib(n - 1) + fib(n - 2); -- recursive call 

end if; 

end fib; 

/ 

-- Test Fibonacci Series: 

SQL>SELECT fib(1), fib(2), fib(3), fib(4), fib(5) FROM dual; 

 

4) write a pl/sql function accept date of birth as "dd-mm-yyyy" and sum all digits till you 

get single digit number to show as he lucky number.  

SQL> set serverout on 

SQL> declare 

      l_input varchar2(20) := '31/01/1978'; 

      l_output int; 

    begin 

      loop 

        dbms_output.put_line('------------------'); 

        dbms_output.put_line('l_input='||l_input); 

        l_output := 0; 

        for i in 1 .. length(l_input) 

       loop 

         if substr(l_input,i,1) between '0' and '9' then 

            l_output := l_output + to_number(substr(l_input,i,1)); 

         end if; 

       end loop; 

       dbms_output.put_line('l_output='||l_output); 

       exit when l_output < 10; 

       l_input := to_char(l_output); 

     end loop; 

     dbms_output.put_line('------------------'); 

     dbms_output.put_line('Lucky='||l_output); 

   end; 

   / 



 

27 | P a g e  

 

------------------ 

l_input=31/01/1978 

l_output=30 

------------------ 

l_input=30 

l_output=3 

------------------ 

Lucky=3 

 

PL/SQL procedure successfully completed. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

28 | P a g e  

 

WEEK-6 

TRIGGERS 

1. Create a row level trigger for the customers table that would fire for INSERT or UPDATE 

or DELETE operations performed on the CUSTOMERS table. This trigger will display the 

salary difference between the old values and new values: 

 

CUSTOMERS table: 

 

ID NAME AGE  ADDRESS SALARY 

1 Alive 24 Khammam 2000 

2 Bob 27 Kadappa 3000 

3 Catri 25 Guntur 4000 

4 Dena 28 Hyderabad 5000 

5 Eeshwar 27 Kurnool 6000 

6 Farooq 28 Nellur 7000 

 

CREATE OR REPLACE TRIGGER display_salary_changes 

BEFORE DELETE OR INSERT OR UPDATE ON customers 

FOR EACH ROW 
WHEN (NEW.ID > 0) 

DECLARE 

   sal_diff number; 
BEGIN 

   sal_diff := :NEW.salary  - :OLD.salary; 

   dbms_output.put_line('Old salary: ' || :OLD.salary); 

   dbms_output.put_line('New salary: ' || :NEW.salary); 
   dbms_output.put_line('Salary difference: ' || sal_diff); 

END; 

/ 

Trigger created. 
 

Here following two points are important and should be noted carefully: 
 

OLD and NEW references are not available for table level triggers, rather you can use them for record 

level triggers. 
 

If you want to query the table in the same trigger, then you should use the AFTER keyword, because 

triggers can query the table or change it again only after the initial changes are applied and the table is back 
in a consistent state. 

 

Above trigger has been written in such a way that it will fire before any DELETE or INSERT or UPDATE 

operation on the table, but you can write your trigger on a single or multiple operations, for example 
BEFORE DELETE, which will fire whenever a record will be deleted using DELETE operation on the 

table. 

 
Let us perform some DML operations on the CUSTOMERS table. Here is one INSERT statement, which 

will create a new record in the table: 

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (7, 'Kriti', 22, 'HP', 

7500.00 ); 
 



 

29 | P a g e  

 

When a record is created in CUSTOMERS table, above create trigger  display_salary_changes will be 

fired and it will display the following result: 
 

Old salary: 

New salary: 7500 

Salary difference: 
 

2) Convert employee name into uppercase whenever an employee record is inserted or updated. 

Trigger to fire before the insert or update. 

 

SQL> create table Employee( 

2    ID                 VARCHAR2(4 BYTE) NOT NULL, 

3    First_Name         VARCHAR2(10 BYTE), 

4    Last_Name          VARCHAR2(10 BYTE), 

5    Start_Date         DATE, 

6    End_Date           DATE, 

7    Salary             NUMBER(8,2), 

8    City               VARCHAR2(10 BYTE), 

9    Description        VARCHAR2(15 BYTE) 

10  ) 

11  / 

 

Table created. 

 

SQL> CREATE OR REPLACE TRIGGER employee_insert_update 

  2    BEFORE INSERT OR UPDATE ON employee 

  3    FOR EACH ROW 

  4  DECLARE 

  5    dup_flag  INTEGER; 

  6  BEGIN 

  7       --Force all employee names to uppercase. 

  8  :NEW.first_name := UPPER(:NEW.first_name); 

  9  END; 

 10  / 

 

Trigger created. 

 

SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,  End_Date,  Salary,  City,      

Description) 

  2               values ('01','Jason',    'Martin',  to_date('19960725','YYYYMMDD'), 

to_date('20060725','YYYYMMDD'), 1234.56, 'Toronto',  'Programmer') 
  3  / 

 

1 row created. 
 

SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,  End_Date, Salary,  City,       

Description) 

  2                values('02','Alison',   'Mathews', to_date('19760321','YYYYMMDD'), 
to_date('19860221','YYYYMMDD'), 6661.78, 'Vancouver','Tester') 

  3  / 

 



 

30 | P a g e  

 

1 row created. 

 
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date, End_Date, Salary,  City,       

Description) 

  2                values('03','James',    'Smith',   to_date('19781212','YYYYMMDD'), 

to_date('19900315','YYYYMMDD'), 6544.78, 'Vancouver','Tester') 
  3  / 

 

1 row created. 
 

SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date, End_Date, Salary,  City,       

Description) 
  2                values('04','Celia',    'Rice',    to_date('19821024','YYYYMMDD'), 

to_date('19990421','YYYYMMDD'), 2344.78, 'Vancouver','Manager') 

  3  / 

 
1 row created. 

 

SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date, End_Date,  Salary,  City,       
Description) 

  2                values('05','Robert',   'Black',   to_date('19840115','YYYYMMDD'), 

to_date('19980808','YYYYMMDD'), 2334.78, 'Vancouver','Tester') 
  3  / 

 

1 row created. 

 
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,  End_Date, Salary, City,        

Description) 

  2                values('06','Linda',    'Green',   to_date('19870730','YYYYMMDD'), 
to_date('19960104','YYYYMMDD'), 4322.78,'New York',  'Tester') 

  3  / 

 

1 row created. 
 

SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date, End_Date,  Salary, City,        

Description) 
  2                values('07','David',    'Larry',   to_date('19901231','YYYYMMDD'), 

to_date('19980212','YYYYMMDD'), 7897.78,'New York',  'Manager') 

  3  / 
 

1 row created. 

 

SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date, End_Date, Salary, City,        
Description) 

  2                values('08','James',    'Cat',     to_date('19960917','YYYYMMDD'), 

to_date('20020415','YYYYMMDD'), 1232.78,'Vancouver', 'Tester') 
  3  / 

 

1 row created. 
 

SQL> select * from Employee 

  2  / 

 
 

 

 



 

31 | P a g e  

 

ID   FIRST_NAME LAST_NAME  START_DAT END_DATE      SALARY CITY       DESCRIPTION 

---- ---------- ---------- --------- --------- ---------- ---------- ------------------------------------------------------------ 
01   JASON      Martin      25-JUL-96  25-JUL-06    1234.56  Toronto    Programmer 

02   ALISON     Mathews     21-MAR-76  21-FEB-86    6661.78  Vancouver  Tester 

03   JAMES      Smith       12-DEC-78  15-MAR-90 6544.78  Vancouver  Tester 

04   CELIA      Rice         24-OCT-82  21-APR-99    2344.78  Vancouver  Manager 
05   ROBERT     Black       15-JAN-84  08-AUG-98    2334.78  Vancouver  Tester 

06   LINDA      Green       30-JUL-87  04-JAN-96    4322.78  New York   Tester 

07   DAVID      Larry       31-DEC-90  12-FEB-98    7897.78  New York   Manager 
08   JAMES      Cat          17-SEP-96  15-APR-02    1232.78  Vancouver  Tester 

 

8 rows selected. 
 

SQL> drop table Employee 

  2  / 

 
Table dropped. 

 

3) Trigger before deleting a record from emp table. Trigger will insert the row to be 

deleted into another table and also record the user who has deleted the record. 

 

SQL>     CREATE OR REPLACE TRIGGER employee_before_delete 

  2      BEFORE DELETE 

  3          ON employee 

  4          FOR EACH ROW 

  5      DECLARE 

  6         v_username varchar2(10); 

  7      BEGIN 

 8         -- Find username of person performing the DELETE on the table 

 9          SELECT user INTO v_username 

 10          FROM dual; 

 11       -- Insert record into audit table 

 12          INSERT INTO employee_audit (id, salary, delete_date,deleted_by ) 

 13                             VALUES (:old.id,:old.salary, sysdate, v_username ); 

 14      END; 

15      / 

 

Trigger created. 

 

SQL> delete from employee; 

 

8 rows deleted. 

 

SQL> select * from employee_audit; 

 

ID       SALARY DELETE_DA DELETED_BY 

---- ---------- --------- --------------- 

01      1234.56 09-SEP-06 JAVA2S 

02      6661.78 09-SEP-06 JAVA2S 

03      6544.78 09-SEP-06 JAVA2S 

04      2344.78 09-SEP-06 JAVA2S 



 

32 | P a g e  

 

05      2334.78 09-SEP-06 JAVA2S 

06      4322.78 09-SEP-06 JAVA2S 

07      7897.78 09-SEP-06 JAVA2S 

08      1232.78 09-SEP-06 JAVA2S 

 

8 rows selected. 

 

SQL> drop table employee_audit; 

 

Table dropped. 

 

LAB ASSIGNMENT: 

1. Creation of insert trigger, delete trigger, update trigger practice triggers using the passenger database. 

Passenger( Passport_ id  INTEGER PRIMARY KEY, Name VARCHAR (50) Not NULL, Age 

Integer Not NULL, Sex Char, Address  VARCHAR (50) Not NULL); 

Write a Insert Trigger to check the Passport_id is exactly six digits or not. 

Write a trigger on passenger to display messages „1 Record is inserted‟, „1 record is deleted‟, „1 

record      is updated‟ when insertion, deletion and updation are done on passenger respectively. 

 

2. Insert row in employee table using Triggers. Every trigger is created with name any trigger have 

same name must be replaced by new name. These triggers can raised before insert, update or delete 

rows on data base. The main difference between a trigger and a stored procedure is that the former is 

attached to a table and is only fired when an INSERT, UPDATE or DELETE occurs. 

 

3. Create a transparent audit system for a table CUST_MSTR. The system must keep track of the 

records that are being deleted or updated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 | P a g e  

 

WEEK-7 

PROCEDURES 

 

1) Create a procedure to reverse a string. 

CREATE OR REPLACE PROCEDURE ReverseOf(input IN varchar2(50)) IS 

DECLARE  

        reverse varchar2(50); 

BEGIN 

        FOR i in reverse 1..length(input) LOOP 

                reverse := reverse||''||substr(input, i, 1); 

        END LOOP; 

        dbms_output.put_line(reverse); 

END; 

/ 

Lab Assignment: 

1. Create the procedure for palindrome of given number. 

2. Create the procedure for GCD: Program should load two registers with two Numbers and 

then apply the logic for GCD of two numbers. GCD of two numbers is performed by 

dividing the greater number by the smaller number till the remainder is zero. If it is zero, the 

divisor is the GCD if not the remainder and the divisors of the previous division are the new 

set of two numbers. The process is repeated by dividing greater of the two numbers by the 

smaller number till the remainder is zero and GCD is found. 

3. Write the PL/SQL programs to create the procedure for factorial of given number. 

4. Write the PL/SQL programs to create the procedure to find sum of N natural number. 

5. Write the PL/SQL programs to create the procedure to find Fibonacci series. 

6. Write the PL/SQL programs to create the procedure to check the given number is perfect or 

not. 

 

 

 

 

 

 

 

 

 

 



 

34 | P a g e  

 

WEEK-8 

CURSORS 

 

DEFINITION OF A CURSOR 

 

1.  Cursor can be created to store the values from table temporally. 

2. In execution these values fetch from cursor for access the data base 

 Create cursor fetch the values from the table 

 Declare the variables 

 Open the cursor 

 Fetch the values from the cursor 

 Close the cursor  
  

CURSOR EXAMPLE: 

declare 

cursor xx is select empno,ename,sal from emp26; 

a_empno emp26.empno%type; 

a_ename emp26.ename%type; 

a_sal emp26.sal%type; 

begin 

open xx; 

loop 

fetch xx into a_empno,a_ename,a_sal; 

exit when xx% not found; 

dbms_output.put_line(a_empno||' '||a_ename||' '||a_sal); 

end loop; 

close xx; 

end; 

 

SQL>  / 
 

LAB ASSIGNMENT: 

1. Write a PL/SQL block that will display the name, dept  no, salary of fist highest paid 

employees. 

2. Update the balance stock in the item master table each time a transaction takes place in the 

item transaction table. The change in item master table depends on the item id is already 

present in the item master then update operation is performed to decrease the balance stock 

by the quantity specified in the item transaction in case the item id is not present in the item 

master table then the record is inserted in the item master table. 

3. Write a PL/SQL block that will display the employee details along with salary using cursors. 

4. To write a Cursor to display the list of employees who are working as a Managers or 

Analyst. 

5. To write a Cursor to find employee with given job and deptno. 

6. Write a PL/SQL block using implicit cursor that will display message, the salaries of all the 

employees in the „employee‟ table are updated. If none of the employee‟s salary are updated 

we get a message 'None of the salaries were updated'. Else we get a message like for example, 

'Salaries for 1000 employees are updated' if there are 1000 rows in „employee‟ table. 

 



 

35 | P a g e  

 

WEEK-9 

CASE STUDY: BOOK PUBLISHING COMPANY 

AIM: A publishing company produces scientific books on various subjects. The books are written 

by authors who specialize in one particular subject. The company employs editors who, not 

necessarily being specialists in a particular area, each take sole responsibility for editing one or 

more publications.  

                             A publication covers essentially one of the specialist subjects and is normally 

written by a single author. When writing a particular book, each author works with on editor, but 

may submit another work for publication to be supervised by other editors. To improve their 

competitiveness, the company tries to employ a variety of authors, more than one author being a 

specialist in a particular subject. 

 
 

 

 

LAB ASSIGNMENT: 
1. Analyze the data required. 

2. Normalize the attributes. 

3. Create the logical data model using E-R diagrams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

36 | P a g e  

 

WEEK -10 

CASE STUDY: GENERAL HOSPITAL 

 

AIM: A General Hospital consists of a number of specialized wards (such as Maternity, Paediatry, 

Oncology, etc). Each ward hosts a number of patients, who were admitted on the recommendation 

of their own GP and confirmed by a consultant employed by the Hospital. On admission, the 

personal details of every patient are recorded.  

                    A separate register is to be held to store the information of the tests undertaken and 

the results of a prescribed treatment. A number of tests may be conducted for each patient. Each 

patient is assigned to one leading consultant but may be examined by another doctor, if required. 

Doctors are specialists in some branch of medicine and may be leading consultants for a number 

of patients, not necessarily from the same ward. 

 
 

 
 

 

LAB ASSIGNMENT: 

1. Analyze the data required. 

2. Normalize the attributes. 

3. Create the logical data model using E-R diagrams 
 

 

 

 



 

37 | P a g e  

 

WEEK -11 

CASE STUDY: CAR RENTAL COMPANY 

AIM: A database is to be designed for a Car Rental Co. (CRC). The information required includes a 

description of cars, subcontractors (i.e. garages), company expenditures, company revenues and 

customers. Cars are to be described by such data as: make, model, year of production, engine size, 

and fuel type, number of passengers, registration number, purchase price, purchase date, rent price 

and insurance details. It is the company policy not to keep any car for a period exceeding one year.  

                                   All major repairs and maintenance are done by subcontractors (i.e. franchised 

garages), with whom CRC has long-term agreements. Therefore the data about garages to be kept in 

the database includes garage names, addresses, range of services and the like. Some garages require 

payments immediately after a repair has been made; with others CRC has made arrangements for 

credit facilities. Company expenditures are to be registered for all outgoings connected with 

purchases, repairs, maintenance, insurance etc. 

                                   Similarly the cash inflow coming from all sources - car hire, car sales, insurance 

claims - must be kept of file.CRC maintains a reasonably stable client base. For this privileged 

category of customers special credit card facilities are provided. These customers may also book in 

advance a particular car. These reservations can be made for any period of time up to one month. 

Casual customers must pay a deposit for an estimated time of rental, unless they wish to pay by 

credit card. All major credit cards are accepted. Personal details (such as name, address, telephone 

number, driving license, number) about each customer are kept in the database. 

 

 

 

 

 
 

 

LAB ASSIGNMENT: 

1. Analyze the data required. 

2. Normalize the attributes. 

3. Create the logical data model using E-R diagrams 

 

 

 

 



 

38 | P a g e  

 

WEEK-12 

CASE STUDY: STUDENT PROGRESS MONITORING SYSTEM 

AIM: A database is to be designed for a college to monitor students' progress throughout their 

course of study. The students are reading for a degree (such as BA, BA(Hons) MSc, etc) within the 

framework of the modular system. The college provides a number of module, each being 

characterised by its code, title, credit value, module leader, teaching staff and the department they 

come from. A module is co- ordinated by a module leader who shares teaching duties with one or 

more lecturers.  

                     A lecturer may teach (and be a module leader for) more than one module. Students 

are free to choose any module they wish but the following rules must be observed: some modules 

require pre-requisites modules and some degree programmes have compulsory modules. The 

database is also to contain some information about students including their numbers, names, 

addresses, degrees they read for, and their past performance (i.e. modules taken and examination 

results). 
 

 
 
 

 

 

LAB ASSIGNMENT: 
1. Analyze the data required. 

2. Normalize the attributes. 

3. Create the logical data model using E-R diagrams 

 

 

 

 

 

 

 

 



 

39 | P a g e  

 

VIVA QUESTIONS WITH ANSWERS 

 

UNIT-1 
1. What is database? 

A database is a logically coherent collection of data with some inherent meaning, representing some aspect 

of real world and which is designed, built and populated with data for a specific purpose. 
 

2. What is DBMS? 

It is a collection of programs that enables user to create and maintain a database. In other words it is 
general-purpose software that provides the users with the processes of defining, constructing and 

manipulating the database for various applications. 

 

3. What is a Database system? 
The database and DBMS software together is called as Database system. 

 

4. Advantages of DBMS? 

 Redundancy is controlled. 

 Unauthorized access is restricted. 

 Providing multiple user interfaces. 

 Enforcing integrity constraints. 

 Providing backup and recovery. 

 

5. Disadvantage in File Processing System? 

 Data redundancy & inconsistency. 

 Difficult in accessing data. 

 Data isolation. 

 Data integrity. 

 Concurrent access is not possible. 

 Security Problems. 

 

6. Describe the three levels of data abstraction? 

Three levels of abstraction: 

Physical level: The lowest level of abstraction describes how data are stored. 

Logical level: The next higher level of abstraction, describes what data are stored in database and what 
relationship among those data. 

View level: The highest level of abstraction describes only part of entire database.  

 

7. Define the "integrity rules" 

There are two Integrity rules. 

Entity Integrity: States that Primary key cannot have NULL value 
Referential Integrity: States that Foreign Key can be either a NULL value or should be Primary Key value 

of other relation. 

 

8. What is extension and intension? 
Extension: It is the number of tuples present in a table at any instance. This is time dependent. 

Intension: It is a constant value that gives the name, structure of table and the constraints laid on it.  

 

9. What is Data Independence? 

Data independence means that “The application is independent of the storage structure and access strategy 

of data”. In other words, the ability to modify the schema definition in one level should not affect the 

schema definition in the next higher level. 
Two types of Data Independence: 

Physical Data Independence: Modification in physical level should not affect the logical level. 

Logical Data Independence: Modification in logical level should affect the view level.  
 



 

40 | P a g e  

 

10. What is a view? How it is related to data independence? 

A view may be thought of as a virtual table, that is, a table that does not really exist in its own right but is 
instead derived from one or more underlying base table. In other words, there is no stored file that direct 

represents the view instead a definition of view is stored in data dictionary. Growth and restructuring of 

base tables is not reflected in views. Thus the 

View can insulate users from the effects of restructuring and growth in the database. Hence accounts for 
logical data independence. 

 

11. What is Data Model? 
A collection of conceptual tools for describing data, data relationships data semantics and constraints. 

 

12. What is E-R model? 
This data model is based on real world that consists of basic objects called entities and of relationship 

among these objects. Entities are described in a database by a set of attributes. 

 

13. What is Object Oriented model? 
This model is based on collection of objects. An object contains values stored in instance variables within 

the object. An object also contains bodies of code that operate on the object. These bodies of code are 

called methods. Objects that contain same types of values and the same methods are grouped together into 
classes. 

 

14. What is an Entity? 
It is a 'thing' in the real world with an independent existence. 

 

15. What is an Entity type? 

It is a collection (set) of entities that have same attributes. 
 

16. What is an Entity set? 

It is a collection of all entities of particular entity type in the database. 
 

17. What is an Extension of entity type? 

The collections of entities of a particular entity type are grouped together into an entity set. 

 

18. What is Weak Entity set? 

An entity set may not have sufficient attributes to form a primary key, and its primary key compromises of 

its partial key and primary key of its parent entity, then it is said to be Weak Entity set.  
 

19. What is an attribute? 

It is a particular property, which describes the entity. 
 

20. What is a Relation? 
A relation is defined as a set of tuples.  

 

21. What is degree of a Relation? 

It is the number of attribute of its relation schema. 

 

22. What is Relationship? 

It is an association among two or more entities. 

 

23. What is Relationship set? 

The collection (or set) of similar relationships. 

 

24. What is Relationship type? 
Relationship type defines a set of associations or a relationship set among a given set of entity types. 

 

25. What is degree of Relationship type? 



 

41 | P a g e  

 

It is the number of entity type participating. 

  

UNIT-2 
 

1. What is DDL (Data Definition Language)? 

A data base schema is specifies by a set of definitions expressed by a special language called DDL. 

 

2. What is VDL (View Definition Language)? 

It specifies user views and their mappings to the conceptual schema. 

 

3. What is DML (Data Manipulation Language)?  

This language that enable user to access or manipulate data as organized by appropriate data model. 

 

4. What is DML Compiler? 
It translates DML statements in a query language into low-level instruction that the query evaluation 

engine can understand. 

 

5. What is Query evaluation engine? 

It executes low-level instruction generated by compiler. 

 

6. What is DDL Interpreter? 

It interprets DDL statements and records them in tables containing metadata. 

 

7. What is a query? 
A query with respect to DBMS relates to user commands that are used to interact with a data base. The 

query language can be classified into data definition language and data manipulation language. 

 

8. What do you mean by Correlated sub query? 

A correlated sub query can be easily identified if it contains any references to the parent sub query columns 

in its WHERE clause. Columns from the sub query cannot be referenced anywhere else in the parent 
query.  

 

9. Are the resulting relations of PRODUCT and JOIN operation the same? 

No. 
PRODUCT: Concatenation of every row in one relation with every row in another. 

JOIN: Concatenation of rows from one relation and related rows from another. 

 

10. What is database Trigger? 

A database trigger is a PL/SQL block that can defined to automatically execute for insert, update, and 

delete statements against a table. The trigger can be defined to execute once for the entire statement or 

once for every row that is inserted, updated, or deleted. For any one table, there are twelve events for 
which you can define database triggers. A database trigger can call database procedures that are also 

written in PL/SQL. 

 

11. What are stored-procedures? What are the advantages of using them? 

Stored procedures are database objects that perform a user defined operation. A stored procedure can have 

a set of compound SQL statements. A stored procedure executes the SQL commands and returns the result 
tothe client. Stored procedures are used to reduce network traffic. 

 

12. Define super key and give example to illustrate the super key? 

Set of one or more attributes taken collectively, allowing to identify uniquely an entity in the entity 
set.Eg1. {SSN} and {SSN, Cust_name} of customer table are super keys.Eg2. {Branch name} and 

{Branch name, Branch city} of Branch table re super keys. 

 

13. Define candidate key and give example to illustrate the candidate key? 



 

42 | P a g e  

 

Super keys with no proper subset are called the candidate keys. Otherwise it is called minimal super key. 

Candidate key is nothing but the primary key used in SQL. Eg1. {SSN} is the candidate keyfor the super 
keys {SSN} and {SSN, Cust_name} of customer table.Eg2. {Branch name} is the candidate key for the 

super keys {Branch name} and {Branch name, Branch city} of Branch table. 

 

14. What is Primary key? 
  A key chosen to act as the means by which to identify tuples in a relation. 

 

15. What is foreign key? 
A foreign key of relation R is a set of its attributes intended to be used (by each tuple in R) for 

identifying/referring to a tuples in some relation S. (R is called the referencing relation and S the 

referenced relation.) For this to make sense, the set of attributes of R forming the foreign key should 
"correspond to" some superkey of S. Indeed, by definition we require this superkey to be the primary key 

of S. 

 

14. What is a Cursor? 
A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A cursor 

holds the rows (one or more) returned by a SQL statement. The set of rows the cursor holds is referred to 

as the active set. 
 

UNIT-3 
1. What is normalization? 

It is a process of analyzing the given relation schemas based on their Functional Dependencies (FDs) and 

primary key to achieve the properties 

 Minimizing redundancy 

 Minimizing insertion, deletion and update anomalies. 

 

2. What is Functional Dependency? 
A Functional dependency is denoted by X-> Y between two sets of attributes X and Y that are subsets of R 
specifies a constraint on the possible tuples that can form a relation state r of R. The constraint is for any 

two tuples t1 and t2 in r if t1[X] = t2[X] then they have t1[Y] = t2[Y].  

 

3. What is 1 NF (Normal Form)? 

The domain of attribute must include only atomic (simple, indivisible) values.  

 

4. What is Fully Functional dependency? 
It is based on concept of full functional dependency. A functional dependency X-> Y is fully functional 

dependency if removal of any attribute A from X means that the dependency does not hold any more. 

 

5. What is 2NF? 

A relation schema R is in 2NF if it is in 1NF and every non-prime attribute A in R is fully functionally 

dependent on primary key. 

 

6. What is 3NF? 

A relation schema R is in 3NF if it is in 2NF and for every FD X A either of the following is true 

X is a Super-key of R. 
A is a prime attribute of R. 

In other words, if every non prime attribute is non-transitively dependent on primary key. 

 

7. What is BCNF (Boyce-Codd Normal Form)? 

A relation schema R is in BCNF if it is in 3NF and satisfies an additional constraint that for every FD X A, 

X must be a candidate key. 

 

8. What is 4NF? 

A relation schema R is said to be in 4NF if for every multivalued dependency X Y that holds over R, one 

of following is true X is subset or equal to (or) XY = R. X is a super key. 



 

43 | P a g e  

 

 

9. What is 5NF? 
A Relation schema R is said to be 5NF if for every join dependency {R1, R2... Rn} that holds R, one the 

following is true 

i) Ri = R for some i. 

ii) The join dependency is implied by the set of FD, over R in which the left side is key of R. 
 

10.What is dependency preservation? 

Dependency Preservation Property enables us to enforce a constraint on the original relation from 
corresponding instances in the smaller relations. 

 

11. What is Lossless join property? 
Lossless join property enables us to find any instance of the original relation from corresponding instances 

in the smaller relations  

 

12. What are Multivalued dependencies? 
 A multivalued dependency (MVD) X ->->Y specified on R, where X, and Y are both subsets of R and Z = 

(R – (X Y)) specifies the following restrictions on r(R) 

t3[X]=t4[X]=t1[X]=t2[X] 
t3[Y] = t1[Y] and t4[Y] = t2[Y] 

t3[Z] = t2[Z] and t4[Z] = t1 [Z] 

 

UNIT-4 
1. What is a transaction? 
A transaction is a logical unit of database processing that includes one or more database access operations 

(e.g., insertion, deletion, modification, or retrieval operations). 

 

2. List the ACID properties? 

a) Atomicity    b) Consistency    c) Isolation   d) Durability 

 

3. What is Atomicity? 

 A transaction is an atomic unit of processing; it is either performed in its entirety or not performed at all. 

 

4. What is Consistency? 
A transaction is consistency preserving if its complete execution take(s) the database from one consistent 

state to another. 

 

5. What is Isolation? 

 A transaction should appear as though it is being executed in isolation from other transactions. That is, the 

execution of a transaction should not be interfered with by any other transactions executing concurrently. 

 

6. What is Durability? 

 The changes applied to the database by a committed transaction must persist in the database. These 

changes must not be lost because of any failure. 
 

7. When two operations in a Schedule Rollbacks? 

Two operations in a schedule are said to conflict if they satisfy all three of the following 
Conditions: 

1. They belong to different transactions; 

2. They access the same item X; and 

3. At least one of the operations is a write_item(X). 
 

8. Define recoverable schedule. 

Recoverable schedule is the one where for each pair of transactions Ti and Tj such that Tj reads a data item 
previously written by Ti, the commit operation of Ti appears before the commit  operation of Tj.  

 



 

44 | P a g e  

 

9. What is a checkpoint and when does it occur? 

A Checkpoint is like a snapshot of the DBMS state. By taking checkpoints, the DBMS can reduce the 
amount of work to be done during restart in the event of subsequent crashes. 

 

10. What is blind write? 

If a transaction writes a data item without reading the data is called blind write. This sometimes causes 
inconsistency. 

 

11. Define serial schedule? 
A schedule, S is serial if for every transaction T participating in the schedule and all the operations of T is 

executed consecutively in the schedule; otherwise the schedule is called Non-serial schedule. 

 

12. What is the use of locking? 

It is used to prevent concurrent transactions from interfering with one another and enforcing an additional 

condition that guarantees serializability. 

                                                  

UNIT-5 
1. What is indexing? 

Indexing is a technique for determining how quickly specific data can be found. 

 

2. What is dense index? 

If there is an index entry for every data record. 

 

3. What is sparse index? 
If there is an index entry for subset of data records. 

 

4. What is primary index? 
If there is a key, ordering field then it is primary index. 

 

5. What is clustering index? 
If there is non-key, ordering field then it is clustering index. 

 

6. What is secondary index? 
If there is non-ordering field then it is secondary index 
 

7. What is multilevel index? 

 It is   a tree built by indexing the indexes. 
 

8. What is a file? 

A file is a set of records stored as a unit on disk. 

 

9. What is a B+ tree? 

An organizational structure for information storage and retrieval in the form of a tree in which all terminal 

nodes are the same distance from the base, and all non-terminal nodes have between n and 2 n subtrees or 
pointers (where n is an integer). 

 

10. What is Linear hashing? 
Linear hashing allows for the expansion of the hash table one slot at a time. 

 
 


