
1 | P a g e

DIGITAL SYSTEM DESIGN LABORATORY

LAB MANUAL

Course Code : AECB10

Regulations : IARE - R18

Class : III SEMESTER

Branch : ECE

Prepared by

N.Nagaraju

Assistant Professor

Department of Electronics & Communication Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad – 500 043

2 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad – 500 043

Electronics & Communication Engineering

Vision

To produce professionally competent Electronics and Communication Engineers capable of

effectively and efficiently addressing the technical challenges with social responsibility.

Mission

The mission of the Department is to provide an academic environment that will ensure high quality

education, training and research by keeping the students abreast of latest developments in the field

of Electronics and Communication Engineering aimed at promoting employability, leadership

qualities with humanity, ethics, research aptitude and team spirit.

Quality Policy

Our policy is to nurture and build diligent and dedicated community of engineers providing a

professional and unprejudiced environment, thus justifying the purpose of teaching and satisfying

the stake holders.

A team of well qualified and experienced professionals ensure quality education with its practical

application in all areas of the Institute.

Philosophy

The essence of learning lies in pursuing the truth that liberates one from the darkness of ignorance

and Institute of Aeronautical Engineering firmly believes that education is for liberation.

Contained therein is the notion that engineering education includes all fields of science that plays a

pivotal role in the development of world-wide community contributing to the progress of civilization.

This institute, adhering to the above understanding, is committed to the development of science and

technology in congruence with the natural environs. It lays great emphasis on intensive research and

education that blends professional skills and high moral standards with a sense of individuality and

humanity. We thus promote ties with local communities and encourage transnational interactions in

order to be socially accountable. This accelerates the process of transfiguring the students into

complete human beings making the learning process relevant to life, instilling in them a sense of

courtesy and responsibility.

3 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad – 500 043

Department of Electronics and Communication Engineering

Program Outcomes

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and
an engineering specialization to the solution of complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and
engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and design
system components or processes that meet the specified needs with appropriate consideration for the
public health and safety, and the cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of experiments, analysis and interpretation of data, and synthesis of the information to
provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with an
understanding of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional
engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the
engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse
teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one‟s own work, as a member and leader in a team, to
manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes

PSO1 Professional Skills: An ability to understand the basic concepts in Electronics & Communication
Engineering and to apply them to various areas, like Electronics, Communications, Signal processing,
VLSI, Embedded systems etc., in the design and implementation of complex systems.

PSO2 Problem-Solving Skills: An ability to solve complex Electronics and communication Engineering
problems, using latest hardware and software tools, along with analytical skills to arrive cost effective
and appropriate solutions.

PSO3 Successful Career and Entrepreneurship: An understanding of social-awareness & environmental-
wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for
real-world applications using optimal resources as an Entrepreneur.

4 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

ATTAINMENT OF PROGRAM OUTCOMES & PROGRAM SPECIFIC

OUTCOMES

Exp.

No.

Experiment

Program

Outcomes

Attained

Program

Specific

Outcomes

Attained

1

Realization of a Boolean function

Design and simulate the HDL code to realize three and four

variable Boolean functions

PO1, PO2, PO5 PSO1

2

Design of decoder and encoder

Design and simulate the HDL code for the following

combinational circuits

a) 3 to 8 Decoder

b) 8 to 3 Encoder (With priority and without priority)

PO1, PO2, PO5 PSO1

3

Design of multiplexer and de multiplexer

Design and simulate the HDL code for the following

combinational circuits

a) Multiplexer
b) De-multiplexer

PO1, PO2, PO5 PSO1

4

Design of code converters

Design and simulate the HDL code for the following

combinational circuits

a) 4- Bit binary to gray code converter
b) 4- Bit gray to binary code converter
c) Comparator

PO1, PO2, PO5 PSO1

5

Full adder and full subtractor design modeling

Write a HDL code to describe the functions of a full Adder

and subtractor Using three modeling styles

PO1, PO2, PO5 PSO1

6
Design of 8-bit Arithmetic logic unit

Design a model to implement 8-bit ALU functionality
PO1, PO2, PO5 PSO1

7
HDL model for flip flops

Write HDL codes for the flip-flops - SR, D, JK, T
PO1, PO2, PO5 PSO1

8

Design of counters

Write a HDL code for the following counters

a) Binary counter
b) BCD counter (Synchronous reset and asynchronous reset)

PO1, PO2, PO5 PSO1

9
HDL code for universal shift register

Design and simulate the HDL code for universal shift register
PO1, PO2, PO5 PSO1

10
HDL code for carry look ahead adder

Design and simulate the HDL code for carry look ahead adder
PO1, PO2, PO5 PSO1

11
HDL code to detect a sequence
Write a HDL code to detect the sequence 1010101

PO1, PO2, PO5 PSO1

12
Chess clock controller FSM using HDL
Design a traffic light controller using HDL

PO3, PO5 PSO1

5 | P a g e

Exp.

No.

Experiment

Program

Outcomes

Attained

Program

Specific

Outcomes

Attained

13
Traffic light controller using HDL
Design a chess clock controller FSM using HDL

PO3, PO5 PSO1

14
Elevator design using HDL code

Write HDL code to simulate Elevator operations
PO3, PO5 PSO1

6 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad – 500 043

Certificate

This is to certify that it is a bonafied record of practical work done

by Sri / Kum.

bearing the Roll No. of _ Class

in the

Branch

laboratory

during the Academic year under our supervision.

Head of the Department Lecture In-Charge

External Examiner Internal Examiner

7 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad – 500 043

Electronics & Communication Engineering

Course Overview:

This course gives knowledge about the design, analysis, simulation of circuits used as building

blocks in Very Large Scale Integration (VLSI) devices. Students can apply the concepts learnt in

the lectures towards design of actual VLSI subsystem all the way from specification, modeling,

synthesis and physical design. This lab provides hands-on experience on implementation of digital

circuit designs using HDL language, which are required for development of various projects and

research work.

Objectives:

The course should enable the students to:

I. Design of combinational circuits using Verilog Hardware Description Language.

II. Implementation of Sequential circuits using Verilog Hardware Description Language.

III. Demonstration of different case studies for Verilog HDL implementation.

Course Learning Outcomes:

After completion of the course, the student will be able to:

1. Understand the concept of Boolean functions using VHDL

2. Understand the encoder and decoder using VHDL

3. Design of multiplexer and demultiplexer using VHDL

4. Design of code converters using VHDL

5. Implement full adder and full subtractor using VHDL

6. Construct the 8-bit ALU using VHDL

7. Implement the flip flops using VHDL

8. Design of counters using VHDL.

9. Construct universal shift register using VHDL

10. Design carry look ahead adder using VHDL

11. Construct a VHDL code detect a sequence

12. Design Chess clock controller FSM using HDL

13. Design Traffic light controller using HDL

14. Construct Elevator design using HDL code

8 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad – 500 043

Electronics & Communication Engineering

INSTRUCTIONS TO THE STUDENTS

1. Students should come with thorough preparation for the experiment to be conducted.

2. Students should take prior permission from the concerned faculty before availing the leave.

3. Students should come with formals and to be present on time in the laboratory.

4. Students will not be permitted to attend the laboratory unless they bring the practical

record fully completed in all respects pertaining to the experiment conducted in the previous

class.

5. Students will be permitted to attend laboratory unless they bring the observation book

fully completed in all respects pertaining to the experiment conducted in the present class.

6. They should obtain the signature of the staff-in-charge in the observation book after

completing each experiment.

7. Practical record and observation book should be maintained neatly.

9 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad – 500 043

DIGITAL SYSTEM DESIGN LAB SYLLABUS

S. No. List of Experiments Page No.

1 Realization of a Boolean function 29

2 Design of decoder and encoder 32

3 Design of multiplexer and de multiplexer 37

4 Design of code converters 41

5 Full adder and full subtractor design modeling 45

6 Design of 8-bit Arithmetic logic unit 48

7 HDL model for flip flops 52

8 Design of counters 56

9 HDL code for universal shift register 61

10 HDL code for carry look ahead adder 65

11 HDL code to detect a sequence 70

12 Chess clock controller FSM using HDL 75

13 Traffic light controller using HDL 80

14 Elevator design using HDL code 84

10 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad – 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

Electronic design automation (EDA) or electronic computer-aided design software

(ECAD) designs and develops electronic systems such as printed circuit boards

(PCBs) and integrated circuits (ICs). It allows designers to build out different

alternatives and options and compare them to each other. It also generates

manufacturing documentation as part of the specification used to source, fabricate,

and produce PCBs.

The rapidly growing EDA industry is best understood by looking at the definition of

EDA.

Electronics includes anything electronic, from computer chips and cell phones to

controls for automobiles, etc. Everything made by the electronics industry results from

designers using EDA tools and services.

Design is the part of the production cycle where creativity, ingenuity, and new ideas

are most valued. Designers build models to understand the behavior and complex

interactions of millions of constituent parts in their designs to ensure completeness,

correctness, and manufacturability of the final product. Many of the designers in this

field include electrical and software engineers.

Automation demonstrates the increasing complexity in the electronics industry today.

This complexity is enabled by Moore's Law (which states that the number of

transistors in integrated circuits doubles every 18 months), which drives the need for

automation. Engineers need to validate their concepts, model and analyze their

designs, and identify and eliminate problems before making production commitments.

EDA helps ensure correct designs.

Very Large Scale Integration (VLSI)

VLSI is the process of creating an integrated circuit (IC) by combining thousands of

transistors into a single chip. VLSI began in the 1970s when complex semiconductor

and communication technologies were being developed. Before the introduction of

VLSI technology most ICs had a limited set of functions they could perform.

The functionality of electronics equipment‟s and gadgets has achieved a phenomenal

while their physical sizes and weights have come down drastically. The major reason

is due to the rapid advances in integration technologies, which enables fabrication of

millions of transistors in a single Integrated Circuit (IC) or chip. IC is a device having

multiple transistors with interconnects manufactured on a single silicon substrate.

Integration with a complexity of 10‟s of transistors is called Small Scale Integration,

with 100‟s is Medium Scale Integration (MSI), with 1000‟s is Large Scale Integration

(LSI), with 10,000 it is Very Large Scale Integration (VLSI) Systems of systems can

11 | P a g e

be implemented in a VLSI IC. However, with this rise in functionality of VLSI ICs,

design problem has become huge and complex.

To address this complexly issue, after the design specifications are complete almost

all the other steps are automated using CAD tools. However, even designs automated

using CAD tools may have bugs. Also, due to extremely large size of the design space

it is not possible to verify correctness of the design under all possible situations. So

technique are required that can verify, without exercising exhaustive input-output

combinations, that the design meets all the input specifications; this technique is

called formal verification. In VLSI designs millions of transistors are packed into a

single chip. This leads to manufacturing defects and all the chips need to be

physically tested by giving input signals from a pattern generator and comparing

responses using a logic analyzer; this process is called Testing. So, in the process of

manufacturing a VLSI IC there are three broad steps: Design-Verification-Test.

VLSI ICs can be divided into analog, digital or mixed-signal (both analog and digital
on the same chip) based on their functionality.

 Digital ICs can contain logic gates, flip-flops, multiplexers. Work using binary

mathematics to process "one" and "zero" signals.

 Analog ICs, such as current mirrors, voltage followers, filters, OPAMPs etc.
work by processing continuous signals.

 When single IC has both analog and digital components it is called mixed
signal IC e.g, Analog to Digital Converter (ADC).

The automation algorithms and CAD tools are mainly available for digital ICs

because transformation of design specifications to silicon implementation can be

accomplished using logical procedures (which can be converted to algorithms and

tools). However, most of the analog circuits design is like an “art” which is best

performed by designers with “aid” of some CAD tools (which provides feedback to

designer if the manual design is progressing fine etc.)

VLSI Design flow

The VLSI IC circuits design flow is shown in the figure below.

 Specifications comes first, they describe abstractly the functionality, interface,
and the architecture of the digital IC circuit to be designed.

 Architectural design is then created to analyze the design in terms of

functionality, performance, compliance to given standards, and other
specifications.

 RTL Description is done using HDLs. This RTL Description is simulated to

test functionality. From here onwards we need the help of EDA tools.

 RTL Description is then converted to a gate-level netlist using logic synthesis

tools. A gate-level net list is a Description of the circuit in terms of gates and
connections between them, which are made in such a way that they meet the

timing, power and area specifications.

 Finally a physical layout is made, which will be verified and then sent to
fabrication.

12 | P a g e

The Figure provides a more simplified view of the VLSI design flow, taking into

account the various representations, or abstractions of design - behavioral logic,

circuit and mask layout. Note that the verification of design plays a very important

role in every step during this process. The failure to properly verify a design in its

early phases typically causes significant and expensive re-design at a later stage,

which ultimately increases the time-to-market.

Figure 1 VLSI Design Flow

In the following, we will examine design methodologies and structured approaches

which have been developed over the years to deal with both complex hardware and

software projects. Regardless of the actual size of the project, the basic principles of

structured design will improve the prospects of success. Some of the classical

techniques for reducing the complexity of IC design are: Hierarchy, regularity,

modularity and locality.

13 | P a g e

DESIGN STYLES

In 1980s when industry observed the possibility of automating the VLSI

physical design using CAD tools, a new design methodology has been introduced.

This new design methodology was called semi-custom VLSI design, where the design

on silicon is customized as per the required application, reducing the design time and

cost involved.

In comparison with full custom VLSI where the complete layout will be hand drawn

and every cell is designed as per the requirements the semi-custom has the following

advantages.

 Separated design approach, front end and back end

 Reduced cost as the basic cells are reused

 Less design turnaround time.

In today ASIC industry the design is portioned into front end and back end as

explained below.

1. Front end

a. Enter the design in one standard format (which EDA tools can understand)

b. Analyzing the requirements and high level design (identifying various blocks

in design)

c. RTL design evolving the necessary micro architecture for the each block

d. VHDL, Verilog, other HDLs, Netlist etc.

e. Developing necessary test benches for functional verification.

f. Simulation and model verification using standard simulators

g. Integration of all the blocks and top level simulation.

2. Back end

a. Synthesizing the design, fixing any bugs (if any part of code is not

synthesizable)

b. Floor planning as the targeted silicon area

c. Invoking the ASIC back end tools (Mapping extracted Netlist cells to

technology specific cells)

d. Place and root as per the required timing and clock constraints

e. Extraction of models from synthesis outputs

f. Timing simulation and functional verification

g. Sending the design to the FAB and getting the chip manufactured

Introduction to HDL

This section is a brief introduction to hardware design using a Hardware Description

Language (HDL). A language describing hardware is quite different from C, Pascal,

or other software languages. A computer program is dynamic, i.e., sharing the same

resources, allocating resources when needed and not always optimized for maximum

speed, optimal memory management, or lowest resource requirements. The main

focus is functionality, but it is still not uncommon that software programs can behave

quite unexpected. When problems arise, new versions of the programs are distributed

14 | P a g e

by the vendor, usually with a new version number and a higher price tag. The

demands on hardware design are high compared to software. Often it is not possible,

or at least very tricky, to patch hardware after fabrication. Clearly, the functionality

must be correct and in addition how the code is written will affect the size and speed

of the resulting hardware. Each mm2 of a chip costs money, lots of money. The

amount of logic cells, memory blocks and input/output connections will affect the size

of the design and therefore also the manufacturing cost. A software designer using a

HDL has to be careful. The degrees of freedom compared with software design have

dramatically increased and must be taken into account.

HDL simulators are better than gate level simulators for 2 reasons: portable model

development, and the ability to design complicated test benches that react to outputs

from the model under test. Finding a model for a unique component for your

particular gate level simulator can be a frustrating task; with an HDL language you

can always write your own model. Also most gate level simulators are limited to

simple waveform based test benches which complicate the testing of bus and

microprocessor interface circuits.

 Verilog is a great low level language. Structural models are easy to design and

Behavioral RTL code is pretty good. The syntax is regular and easy to remember.

It is the fastest HDL language to learn and use. However Verilog lacks user

defined data types and lacks the interface-object separation of the VHDL's entity-

architecture model.

 VHDL is good for designing behavioral models and incorporates some of the

modern object oriented techniques. It's syntax is strange and irregular, and the

language is difficult to use. Structural models require a lot of code that interferes

with the readability of the model.

15 | P a g e

Xilinx Manual:

1. Introduction

Xilinx Tools is a suite of software tools used for the design of digital circuits

implemented using Xilinx Field Programmable Gate Array (FPGA) or Complex

Programmable Logic Device (CPLD). The design procedure consists of (a) design

entry, (b) synthesis and implementation of the design, (c) functional simulation and

(d) testing and verification. Digital designs can be entered in various ways using the

above CAD tools: using a schematic entry tool, using a hardware description

language (HDL) – Verilog or VHDL or a combination of both. In this lab we will

only use the design flow that involves the use of VerilogHDL.

The CAD tools enable you to design combinational and sequential circuits starting

with Verilog HDL design specifications. The steps of this design procedure are listed

below:

1. Create Verilog design input file(s) using template driveneditor.

2. Compile and implement the Verilog designfile(s).

3. Create the test-vectors and simulate the design (functional simulation) without

using a PLD (FPGA orCPLD).

4. Assign input/output pins to implement the design on a targetdevice.

5. Download bitstream to an FPGA or CPLDdevice.
6. Test design on FPGA/CPLDdevice

A Verilog input file in the Xilinx software environment consists of the following

segments:

1. Header: module name, list of input and output ports.

2. Declarations: input and output ports, registers and wires.

3. Logic Descriptions: equations, state machines and logic functions.

4. End: endmodule

All your designs for this lab must be specified in the above Verilog input format. Note

that thestate diagram segment does not exist for combinational logic designs.

16 | P a g e

EXPERIMENT 1

REALIZATION OF A BOOLEAN FUNCTION

1.1. OBJECTIVE

Design and simulate the HDL code to realize three and four variable Boolean

functions

1.2. RESOURCES

PC installed with Xilinx tool

1.3. PROGRAM LOGIC

A multi variable Boolean function can be implemented through Verilog HDL in two

ways. First one is using primitive gates and the second one is using assign

statements.

Gate primitives are predefined in Verilog, which are ready to use. They are

instantiated like modules. There are two classes of gate primitives: Multiple input

gate primitives and Single input gate primitives. Multiple input gate primitives

include and, nand, or, nor, xor, and xnor. These can have multiple inputs and a single

output. Single input gate primitives include not, buf, notif1, bufif1, notif0, and bufif0.

These have a single input and one or more outputs.

Assign statements are used to define signal values as Boolean expressions. In the

example: out AS
'
 BS , out is defined by the function AS

'
 BS , but must be

written in Verilog using the AND operator (“&”), OR operator (“|”), the XOR

operator (“^”) and the NOT operator (“~”). It is important to remember that an

assignment statement is identical to the corresponding schematic with gates wired to

the inputs and outputs to define the Boolean function. In fact, assign statements are

known as “continuous assignments” because, unlike assignment statements in a

regular programming language, they are executed continuously, just like the

corresponding gates in a schematic.

1.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s input/output.

2. Write the description of given Boolean function using operators or by using the

built in primitive gates.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output

with the corresponding truth table.

17 | P a g e

1.5. CODE

// logic gates

library ieee;

use ieee.std_logic_1164.all;

entity vhdl3_1a is port(a, b :in std_logic;

 x :out std_logic);

end vhdl3_1b;

 architecture behavior of vhdl3_1c is

begin

 x <= a xor b;

 end behavior;

library ieee;

use ieee.std_logic_1164.all;

entity vhdl3_1a is port(a, b :in std_logic;

 x :out std_logic);

end vhdl3_1b;

 architecture behavior of vhdl3_1c is

begin

 x <= a and b;

 end behavior;

library ieee;

use ieee.std_logic_1164.all;

entity vhdl3_1a is port(a, b :in std_logic;

 x :out std_logic);

end vhdl3_1b;

 architecture behavior of vhdl3_1c is

begin

 x <= a or b;

 end behavior;

library ieee;

use ieee.std_logic_1164.all;

entity vhdl3_1a is port(a, b :in std_logic;

 x :out std_logic);

end vhdl3_1b;

 architecture behavior of vhdl3_1c is

begin

 x <= a nand b;

 end behavior;

library ieee;

use ieee.std_logic_1164.all;

entity vhdl3_1a is port(a, b :in std_logic; x :out std_logic);

end vhdl3_1b;

 architecture behavior of vhdl3_1c is

begin

18 | P a g e

 x <= a nor b;

 end behavior;

library ieee;

use ieee.std_logic_1164.all;

entity vhdl3_1a is port(a, b :in std_logic;

 x :out std_logic);

end vhdl3_1b;

 architecture behavior of vhdl3_1c is

begin

 x <= a xnor b;

 end behavior;

library ieee;

use ieee.std_logic_1164.all;

entity vhdl3_1a is port(a :in std_logic;

 x :out std_logic);

end vhdl3_1b;

 architecture behavior of vhdl3_1c is

begin

 x <= not a;

 end behavior;

1.6. PRE LAB QUESTIONS

1. What is the difference between main module and test bench module?

2. What are the different tools available for simulation?

3. What is meant by universal gate? List them.

1.7. LAB ASSIGNMENT

1. Realize all basic gates using NAND gate.

2. Realize all basic gates using NOR gate.

3. Write structural level program for a simple gate level circuit.

4. Write code to simulate the following expression in dataflow and structural

modeling.

F(w,x,y,z) = Ʃ(1,5,8, 9, 12, 13, 14)

1.8. POST LAB QUESTIONS

1. What are the two main data types in Verilog HDL?

2. Name two logic primitive gates.

3. What statement is primarily used to describe a design in the dataflow style?

4. What is the difference between unary and logical operators?

5. Write the different types of port modes.

19 | P a g e

2.1. OBJECTIVE

EXPERIMENT 2

DESIGN OF DECODER AND ENCODER

To design and simulate the HDL code for the following combinational circuits

a. 3 to 8 Decoder

b. 8 to 3 Encoder (With priority and without priority)

2.2. RESOURCES

PC installed with Xilinx tool

2.3. PROGRAM LOGIC

a. Program logic for Decoder

A decoder is a multiple-input, multiple-output logic circuit which converts coded

inputs into coded outputs, where the input and output codes are different. The

input code generally has fewer bits than the output code. Each input code word

produces a different output code word, i.e., there is one-to-one mapping from

input code words into output code words. This one-to-one mapping can be

expressed in a truth table.

The most common decoder circuit is an n-to-2
n
 decoder or binary decoder. Such

a decoder has an n-bit binary input code and a 1-out-of-2
n
 output code. A binary

decoder is used when you need to activate exactly one of 2
n
outputs based on an n-

bit input value.

Figure 2.1 shows the general structure of the 3 to 8 decoder circuit and its truth

table.

Figure 2.1: General Structure of 3 to 8 Decoder and its truth table

20 | P a g e

b. Program logic for Encoder

An encoder has M input and N output lines. Out of M input lines only one is

activated at a time and produces equivalent code on output N lines. If a device

output code has fewer bits than the input code has, the device is usually called an

encoder. Example Octal-to-Binary take 8 inputs and provides 3 outputs. For an 8-

to-3 binary encoder with inputs D0-D7 the logic expressions of the outputs XYZ

are obtained by using the Table 3.1.

X = D4 + D5 + D6 + D7

Y= D2 + D3 + D6 + D7

Z = D1 + D3 + D5 + D7

Table 3.1: Truth Table for 8-3 Encoder with D7-D0 inputs

INPUTS OUTPUTS

D7 D6 D5 D4 D3 D2 D1 D0 X Y Z

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

One of the main disadvantages of standard digital encoders is that they can

generate the wrong output code when there is more than one input present at

logic level “1”.

The Priority Encoder solves the problems mentioned above by allocating a

priority level to each input. The priority encoders output corresponds to the

currently active input which has the highest priority. So when an input with a

higher priority is present, all other inputs with a lower priority will be ignored.

The priority encoder comes in many different forms with an example of an 8-

input priority encoder along with its truth table shown in Figure 2.2

21 | P a g e

Figure 2.2: General Structure of 3 to 8 Decoder and its truth table

Decoder or encoder can be designed using HDL through its truth table in two ways: one is

using gate level modeling and another is by behavioral model.

2.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s input/output.

2. Implement the logic for decoder or encoder using behavioral or gate level model.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output

with the corresponding truth table.

2.5. CODE

// 8 to 3 Encoder without priority

entity encoder is

Port (A:in std_logic_vector(7 downto 0);

 B:out std_logic_vector(2 downto 0));

end encoder;

architecture Behavioral of encoder is

begin

process(A)

begin

if A="10000000" then B<="000";

elsif A="01000000" then B<="001";

elsif A="00100000" then B<="010";

elsif A="00010000" then B<="011";

elsif A="00001000" then B<="100";

elsif A="00000100" then B<="101";

elsif A="00000010" then B<="110";

elsif A="00000001" then B<="111";

else B<="ZZZ";

end if;

end process;

end Behavioral;

22 | P a g e

// 3 to 8 decoder

entity decoder is

Port (A:in std_logic_vector(2 downto 0);

 B:out std_logic_vector(7 downto 0));

end decoder;

architecture Behavioral of decoder is

begin

process(A)

begin

if A="000" then B<="00000001";

elsif A="001" then B<="00000010";

elsif A="010" then B<="00000100";

elsif A="011" then B<="00001000";

elsif A="100" then B<="00010000";

elsif A="101" then B<="00100000";

elsif A="110" then B<="01000000";

elsif A="111" then B<="10000000";

else B<="11111111";

end if;

end process;

end Behavioral;

2.6. PRE LAB QUESTIONS

1. What is a decoder?

2. What for enable inputs are used in decoder?

3. What are the applications of decoder?

4. What is an encoder?

5. What is a priority encoder?

6. How many input and output lines are there for a 128x7 encoder.

2.7. LAB ASSIGNMENT

1. Implement full adder circuit using decoder and two OR gates.

2. Implement 3x8 decoder using 2x4 decoder and additional logic.

3. Construct a 4x16 decoder using two 3x8 decoder and additional logic. Show the

schematic diagram neatly?

4. Design 2-to-4 decoder using only NOR gates.

5. Construct a 5 x 32 decoder with four 3x 8 decoders with enable and one 2 x 4

decoder.

6. Write a Verilog code to implement Octal-to-Binary Encoder?

23 | P a g e

7. Write a Verilog code to implement a 8x3 Priority Encoder?

8. Write a Verilog code to implement Decimal-to-BCD Encoder?

2.8. POST LAB QUESTIONS

1. What is the key difference between an initial statement and an always statement?

2. Name two kinds of assignments that you can have in a Verilog HDL model.

3. Create a Verilog module named h6to64 that represents a 6-to-64 binary decoder. Use

the treelike structure in which the 6-to-64 decoder is built using nine instances of the

3to8 decoder.

4. Write code for a parallel encoder and a priority encoder.

5. What is the difference between wire and reg data type ?

6. What is the difference between the following two lines of Verilog code?

#5 a = b;

a = #5 b;

7. What is the use of Priority Encoder?

24 | P a g e

EXPERIMENT 3

DESIGN OF MULTIPLEXER AND DEMULTIPLEXER

3.1. OBJECTIVE

To write HDL codes for an 8X1 multiplexer and 1X8 demultiplexer and verify its

functionality.

3.2. RESOURCES

PC installed with Xilinx tool

3.3. PROGRAM LOGIC

In the large-scale-digital systems, a single line is required to carry on two or more

digital signals – and, of course! At a time, one signal can be placed on the one line.

But, what is required is a device that will allow us to select; and, the signal we wish

to place on a common line, such a circuit is referred to as multiplexer.

The function of a multiplexer is to select the input of any „n‟ input lines and feed that

to one output line. The function of a de-multiplexer is to inverse the function of the

multiplexer and the shortcut forms of the multiplexer. The de-multiplexers are mux

and demux. Some multiplexers perform both multiplexing and de-multiplexing

operations. The main function of the multiplexer is that it combines input signals,

allows data compression, and shares a single transmission channel.

Figure 3.1 Multiplexer and De-multiplexer

25 | P a g e

The output value of a 8x1 multiplexer can be represented using the equation (3.1)

Y S2 S1 S0 Io S2 S1S0 I1 S2S1 S0 I2 S2S1S0 I3 S2 S1 S0 I4 S2 S1S0 I5 S2S1 S0 I6 S2S1S0 I7

… (3.1)

For the combination of selection input, the data line is connected to the output line.

The 8x1 multiplexer requires 8 AND gates, one OR gate and 3 selection lines. As an

input, the combination of selection inputs are giving to the AND gate with the

corresponding input data lines.

In a similar fashion, all the AND gates are given connection. In this 8x1 multiplexer,

for any selection line input, one AND gate gives a value of 1 and the remaining all

AND gates give 0. And, finally, by using OR gate, all the AND gates are added; and,

this will be equal to the selected value.

The demultiplexer is also called as data distributors as it requires one input, 3

selected lines and 8 outputs. De-multiplexer takes one single input data line, and then

switches it to any one of the output line. 1-to-8 demultiplexer circuit diagram is

shown below; it uses 8 AND gates for achieving the operation. The input bit is

considered as data D and it is transmitted to the output lines.

Figure 3.2 Demultiplexer circuit diagram

26 | P a g e

3.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s input/output.

2. Write the description of the multiplexer or demultiplexer using data flow model

or gate level model

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output

with the corresponding truth table.

3.5. CODE

// 8:1 multiplexer library ieee;

use ieee.std_logic_1164.all;

entity mux8_1 is

port(din:in std_logic_vector(7 downto 0);sel:in

std_logic_vector(2 downto 0);dout:out std_logic);

end mux8_1;

architecture beh123 of mux8_1 is

begin

process(din,sel)

begin

case sel is

when"000"=>dout<=din(0);

when"001"=>dout<=din(1);

when"010"=>dout<=din(2);

when"011"=>dout<=din(3);

when"100"=>dout<=din(4);

when"101"=>dout<=din(5);

when"110"=>dout<=din(6);

when"111"=>dout<=din(7);

when others=>

dout<='z';

end case;

end process;

end beh123;

//1:8 Demultiplexer

architectural behavioral of dmux1 is

begin

y(0)<=f when s="000"else'0';

y(1)<=f when s="001"else'0';

y(2)<=f when s="010"else'0';

y(3)<=f when s="011"else'0';

y(4)<=f when s="100"else'0';

y(5)<=f when s="101"else'0';

y(6)<=f when s="110"else'0';

y(7)<=f when s="111"else'0';

end behavioral;

demultiplexer:

27 | P a g e

3.6. PRE LAB QUESTIONS

1. What is a multiplexer?

2. What is the relationship between input lines and select lines?

3. Why a multiplexer is called a data selector?

4. Mention the applications of multiplexer and demultiplexer.

3.7. LAB ASSIGNMENT

1. Implement a full adder with two 4x1 multiplexers.

2. Implement 2 to 4 decoder using 1x4 demultiplexer.

3. Implement a full subtractor with two 4x1 multiplexers.

4. Realize 8x1 mux using 4x1 multiplexer.

5. Implement half adder using 2x1 multiplexer.

6. F(W , X ,Y, Z) m (0,1,3,5, 7) using 8x1 multiplexer.

7. Write code for 1x4 Multiplexer using different coding methods.

3.8. POST LAB QUESTIONS

1. Can a multiplexer be used to realize a logic function?

2. Differentiate between decoder and demultiplexer.

3. What are the applications of multiplexers?

4. Design an OR gate from 2:1 MUX.

5. Design a D and T flip flop using 2:1 multiplexer

6. Implement the function f(A,B,C)= Σm(0,1,3,5,7) by using multiplexer

28 | P a g e

EXPERIMENT 4

DESIGN OF CODE CONVERTERS

4.1. OBJECTIVE

To Design and simulate the HDL code for the following combinational circuits

a. 4 - Bit binary to gray code converter

b. 4 - Bit gray to binary code converter

c. Comparator

4.2. RESOURCES

PC installed with Xilinx tool

4.3. PROGRAM LOGIC

Binary to gray code converter logic

This conversion method strongly follows the EX-OR gate operation between binary

bits. The steps to perform binary to grey code conversion are given bellow.

a. To convert binary to grey code, bring down the most significant digit of the given

binary number, because, the first digit or most significant digit of the grey code

number is same as the binary number.

b. To obtain the successive grey coded bits to produce the equivalent grey coded

number for the given binary, add the first bit or the most significant digit of

binary to the second one and write down the result next to the first bit of grey

code, add the second binary bit to third one and write down the result next to the

second bit of grey code, follow this operation until the last binary bit and write

down the results based on EX-OR logic to produce the equivalent grey coded

binary.

Gray to binary code converter logic

This conversion method also follows the EX-OR gate operation between grey &

binary bits. The steps to perform grey code to binary conversion are given below.

a. To convert grey code to binary, bring down the most significant digit of the given

grey code number, because, the first digit or the most significant digit of the grey

code number is same as the binary number.

29 | P a g e

b. To obtain the successive second binary bit, perform the EX-OR operation

between the first bit or most significant digit of binary to the second bit of the

given grey code.

c. To obtain the successive third binary bit, perform the EX-OR operation between

the second bit or most significant digit of binary to the third MSD (most

significant digit) of grey code and so on for the next successive binary bits

conversion to find the equivalent.

4.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s input/output.

2. Write the description of the code converter using data flow model or gate level

model.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output

with the required one.

4.5. CODE

// binary to gray code converter

 entity btog is

 Port (b : in STD_LOGIC_VECTOR (3 downto 0);

 g : out STD_LOGIC_VECTOR (3 downto 0));

end btog;

architecture Dataflow of btog is

begin

g(3)<=b(3);

g(2)<=b(3) xor b(2);

g(1)<=b(2) xor b(1);

g(0)<=b(1) xor b(0);

end Dataflow
//gray to binary converter

entity gtob is

 Port (g : in STD_LOGIC_VECTOR (3 downto 0);

 b : inout STD_LOGIC_VECTOR (3 downto 0));

end gtob;

architecture Behavioral of gtob is

begin

b(3)<=g(3);

b(2)<=b(3)xor g(2);

b(1)<=b(2)xor g(1);

b(0)<=b(1)xor g(0);

end Behavioral;

30 | P a g e

4.6. PRE LAB QUESTIONS

1. What is a code converter? List some of the code converters.

2. What are the typical applications of gray code?

3. Distinguish between the weighted and non-weighted codes. Give examples.

4. Realize the Boolean expressions for binary to gray code conversion

5. Realize the Boolean expressions for gray to binary code conversion

4.7. LAB ASSIGNMENT

1. Design BCD to Excess-3 code converter.

2. Design a BCD to seven segment code converter.

3. Design octal to binary code converter.

4.8. POST LAB QUESTIONS

1. What is the difference between blocking and nonblocking assignments?

2. What is the difference between casex and case statements?

3. What is this `timescale compiler directive?

4. What is sensitivity list?

31 | P a g e

EXPERIMENT 5

FULL ADDER AND FULL SUBTRACTOR DESIGN MODELING

5.1. OBJECTIVE

To write a HDL code to describe the functions of a full Adder and subtractor.

5.2. RESOURCES

PC installed with Xilinx tool

5.3. PROGRAM LOGIC

A full adder consists of 3 inputs and 2 outputs. Fig 7.1 shows truth table of full adder.

Use “assign” keyword to represent design in dataflow style. The output signal

expressions can be obtained from the truth table using K-maps.

Figure 5.1 Logic diagram for 1-bit full adder

Table 5.1 Truth table for 1-bit full adder

Inputs Outputs

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

This is not practical to perform subtraction only between two single bit binary

numbers. Instead binary numbers are always multibits. The subtraction of two binary

numbers is performed bit by bit from right (LSB) to left (MSB). During subtraction of

same significant bit of minuend and subtrahend, there may be one borrow bit along

32 | P a g e

with difference bit. This borrow bit (either 0 or 1) is to be added to the next higher

significant bit of minuend and then next corresponding bit of subtrahend to be

subtracted from this. It will continue up to MSB. The combinational logic circuit

performs this operation is called full subtractor. Hence, full subs tractor is similar to

half subs tractor but inputs in full subs tractor are three instead of two.

Two inputs are for the minuend and subtrahend bits and third input is for borrowed

which comes from previous bits subtraction. The outputs of full adder are similar to

that of half adder, these are difference (D) and borrow (b).

The combination of minuend bit (A), subtrahend bit (B) and input borrow (bi) and

their respective differences (D) and output borrows (b) are represented in a truth table

5.2. The output signal expressions can be obtained from the truth table using K-maps.

Table 5.1 Truth table for 1-bit subtractor adder

Inputs Outputs

A B C (Borrow in) Difference Borrow out

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

5.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s input/output.

2. Write the description of the full adder in 3 styles.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output

with the required one.

5.5. CODE

// full adder

entity FULLADDER is

Port(A,B,C_in:in std_logic;

 S,C_out:out std_logic);

end FULLADDER;

architecture Behavioral of FULLADDER is

33 | P a g e

begin

Process(A,B,C_in)

begin

S<=(A xor B) xor C_in;

C_out<=(A and B) or (C_in and (A xor B));

end Process;

//full subtractor

entity FULLSUBTRACTOR is

Port(A,B,C:in std_logic;

 D,B_out:out std_logic);

end FULLSUBTRACTOR;

architecture Behavioral of FULLSUBTRACTOR is

begin

Process(A,B,C)

begin

D<=A xor B xor C;

B_out<=((not A) and B) or (C and (A xnor B));

end Process;

end Behavioral;

5.6. PRE LAB QUESTIONS

1. What is a half adder?

2. Write the sum and carry expression for half adder.

3. What is a full adder?

4. Write the sum and carry expression for 1-bit full adder.

5. Write the difference and barrow out expressions for 1-bit subtractor

6. What is a parallel adder/subtractor?

5.7. LAB ASSIGNMENT

1. Design a 4-bit ripple carry adder using full adders.

2. Implement full adder using decoder.

3. Implement full subtractor using decoder.

4. Implement a 4-bit adder/subtractor.

5. Design a full adder using minimum number of NAND gates.

5.8. POST LAB QUESTIONS

1. Realize a full adder using two half adders.

2. What is the amount of delay involved in ripple carry adder?

3. Compare serial adder and parallel adder with respect to speed and complexity.

4. Implement a single circuit which can perform both addition and subtraction

operations on binary input bits.

34 | P a g e

EXPERIMENT 6

DESIGN OF 8-BIT ARITHMETIC LOGIC UNIT

6.1. OBJECTIVE

To design a model to implement 8-bit ALU functionality

6.2. RESOURCES

PC installed with Xilinx tool

6.3. PROGRAM LOGIC

An arithmetic logic unit (ALU) is a combinational digital electronic circuit that

performs arithmetic and bitwise operations on integer binary numbers. This is in

contrast to a floating-point unit (FPU), which operates on floating point numbers. An

ALU is a fundamental building block of many types of computing circuits, including

the central processing unit (CPU) of computers, FPUs, and graphics processing units

(GPUs). A single CPU, FPU or GPU may contain multiple ALUs.

Figure 6.1 Arithmetic logic unit block diagram

The inputs to an ALU are the data to be operated on, called operands, and a code

(opcode) indicating the operation to be performed and, optionally, status information

from a previous operation; the ALU's output is the result of the performed operation.

In many designs, the ALU also exchanges additional information with a status

register, which relates to the result of the current or previous operations

A number of basic arithmetic and bitwise logic functions are commonly supported by

ALUs. Basic, general purpose ALUs typically includes these operations in their

repertoires:

35 | P a g e

 Arithmetic operations

 Bitwise logical operations

 Bit shift operations

In this lab, students have to design an 8-bit ALU to implement the following

operations:

Table 1: ALU Instructions

Control Instruction Operation

000 Add Ouput<= A+B+Cin (Cout is carry)

001 Sub Output <= A-B-C (Cou is barrow)

010 Or Output <= A or B

011 And Output <= A and B

100 Shl Output <= A[7:0] & „0‟

101 Shr Output <= „0‟ & A[7:1]

110 Rol Output <= A[2:0] & A[7]

111 Ror Output <= A[0] & A[7:1]

Table 1 also illustrates the encoding of the control input

The 4 - bit ALU has the following inputs:

 A: 8-bit input

 B: 8-bit input

 Cin: 1-bit input

 Output: 8-bit output

 Cout: 1-bit output

 Control: 3-bit control input

The following points should be taken care of:

 Use a case statement (or a similar „combinational‟ statement) that checks the

input combination of “Code” and acts on A, B, and Cin as described in

Table1.

 The above circuit is completely combinational. The output should change as

soon as the code combination or any of the input changes.

 You can use arithmetic and logical operators to realize your design.

6.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s input/output.

2. Write the description of the ALU by using case statements.

3. Create another module referred as test bench to verify the functionality.

36 | P a g e

4. Follow the steps required to simulate the design and compare the obtained output

with the required one.

6.5. CODE

//8 bit ALU

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx leaf cells in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity alu is

 Port (p,q : in STD_LOGIC_VECTOR (7 downto 0);

 r : in STD_LOGIC_VECTOR (2 downto 0);

 result : out STD_LOGIC_VECTOR (7 downto 0));

end alu;

architecture Behavioral of alu is

begin

process(p,q,r)

begin

case r is

when "000" => result<=p+q;

when "001" => result<=p-q;

when "010" => result<=p and q;

when "011" => result<=p or q;

when "100" => result<=p xor q;

when "101" => result<=p nor q;

when "110" => result<=p nand q;

when "111" => result<=not p;

when others => result<="00000000";

end case;

end process;

end Behavioral;

6.6. PRE LAB QUESTIONS

1. State the basic units of the computer. Name the subunits that make up the CPU,

and give the function of each of the units.

2. Give the description of computer architecture.

3. What are arithmetic operations

37 | P a g e

4. What are bitwise logical operations

5. What are bit shift operations

6.7. LAB ASSIGNMENT

1. Design the 4-bit ALU

2. Write a HDL code to implement basic arithmetic operations using ALU.

6.8. POST LAB QUESTIONS

1. Write a HDL code to implement bitwise logical operations using ALU.

2. Write a HDL code to implement bit shift operations using ALU.

38 | P a g e

D FF

D Qn

1 0

0 0

T FF

T Qn

0 Q

1 Qn

SR FF

S R Qn

0 0 Qn

0 1 0

1 0 1

1 1 ?

JK FF

J K Qn

0 0 Qn

0 1 0

1 0 1

1 1 Qn

EXPERIMENT 7

HDL MODEL FOR FLIP FLOPS

7.1. OBJECTIVE

To write HDL codes for SR, JK, D, T flip flops and verify its functionality.

7.2. RESOURCES

PC installed with Xilinx tool

7.3. PROGRAM LOGIC

Each flip-flop stores a single bit of data, which is emitted through the Q output on the

output section side. Normally, the value can be controlled via the inputs to the input

side. In particular, the value changes when the clock input, marked by a triangle on

each flip-flop, rises from 0 to 1 (or otherwise as configured); on this rising edge, the

value changes according to the tables below.

Table 7.1 Truth tables of D, T, SR, JK flip flops

Another way of describing the different behavior of the flip-flops is in English text.

D Flip-Flop: When the clock triggers, the value remembered by the flip-flop

becomes the value of the D input (Data) at that instant.

T Flip-Flop: When the clock triggers, the value remembered by the flip-flop either

toggles or remains the same depending on whether the T input (Toggle) is 1 or 0.

J-K Flip-Flop: When the clock triggers, the value remembered by the flip-flop

toggles if the J and K inputs are both 1, remains the same if they are both 0; if they

are different, then the value becomes 1 if the J (Jump) input is 1 and 0 if the K (Kill)

input is 1.

S-R Flip-Flop: When the clock triggers, the value remembered by the flip-flop

remains unchanged if R and S are both 0, becomes 0 if the R input (Reset) is 1, and

becomes 1 if the S input (Set) is 1. The behavior in unspecified if both inputs are 1.

39 | P a g e

7.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s input/output.

2. Write the description of the flip flops using behavioral model

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output

with the required one.

7.5. CODE

//SR flipflop

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

 use IEEE.STD_LOGIC_ARITH.ALL;

 use IEEE.STD_LOGIC_UNSIGNED.ALL;

 entity sr_ff is

port(s,r,clk,clr : in std_logic;

 q:inout std_logic:=‟0‟;

qbar : out std_logic);

 end sr_ff;

 architecture beh of sr_ff is

begin

 process(clk)

 begin

 if(clk'event and clk='1') then

if(clr='1') then

q<='0'; qbar<='1';

 elsif(clr='0' and s='0' and r='0')then

q<=q;qbar<=not q;

elsif(s='0' and r='1')then

q<='0';qbar<='1';

 elsif(s='1' and r='0')then

q<='1';qbar<='0';

else q<='Z';qbar<='Z';

end if;

end if;

end process;

end behavioral;

//JK flipflop

library IEEE;
use

IEEE.STD_LOGIC_1164.AL

L; use

IEEE.STD_LOGIC_ARITH.

ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

40 | P a g e

entity jkff is
Port (jk : in STD_LOGIC_VECTOR(1

downto 0); Clk,clr : in STD_LOGIC;

q : inout STD_LOGIC:='0');

end jkff;

architecture Behavioral

of jkff is begin

process(

clk,jk)

begin

if(clk'event and clk='1') then

if(clr='1')then q<='0';

else
case jk is
when "00"=>q<=q; when

"01"=>q<='0'; when

"10"=>q<='1';

when "11"=>q<= not q; when

others=>null;

end case;

end if;

end if;

end process;

end Behavioral;

//D flipflop

library IEEE;
use

IEEE.STD_LOGIC_1164.AL

L; use

IEEE.STD_LOGIC_ARITH.A

LL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dff is
Port (d : in

STD_LOGIC; clk : in

STD_LOGIC; clr: in

STD_LOGIC;

q : inout

STD_LOGIC:=‟0‟

qbar:out std_logic);
end dff;

architecture Behavioral

of dff is begin

process(clk,

clr) begin

if(clk'event and

41 | P a g e

clk='1') then if clr='1'

then q<='0';

else q<=d; qbar<=

not d; end if;
end if;
endprocess;

end Behavioral;

//T flipflop

library IEEE;
use

IEEE.STD_LOGIC_1164.AL

L; use

IEEE.STD_LOGIC_ARITH.

ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity tff is
Port (t : in

STD_LOGIC; clk,clr : in

STD_LOGIC; q : inout

STD_LOGIC:='0' qbar:

out STD-LOGIC);

end tff;

architecture

Behavioral of tff is

begin

proces

s(clk,t

)

begin

if(clk'event and clk='1') then

if(clr=‟1‟)then

q<=‟0‟;qbar<=‟1‟;

elsif(t='0')then

q<=q;qbar<=not q; else q<=not q;qbar<=q;

if(clk'event and clk='1')

 then if(clr=‟1‟)

then q<=‟0‟;

qbar<=‟1‟;

elsif(t='0')

then q<=q;

qbar<=not q; else q<=not

q;qbar<=q;

end if;

 end if;

end process;

end

Behavioral;

42 | P a g e

7.6. PRE LAB QUESTIONS

1. Distinguish between latch and edge triggered flip-flop?

2. What is the cause for the race around phenomenon in a J - K flip-flop?

3. What is meant by triggering of a flip-flop?

4. What do you mean by clock skew?

5. What is master-slave flip-flop?

7.7. LAB ASSIGNMENT

1. Convert a given J-K flip-flop in to a D flip-flop using additional logic if

necessary?

2. Convert a given J-K flip-flop in to a T flip-flop using additional logic if

necessary?

3. Convert a given D flip-flop in to a T flip-flop using additional logic if necessary?

4. Implement an asynchronous reset JK FF.

7.8. POST LAB QUESTIONS

1. What is use of characteristic and excitation table?

2. How is a JK flip flop made to toggle?

3. Differentiate between combinational and sequential circuits.

43 | P a g e

EXPERIMENT 8

DESIGN OF COUNTERS

8.1. OBJECTIVE

To write HDL codes for the following counters.

a. Binary counter

b. BCD counter (Synchronous reset and asynchronous reset)

8.2. RESOURCES

PC installed with Xilinx tool

8.3. PROGRAM LOGIC

Counter is a sequential circuit. A digital circuit which is used for counting pulses is

known as counter. Counter is the widest application of flip-flops. It is a group of flip-

flops with a clock signal applied. Counters are of two types.

 Asynchronous or ripple counters.

 Synchronous counters.

Asynchronous counters are called as ripple counters, the first flip-flop is clocked

by the external clock pulse and then each successive flip-flop is clocked by the

output of the preceding flip-flop. The term asynchronous refers to events that do not

have a fixed time relationship with each other. An asynchronous counter is one in

which the flip-flops within the counter do not change states at exactly the same time

because they do not have a common clock pulse

In synchronous counters, the clock inputs of all the flip-flops are connected together

and are triggered by the input pulses. Thus, all the flip-flops change state

simultaneously (in parallel).

A counter is a register capable of counting the number of clock pulses arriving at its

clock input. Count represents the number clock pulses arrived. A specified sequence

of states appears as the counter output. The name counter is generally used for

clocked sequential circuit whose state diagram contains a single cycle. The modulus

of a counter is the number of states in the cycle. A counter with m states is called a

modulo-m counter or divide-by-m counter. A counter with a non-power-of-2 modulus

has extra states that are not used in normal operation. There are two types of counters,

synchronous and asynchronous. In synchronous counter, the common clock is

connected to all the flip-flops and thus they are clocked simultaneously.

44 | P a g e

Fig. 8.1 General structure of a counter’s state diagram – a single cycle

Asynchronous Decade Counters

The modulus is the number of unique states through which the counter will

sequence. The maximum possible number of states of a counter is 2
n
where n

is the number of flip-flops. Counters can be designed to have a number of

states in their sequence that is less than the maximum of 2
n
. This type of

sequence is called a truncated sequence. One common modulus for counters with

truncatedsequences is 10 (Modules10). A decade counter with a count sequence

of zero (0000) through 9 (1001) is a BCD decade counter because its 10-state

sequence produces the BCD code. To obtain a truncated sequence, it is necessary to

force the counter to recycle before going through all of its possible states. A decade

counter requires 4flip-flops. One way to make the counter recycle after the count of 9

(1001) is to decode count 10 (1010) with a NAND gateand connect the output

of the NAND gate to the clear (CLR) inputs of the flip-flops, as shown in Figure

8.1

Figure 8.2 Asynchronous Decade Counter

45 | P a g e

 Synchronous Decade Counters

Figure 8.3 Asynchronous Decade Counter

It can be seen from Figure 8.2, that the external clock pulses (pulses to be counted)

are fed directly to each of the J-K flip-flops in the counter chain and that both the J

and K inputs are all tied together in toggle mode, but only in the first flip-flop, flip-

flop FFA (LSB) are they connected HIGH, logic “1” allowing the flip-flop to toggle

on every clock pulse. Then the synchronous counter follows a predetermined

sequence of states in response to the common clock signal, advancing one state for

each pulse.

The J and K inputs of flip-flop FFB are connected directly to the output QA of flip-

flop FFA, but the J and K inputs of flip-flops FFC and FFD are driven from separate

AND gates which are also supplied with signals from the input and output of the

previous stage. These additional AND gates generate the required logic for the JK

inputs of the next stage.

If we enable each JK flip-flop to toggle based on whether or not all preceding flip-

flop outputs (Q) are “HIGH” we can obtain the same counting sequence as with the

asynchronous circuit but without the ripple effect, since each flip-flop in this circuit

will be clocked at exactly the same time.

8.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s input/output.

2. Write the description of the counter to count required number of states and to

satisfy its conditions.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output

with the required one.

46 | P a g e

8.5. CODE

// binary counter

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.numeric_STD.ALL;

entity COUNTER is

Port (clk,res:IN STD_LOGIC;

 count:INOUT STD_LOGIC_VECTOR(3 downto 0));

end COUNTER;

architecture Behavioral of COUNTER is

begin

Process(clk,res)

begin

if (res='1') then

count<="0000";

elsif (clk'event and clk='1') then

count<=count+1;

end if;

end process;

end Behavioral;

//asynchrolnous counter using jk flipflop

library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity jkc is

 port (clock : in std_logic;

 reset : in std_logic;

 count : out std_logic_vector(3 downto 0)

);

 end jkc;

 architecture rtl of jkc is

 component jkff

 port(

 clock : in std_logic;

 reset : in std_logic;

 j : in std_logic;

 k : in std_logic;

 q : out std_logic

);

 end component;

 signal temp : std_logic_vector(3 downto 0) := "0000";

47 | P a g e

 begin

 d0 : jkff

 port map (

 reset => reset,

 clock => clock,

 j => '1',

 k => '1',

 q => temp(3)

);

 d1 : jkff

 port map (

 reset => reset,

 clock => temp(3),

 j => '1',

 k => '1',

 q => temp(2)

);

 d2 : jkff

 port map (

 reset => reset,

 clock => temp(2),

 j => '1',

 k => '1',

 q => temp(1)

);

 d3 : jkff

 port map (

 reset => reset,

 clock => temp(1),

 j => '1',

 k => '1',

 q => temp(0)

);

 count(3) <= temp(0);

 count(2) <= temp(1);

 count(1) <= temp(2);

 count(0) <= temp(3);

 end rtl;

8.6. PRE LAB QUESTIONS

1. How many number of flip-flops required in a decade counter?

2. How many number of flip-flops required in a Mod – N Counter?

3. What is the difference between synchronous and asynchronous counters?

4. An n stage ripple counter can count up to .

48 | P a g e

8.7. LAB ASSIGNMENT

1. Design and implement a synchronous 3 – bit up/down counter using J-K flip-

flops.

2. Implement a ring counter.

3. Implement a Johnson counter.

4. Design a 4-bit ripple counter and verify its functionality.

8.8. POST LAB QUESTIONS

1. What is an asynchronous counter?

2. How is it different from a synchronous counter?

3. What are the advantages of synchronous counters?

4. Design mod-5 synchronous counter using T FF.

5. What is a decade counter?

6. For how many clock pulses the final output of a modulus 8 counter occur?

7. How the up counter can be made to work as down counter?

49 | P a g e

EXPERIMENT 9

HDL CODE FOR UNIVERSAL SHIFT REGISTER

9.1. OBJECTIVE

Ro design and simulate the HDL code for universal shift register.

9.2. RESOURCES

PC installed with Xilinx tool

9.3. PROGRAM LOGIC

Universal Shift Register is a register which can be configured to load and/or retrieve

the data in any mode (either serial or parallel) by shifting it either towards right or

towards left. In other words, a combined design of unidirectional (either right- or left-

shift of data bits as in case of SISO, SIPO, PISO, PIPO) and bidirectional shift

register along with parallel load provision is referred to as universal shift register.

Figure 9.1 N-Bit Universal Shift register

The working of this shift register is explained by the Table 9.1. The corresponding

truth table and the wave forms are given by Table 9.2.

50 | P a g e

Table 9.1 Functional table for n-bit universal shift register

Select lines
Functionality

S0 S1

0 0
No change for any number of clock cycles as the outputs of the flip-
flops are back-fed to themselves

0 1
Data bits within the register shift right for each clock tick with the
serial input bits being provided at D1 via MUX1

1 0
Data bits within the register shift left for each clock tick with the serial
input bits being provided at Dn via MUXn

1 1
Bits of the data word to be stored are fed in parallel format through pin
number 3 of each MUX at the rising edge of the clock

Table 9.2 Truth table for n-bit universal shift register

9.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s input/output.

2. Write the description of the universal shift register.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output

with the required one.

51 | P a g e

9.5. CODE

//universal shift register

entity USR is

Port (clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 sir : in STD_LOGIC;

 sil : in STD_LOGIC;

 d : in STD_LOGIC_VECTOR (3 downto 0);

 q : out STD_LOGIC_VECTOR (3 downto 0);

 s : in STD_LOGIC_VECTOR (1 downto 0));

end USR;

architecture Behavioral of USR is

signal temp: std_logic_vector(3 downto 0);

begin

process(rst,clk,s,d,sir,sil)

 begin

 if rst='1' then

 temp<= "0000";

 q<= "0000";

 elsif (clk='1' and clk'event) then

 case s is

 -- PARALLEL LOAD

 when "11" =>

 temp <= d;

 q <= temp;

 -- SHIFT LEFT [0] [0] [0] [0]

 -- [0] [0] [0] [sil]

 when "01" =>

 temp <= d;

 temp(3 downto 1) <= temp(2 downto 0);

 temp(0) <= sil;

 q <= temp;

 -- SHIFT RIGHT [0] [0] [0] [0]

 -- [sir] [0] [0] [0]

 when "10" =>

 temp <= d;

 temp(2 downto 0) <= temp(3 downto 1);

 temp(3) <= sir;

 q <= temp;

52 | P a g e

 -- HOLD

 when "00" =>

 temp <= temp;

 q <= temp;

 when others => null;

 end case;

 end if;

end process;

end Behavioral;

9.6. PRE LAB QUESTIONS

1. What is a register

2. What is a shift register?

3. Mention the various shift operations.

4. What is the difference between logical shift and arithmetic shift?

9.7. LAB ASSIGNMENT

1. Design a shift right register.

2. Design a shift left register.

3. Design a circular shift right register using JK flip flop.

4. Design a circular left right register using JK flip flop.

9.8. POST LAB QUESTIONS

1. Write a HDL code to load the data parallel in universal shift register.

2. Write a HDL code to load the data serial in universal shift register.

3. Write a HDL code to perform serial in parallel out (SIPO) operation in universal

shift register.

4. Write a HDL code to perform serial in serial out (SISO) operation in universal

shift register.

5. Write a HDL code to perform parallel in serial out (PISO) operation in universal

shift register.

6. Write a HDL code to perform parallel in parallel out (SISO) operation in

universal shift register.

53 | P a g e

EXPERIMENT 10

HDL CODE FOR CARRY LOOK AHEAD ADDER

10.1. OBJECTIVE

To design and simulate the HDL code for carry look ahead adder

10.2. RESOURCES

PC installed with Xilinx tool

10.3. PROGRAM LOGIC

Ripple-carry addition suffers from an impractical propagation delay cause by the

sequential generation of arithmetic carries. In other words, ci1
is dependent on

ci , which is further dependent on ci1 , etc. The effect of this carry chain is a

propagation delay that has a linear dependency on n, the bit width of the adder.

Therefore, methods that compute the arithmetic carries in parallel have potential

performance benefits over ripple-carry addition.

As the name implies, carry-look ahead is one such technique for high-speed

addition that computes arithmetic carries in a parallel fashion. To understand how

exactly a carry-look ahead adder works, consider the addition of two numbers, X

and Y, such that xi is the i
th

ith binary digit of X, and yi is the ith binary digit

of Y. The (i 1)th
 arithmetic carry is ci1 and is computed as follows:

ci1 xi yi xici yici

 xi yi (xi yi)ci

(2)

(1)

The effect of simply factoring out ci from the last two terms in expression (1) is

shown in expression (2). Now observe that

conditions exists:

ci1 is logic „1‟ if either of the two

1. xi yi is logic „1‟

2. xi yi is logic „1‟1 and there is a previous carry (i.e. ci =1)

Therefore,
xi yi is referred to as generate function because when „1‟, a carry is

generated, while
x

i
 y

i is referred to as the propagate function because when „1‟,

it will propagate a carry. In mathematical terms, we see that

gi xi yi

(3)

54 | P a g e

pi xi yi

ci1 gi pici

(5)

(4)

Clearly, expressions (3) and (4) do not depend on the carry in the previous bit

position and thus, can be generated in parallel. It turns out, we can write

expression (5) for the first four carries in such a way that they, too, do not

depend on one another, but rather only depend on the input carry, c0, and the
gi

and
pi . Examine the expressions below to convince yourself of this.

c1 g0 p0c0

c2 g1 p1c1 g1 p1g0 p1 p0c0

c3 g2 p2c2 g2 p2 g1 p2 p1g0 p2 p1 p0c0

c4 g3 p3c3 g3 p3 g2 p3 p2 g1 p3 p2 p1g0 p3 p2 p1 p0c0

(7)

(8)

(9)

(6)

Although the expression for
c

i becomes increasingly complex, the theoretical

gate-delay for each of the above expressions, given the
g

i ‟s,
p

i ‟s, and
c

0 , is ∆g =

2. However, the increased complexity is reflected in the number of inputs to each

gate (i.e. the gate fan-in) and the number of gates required. Figure 1 illustrates this

point with the gate-level schematic for each of the sub-modules within a 4-bit

carry-lookaheadadder. One thing to note is that:

pi xi yi

si pi ci

(8)

(9)

In other words, expression (10) is being used in lieu expression (4). It turns out

that expression (5) works correctly in either case, and the former allows the Sum

to be computed with expression (11). Before moving on, let us try to understand

how data flows through the 4-bit carry-lookaheadadder. To do so, we enumerate

through the steps below:

Data arrives at the Generate/Propagate Unit, and the
g

i ‟s and
p

i ‟s, are computed in

one gate-delay (i.e.∆g= 1).

The
g

i ‟s and
p

i ‟s are forwarded to the Carry-Lookahead Unit, which generates

55 | P a g e

all of the carries in two gate-delays, ∆g = 2.

The carries are then fed into the Summation Unit, which computes the sum bits,the

si ‟s, in one gate-delay ∆g = 1.

Figure 10.1 Carry-lookahead Adder

For simplicity, we are assuming that all gates have the same delay time. This

assumption may or may not betrue depending on the target technology that is

being used to implement your logic. However, for the sakeof comparison with

other addition techniques, this model works well. Summarizing the above steps,

we cansee that the propagation delay for a 4-bit adder is no longer determined by

a carry chain and is only fourgate-delays, (∆g= 4). The pre-lab assignment will

include an exercise which asks you to look at the gatecount of a 4-bit Carry-

Lookahead Adder.

10.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s

input/output.

2. Write the description of the carry look ahead adder using data flow model or

gate level model.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained

output with the required one.

56 | P a g e

10.5. CODE

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Carry_Look_Ahead is

Port (A : in STD_LOGIC_VECTOR (3 downto 0);

B : in STD_LOGIC_VECTOR (3 downto 0);

Cin : in STD_LOGIC;

S : out STD_LOGIC_VECTOR (3 downto 0);

Cout : out STD_LOGIC);

end Carry_Look_Ahead;

architecture Behavioral of Carry_Look_Ahead is

component Partial_Full_Adder

Port (A : in STD_LOGIC;

B : in STD_LOGIC;

Cin : in STD_LOGIC;

S : out STD_LOGIC;

P : out STD_LOGIC;

G : out STD_LOGIC);

end component;

signal c1,c2,c3: STD_LOGIC;

signal P,G: STD_LOGIC_VECTOR(3 downto 0);

begin

PFA1: Partial_Full_Adder port map(A(0), B(0), Cin, S(0), P(0), G(0));

PFA2: Partial_Full_Adder port map(A(1), B(1), c1, S(1), P(1), G(1));

PFA3: Partial_Full_Adder port map(A(2), B(2), c2, S(2), P(2), G(2));

PFA4: Partial_Full_Adder port map(A(3), B(3), c3, S(3), P(3), G(3));

c1 <= G(0) OR (P(0) AND Cin);

c2 <= G(1) OR (P(1) AND G(0)) OR (P(1) AND P(0) AND Cin);

c3 <= G(2) OR (P(2) AND G(1)) OR (P(2) AND P(1) AND G(0)) OR (P(2) AND P(1)

AND P(0) AND Cin);

Cout <= G(3) OR (P(3) AND G(2)) OR (P(3) AND P(2) AND G(1)) OR (P(3) AND P(2)

AND P(1) AND G(0)) OR (P(3) AND P(2) AND P(1) AND P(0) AND Cin);

end Behavioral;

10.6. PRE LAB QUESTIONS

1. What is the functionality of the adder?

2. Design a ripple carry adder and mention its disadvantage.

3. List the various adders and its pros and cons.

57 | P a g e

10.7. LAB ASSIGNMENT

1. Design 4-bit ripple carry adder using HDL.

2. Design 4-bit carry look ahead adder using HDL.

3. Observe the RTL schematic of the designed 4-bit look ahead adder.

10.8. POST LAB QUESTIONS

1. How many gates are required to design 4-bit look ahead adder.

2. How many lookup tables are required to implement the 4-bit look ahead

adder?

3. What is synthesis process?

4. Design 32-bit carry look ahead adder using HDL.

58 | P a g e

EXPERIMENT 11

HDL CODE TO DETECT A SEQUENCE

11.1. OBJECTIVE

To perform the design flow to generate state machines in Verilog code to detect

the given sequence of bits.

11.2. RESOURCES

PC installed with Xilinx tool

11.3. PROGRAM LOGIC

As an illustrative example a sequence detector for bit sequence „1011‟ is

described. Every clock-cycle a value will be sampled, if the sequence „1011‟ is

detected a „1‟ will be produced at the output for 1 clock-cycle. There are two

methods to design state machines, first is Mealy and second is Moore style. We

will give you an example for both styles.

Following is the behavior description of the sequencer for a Mealy style

implementation and the state diagram is shown in figure 1:

Figure 11.1: Mealy State Machine for Detecting a Sequence of „1011‟

 When in initial state (S0) the machine gets the input of „1‟ it jumps to the next

statewith the output equal to ‟0‟. If the input is „0‟ it stays in the same state.

 When in 2
nd

 state (S1) the machine gets an input of „0‟ it jumps to the 3rd state

withthe output equal to „0‟. If it gets an input of „1‟ it stays in the same state.

 When in the 3
rd

 state (S2) the machine gets an input of „1‟ it jumps to the 4th

statewith the output equal to „0‟. If the input received is „0‟ it goes back to the

initial state.

59 | P a g e

 When in the 4
th

 state (S3) the machine gets an input of „1‟ it jumps back to the

2
nd

state, with the output equal to „1‟. If the input received is „0‟ it goes back to

the 3rd state.

Following is the behavior description of the sequencer for a Moore style

implementation and the state diagram is shown in figure 11.2:

Figure 11.2: Moore State Machine for Detecting a Sequence of „1011‟

 In initial state (S0) the output of the detector is „0‟. When machine gets the

input of„1‟ it jumps to the next state. If the input is „0‟ it stays in the same

state.

 In 2nd state (S1) the output of the detector is „0‟. When machine gets an input

of „0‟it jumps to the 3rd state. If it gets an input of „1‟ it stays in the same state.

 In the 3rd state (S2) the output of the detector is „0‟. When machine gets an

input of„1‟ it jumps to the 4th state. If the input received is „0‟ it goes back to

the initial state.

 In the 4th state (S3) the output of the detector is „0‟. When machine gets an

input of„1‟ it jumps to the 5th state. If the input received is „0‟ it goes back to

the 3rd state.

 In the 5
th

 state the output of the detector is „1‟. When machine gets an input of

„0‟it jumps to the 3rd state, otherwise it jumps to the 2nd state.

After designing the state machines the models have to be transformed into

Verilog code describing the architecture. Therefore, it is helpful to get an

understanding about thebuilding blocks. Figure 11.3 shows the entity for the

sequence detector to be developed.The two blocks inside, i.e., the

60 | P a g e

combinational and the register block is build out ofthe two processes used

within the architecture in Verilog. The combinational block decidesthe next

state of the FSM according to the current state and the input as well as drives

theoutput according to the state (and input for Mealy implementation). The

register blocksaves the current state of the FSM. This structure can be used to

write the Verilog code.

Figure 11.3: Block diagram clarifying the basic building blocks of an FSM

11.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s

input/output.

2. Write the description of the sequence detector FSM in behavioral model.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained

output with the required one.

11.5. CODE

// sequence detector

library ieee;

use ieee.std_logic_1164.all;

entity mealy is

61 | P a g e

port (clk : in std_logic;

din : in std_logic;

rst : in std_logic;

dout : out std_logic);

end mealy;

architecture behavioral of mealy is

type state is (st0, st1, st2, st3);

signal present_state, next_state : state;

begin

syncronous_process : process (clk)

begin

if rising_edge(clk) then

if (rst = '1') then

present_state <= st0;

else

present_state <= next_state;

end if;

end if;

end process;

next_state_and_output_decoder : process(present_state, din)

begin

dout <= '0'; case (present_state) is when st0 =>

if (din = '1') then

next_state <= st1;

dout <= '0';

else

next_state <= st0;

dout <= '0'; end if; when st1 =>

if (din = '1') then

next_state <= st1;

dout <= '0';

else

next_state <= st2;

dout <= '0'; end if; when st2 =>

if (din = '1') then

next_state <= st1;

dout <= '1';

else

next_state <= st0;

dout <= '0'; end if; when others =>

next_state <= st0;

dout <= '0';

end case;

end process;

end behavioral;

62 | P a g e

11.6. PRE LAB QUESTIONS

1. Design a FSM to detect the sequence „1010‟.

2. Design a state flow diagram for the sequence detector FSM „10010‟.

3. Design the state table for the sequence detector FSM „10010‟.

4. What is a sequential circuit?

11.7. LAB ASSIGNMENT

1. Design a FSM to detect the sequence „1011‟.

2. Design a state flow diagram for the sequence detector FSM „1011.

3. Design the state table for the sequence detector FSM „1011‟.

4. Obtain the Boolean logic expressions for the next states from the obtained

state table.

5. Observe the RTL schematic of the designed FSM.

11.8. POST LAB QUESTIONS

1. Design a state flow diagram for the sequence detector FSM „1010101.

2. Design a „1010101‟ sequence detector using Verilog HDL coding.

63 | P a g e

EXPERIMENT 12

CHESS CLOCK CONTROLLER FSM USING HDL

12.1. OBJECTIVE

To design a chess clock controller FSM using HDL

12.2. RESOURCES

PC installed with Xilinx tool

12.3. PROGRAM LOGIC

Figure 12.1 shows the block diagram of a system used by two chess players to

record the amount of time taken to make their respective moves. The players,

referred to as Player-A and Player-B, each have their own timer (TIMER-A and

TIMER-B), the purpose of which is to record the total amount of time taken in

hours, minutes and seconds for their moves since the commencement of the game.

Figure 12.1 Block diagram of chess clock system.

The exact details of the timer internal operation are beyond the scope of this

discussion, since we are primarily concerned with the description of the FSM that

64 | P a g e

controls them. The timer control inputs, en and rst, shown in Figure 12.1, operate

as follows:

 rst – when logic 1, resets the time to zero hours, zero minutes and zero

seconds.

 en – when logic 1, enables the time to increment from the current time

value. When en is logic 0, the current elapsed time is held constant.

At the start of a new game, the Reset input is asserted to initialize the system and

clear bothtimers to zero time. This is achieved by means of the Clr output of the

Chess Clock FSM beingdriven high, thereby asserting the reset (rst) input of both

timers. Each chess player has a pushbutton,which when pressed applies a logic 1

to their respective inputs, Pa and Pb, of the ChessClock FSM. After resetting the

timers, the player who is not making the first move presses theirpush-button in

order to enable the other player‟s timer to commence timing.For example, if

Player-A is to make the first move, then Player-B starts the game by pressingtheir

push-button. This has the effect of activating the Ta output of the Chess Clock

FSM block shown in Figure 12.1, in order to enable TIMER-Ato record the time

taken by Player-Ato makethe first move. Once Player-A completes the first move,

Player-A‟s button is pressed in order tostop their own timer and start Player-B‟s

timer (Ta is negated and Tb is asserted).

For the purposes of this simulation, it is assumed that the Pa and Pb inputs are

assertedmomentarily for at least one clock cycle, and the potential problems

resulting from switch bounce and metastabilitymay be neglected.

In the unlikely event that both players press their buttons simultaneously, the

Chess ClockFSM is designed to disable both timers by negating Ta and Tb.

This will hold each player‟s elapsed time until play recommences in the manner

describedabove, i.e. Player-A (Player-B) presses their push-button to re-enable

TIMER-B (TIMER-A).

The state diagram for the Chess Clock FSM is shown in Figure 8.32. As shown,

the FSMmakes use of four states having the names shown in the upper half of the

state circles. The statesof theFSMoutputsTa,TbandClrare listed in the lower half

of every state circle; those outputspreceded by „/‟ are forced to logic 0, whereas

those without „/‟ are forced to logic 1. Thepresence of the output stateswithin each

of the state circles indicates that the Chess ClockFSMisof the Moore variety.

65 | P a g e

Figure 12.2 State diagram for chess clock controller FSM.

The values of the inputs, Pa and Pb, are shown alongside each corresponding state

transitionpath (arrow) using a format similar to that used to show the state of the

outputs. The movementfrom one state to another occurs on the rising edge of the

Clock input. Where the number oftransitions shown originating from a given state

is less than the total number possible, theremaining input conditions result in a so-

called sling, i.e. the next state is the same as the currentstate.

For example, the state named RunA in Figure 12.2 has two transitions shown on

the diagram corresponding to the input conditions (Pa, Pb) = (1, 0) and (1, 1). The

remaining input conditions, (Pa, Pb)= (0, 0) and (0, 1),cause the state machine to

remain in the current state;hence, there exists a sling in state RunA corresponding

to the condition that the Pa input is atlogic 0 and the Pb input can be either logic 0

or logic 1, the latter indicating the presence of adon‟t care condition for input Pb.

The asynchronous, active-high Reset input forces the FSM directly into the state

namedStop, irrespective of any other condition.

12.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s

input/output.

66 | P a g e

2. Write the description of the chess clock controller FSM using behavioral

model.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained

output with the required one.

12.5. CODE

// chess clock timer

entity simplefsm is

port (clock: in std_logic;

 p: in std_logic;

 reset: in std_logic;

 r : out std_logic);

end simplefsm;

 architecture definition for the simplefsm entity

architecture rtl of simplefsm is

type state_type is (a, b, c, d); -- define the states

 signal state : state_type; -- create a signal that uses

 -- the different states

begin

 process (clock, reset)

 begin

 if (reset = „1‟) then

 state <= a;

 elsif rising_edge(clock) then -- if there is a rising edge of the

 -- clock, then do the stuff below

 -- the case statement checks the value of the state variable,

 -- and based on the value and any other control signals, changes

 -- to a new state.

 case state is

 -- if the current state is a and p is set to 1, then the

 -- next state is b

 when a =>

 if p='1' then

 state <= b;

 end if;

 -- if the current state is b and p is set to 1, then the

 -- next state is c

 when b =>

 if p='1' then

 state <= c;

 end if;

67 | P a g e

 -- if the current state is c and p is set to 1, then the

 -- next state is d

 when c =>

 if p='1' then

 state <= d;

 end if;

 -- if the current state is d and p is set to 1, then the

 -- next state is b.

 -- if the current state is d and p is set to 0, then the

 -- next state is a.

 when d=>

 if p='1' then

 state <= b;

 else

 state <= a;

 end if;

 when others =>

 state <= a;

 end case;

 end if;

 end process;

-- decode the current state to create the output

-- if the current state is d, r is 1 otherwise r is 0

r <= „1‟ when state=d else „0‟;

end rtl;

12.6. PRE LAB QUESTIONS

1. What is finite state machine?

2. What is mealy machine?

3. What is Moore machine?

4. Mention the difference between case, casex, and casez.

5. Design a simple finite state machine using HDL.

12.7. LAB ASSIGNMENT

1. Design a digital circuit with case statements in Verilog.

2. What is state assignment?

12.8. POST LAB QUESTIONS

1. What is reset signal?

2. What is set signal?

3. Design a chess clock controller FSM with alternative state assignment to

match outputs

68 | P a g e

EXPERIMENT 13

TRAFFIC LIGHT CONTROLLER USING HDL

12.9. OBJECTIVE

Design a traffic light controller using HDL

12.10. RESOURCES

PC installed with Xilinx tool

12.11. PROGRAM LOGIC

Specification

Consider a controller for traffic at the intersection of a main highway and a

country road.

The following specifications must be considered.

 The traffic signal for the main highway gets highest priority because cars are

continuously present on the main highway. Thus, the main highway signal
remains green by default.

 Occasionally, cars from the country road arrive at the traffic signal. The traffic
signal for the country road must turn green only long enough to let the cars on

the country road go.

 As soon as there are no cars on the country road, the country road traffic signal
turns yellow and then red and the traffic signal on the main highway turns

green again.

 There is a sensor to detect cars waiting on the country road. The sensor sends a

signal X as input to the controller. X = 1 if there are cars on the country road;

otherwise, X= 0 .

69 | P a g e

 There are delays on transitions from S1 to 52, from S2 to S3, and from S4 to
SO. The delays must be controllable.

The state machine diagram and the state definitions for the traffic signal

controller are shown in Figure 13.1.

Figure 13.1 State machine diagram

Table 13.1 FSM for Traffic Signal Controller

State Signals

S0 Hwy = G Cntry = R

S1 Hwy = Y Cntry = R

S2 Hwy = R Cntry = R

S3 Hwy = R Cntry = G

S4 Hwy = R Cntry = Y

13.1. PROCEDURE

1. Create a module with required number of variables and mention it‟s

input/output.

2. Write the description of the traffic light controller using behavioral model

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained

output with the required one.

13.2. CODE

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Traffic ligh system for a intersection between highway and farm way

-- There is a sensor on the farm way side, when there are vehicles,

-- Traffic light turns to YELLOW, then GREEN to let the vehicles cross the highway

-- Otherwise, always green light on Highway and Red light on farm way

70 | P a g e

entity traffic_light_controller is

 port (sensor : in STD_LOGIC; -- Sensor

 clk : in STD_LOGIC; -- clock

 rst_n: in STD_LOGIC; -- reset active low

 light_highway : out STD_LOGIC_VECTOR(2 downto 0);

 light_farm: out STD_LOGIC_VECTOR(2 downto 0)

);

end traffic_light_controller;

architecture traffic_light of traffic_light_controller is

signal counter_1s: std_logic_vector(27 downto 0):= x"0000000";

signal delay_count:std_logic_vector(3 downto 0):= x"0";

signal delay_10s, delay_3s_F,delay_3s_H, RED_LIGHT_ENABLE,

YELLOW_LIGHT1_ENABLE,YELLOW_LIGHT2_ENABLE: std_logic:='0';

signal clk_1s_enable: std_logic; -- 1s clock enable

type FSM_States is (HGRE_FRED, HYEL_FRED, HRED_FGRE, HRED_FYEL);

-- HGRE_FRED : Highway green and farm red

-- HYEL_FRED : Highway yellow and farm red

-- HRED_FGRE : Highway red and farm green

-- HRED_FYEL : Highway red and farm yellow

signal current_state, next_state: FSM_States;

begin

-- next state FSM sequential logic

process(clk,rst_n)

begin

if(rst_n='0') then

 current_state <= HGRE_FRED;

elsif(rising_edge(clk)) then

 current_state <= next_state;

end if;

end process;

-- FSM combinational logic

process(current_state,sensor,delay_3s_F,delay_3s_H,delay_10s)

begin

case current_state is

when HGRE_FRED => -- When Green light on Highway and Red light on Farm way

 RED_LIGHT_ENABLE <= '0';-- disable RED light delay counting

 YELLOW_LIGHT1_ENABLE <= '0';-- disable YELLOW light Highway delay counting

 YELLOW_LIGHT2_ENABLE <= '0';-- disable YELLOW light Farmway delay counting

 light_highway <= "001"; -- Green light on Highway

 light_farm <= "100"; -- Red light on Farm way

 if(sensor = '1') then -- if vehicle is detected on farm way by sensors

 next_state <= HYEL_FRED;

 -- High way turns to Yellow light

 else

 next_state <= HGRE_FRED;

 -- Otherwise, remains GREEN ON highway and RED on Farm way

 end if;

when HYEL_FRED => -- When Yellow light on Highway and Red light on Farm way

 light_highway <= "010";-- Yellow light on Highway

 light_farm <= "100";-- Red light on Farm way

71 | P a g e

 RED_LIGHT_ENABLE <= '0';-- disable RED light delay counting

 YELLOW_LIGHT1_ENABLE <= '1';-- enable YELLOW light Highway delay counting

 YELLOW_LIGHT2_ENABLE <= '0';-- disable YELLOW light Farmway delay counting

 if(delay_3s_H='1') then

 -- if Yellow light delay counts to 3s,

 -- turn Highway to RED,

 -- Farm way to green light

 next_state <= HRED_FGRE;

 else

 next_state <= HYEL_FRED;

 -- Remains Yellow on highway and Red on Farm way

 -- if Yellow light not yet in 3s

 end if;

when HRED_FGRE =>

 light_highway <= "100";-- RED light on Highway

 light_farm <= "001";-- GREEN light on Farm way

 RED_LIGHT_ENABLE <= '1';-- enable RED light delay counting

 YELLOW_LIGHT1_ENABLE <= '0';-- disable YELLOW light Highway delay counting

 YELLOW_LIGHT2_ENABLE <= '0';-- disable YELLOW light Farmway delay counting

 if(delay_10s='1') then

 -- if RED light on highway is 10s, Farm way turns to Yellow

 next_state <= HRED_FYEL;

 else

 next_state <= HRED_FGRE;

 -- Remains if delay counts for RED light on highway not enough 10s

 end if;

when HRED_FYEL =>

 light_highway <= "100";-- RED light on Highway

 light_farm <= "010";-- Yellow light on Farm way

 RED_LIGHT_ENABLE <= '0'; -- disable RED light delay counting

 YELLOW_LIGHT1_ENABLE <= '0';-- disable YELLOW light Highway delay counting

 YELLOW_LIGHT2_ENABLE <= '1';-- enable YELLOW light Farmway delay counting

 if(delay_3s_F='1') then

 -- if delay for Yellow light is 3s,

 -- turn highway to GREEN light

 -- Farm way to RED Light

 next_state <= HGRE_FRED;

 else

 next_state <= HRED_FYEL;

 -- if not enough 3s, remain the same state

 end if;

when others => next_state <= HGRE_FRED; -- Green on highway, red on farm way

end case;

end process;

-- Delay counts for Yellow and RED light

process(clk)

begin

if(rising_edge(clk)) then

if(clk_1s_enable='1') then

 if(RED_LIGHT_ENABLE='1' or YELLOW_LIGHT1_ENABLE='1' or

72 | P a g e

YELLOW_LIGHT2_ENABLE='1') then

 delay_count <= delay_count + x"1";

 if((delay_count = x"9") and RED_LIGHT_ENABLE ='1') then

 delay_10s <= '1';

 delay_3s_H <= '0';

 delay_3s_F <= '0';

 delay_count <= x"0";

 elsif((delay_count = x"2") and YELLOW_LIGHT1_ENABLE= '1') then

 delay_10s <= '0';

 delay_3s_H <= '1';

 delay_3s_F <= '0';

 delay_count <= x"0";

 elsif((delay_count = x"2") and YELLOW_LIGHT2_ENABLE= '1') then

 delay_10s <= '0';

 delay_3s_H <= '0';

 delay_3s_F <= '1';

 delay_count <= x"0";

 else

 delay_10s <= '0';

 delay_3s_H <= '0';

 delay_3s_F <= '0';

 end if;

 end if;

 end if;

end if;

end process;

-- create delay 1s

process(clk)

begin

if(rising_edge(clk)) then

 counter_1s <= counter_1s + x"0000001";

 if(counter_1s >= x"0000003") then -- x"0004" is for simulation

 -- change to x"2FAF080" for 50 MHz clock running real FPGA

 counter_1s <= x"0000000";

 end if;

end if;

end process;

13.3. PRE LAB QUESTIONS

1. What is finite state machine?

2. What is mealy machine?

3. What is moore machine?

4. Design a simple finite state machine using HDL.

13.4. LAB ASSIGNMENT

1. Represent the state flow diagram (Figure 13.1) as a table of present state and

next state along with input signal.

73 | P a g e

2. Describe case statement in Verilog.

3. Describe always block in Verilog.

4. Describe initial block in Verilog.

13.5. POST LAB QUESTIONS

1. Assume the alternative specifications and design a new traffic light controller.

2. Describe the concurrent statements in Verilog.

3. Design the same traffic light controller using moore machine.

74 | P a g e

EXPERIMENT 14

ELEVATOR DESIGN USING HDL CODE

14.1. OBJECTIVE

To write HDL code to simulate Elevator operations

14.2. RESOURCES

PC installed with Xilinx tool

14.3. PROGRAM LOGIC

An elevator is a device designed as a convenience appliance that has evolved to

become an unavoidable feature of modern day urban life. An elevator is defined

as, “A machine that carries people or goods up and down to different levels in a

building or mine”. While a standalone elevator is a simple electro-mechanical

device, an elevator system may consist of multiple standalone elevator units

whose operations are controlled and coordinated by a master controller. Such

controllers are designed to operate with maximum efficiency in terms of service

as well as resource utilization. This experiment details the design of an elevator

controller using VERILOG. The Elevators/Lifts are used in multi store buildings

as a means of transport between various floors.

The elevator decides moving direction by comparing request floor with current

floor. In a condition that the weight has to be less than 4500lb and door has to be

closed in three minute. If the weight is larger than it, the elevator will alert

automatically. The Door Alert signal is normally low but goes high whenever the

door has been open for more than three minute. There is a sensor at each floor to

sense whether the elevator has passed the current floor. This sensor provides the

signal that encodes the floor that has been passed.

The core parts of the design are shift register, three cases of elevator and the while

loop when receive Request Floor.

Design Strategy

In the coding part, we used several strategies to make the program works.

First, we defined the input and output current floor as In_Current_Floor and

Our_Current_Floor to avoid same variable name as output and input.

Second, we add two more input pins - Over_time and Over_Weight in the code.

These signals will be output from the mechanical machine to the controller. When

the controller receives signal from weight alert or door alert, the complete will

become one so that the elevator will stay unmoved at the Out_Current_Floor.

75 | P a g e

Third, define the Out_Current_Floor, Direction, Complete, Door_Alert and

Weight_Alert as reg then assign them equal to the output. Therefore, those

variables will run as a register and output.

Next, when the Reset is off the variable Complete, Door Alert and Weight Alert

will be initialized to be zero. Similarly, when the Request_Floor is on, the variable

In_Current_Floor is set to be equal to Out_Current_Floor only once.

Then, In_Current_Floor stay the same, Out_Current_Floor keep changing

(updating) and compare with request floor, until Out_Current_Floor is at the same

level as Request_Floor.

Lastly, define three cases of if statement for the elevator. There are cases for

normal running cases – (comparing between Request_Floor and

Out_Current_Floor to decide the moving direction), door open for more than three

minutes - (turn on the Door_Alert) and overweight cases for elevator - (turn on the

Weight_Alert).

While designing a lift controller number of states depends on number of

levels/floors. If you want to design a three floor lift then three states are required.

And one need design the finite state machine using those three states and have to

mention the function of the each state.

14.4. PROCEDURE

1. Create a module with required number of variables and mention it‟s

input/output.

2. Write the description of the finite state machine using behavioral model.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained

output with the required one.

14.5. CODE

// Elevator

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity Elevator is

Port (Ze : in std_logic;

One : in std_logic;

76 | P a g e

Tw : in std_logic;

Thr : in std_logic;

Fou : in std_logic;

Fiv : in std_logic;

Six : in std_logic;

Sev : in std_logic;

DoorOpen : out std_logic;

DoorClose : out std_logic;

Up : out std_logic;

Down : out std_logic;

Cnt1 : out std_logic_vector(3 downto 0);

Cnt2 : out std_logic_vector(3 downto 0);

Rst1, Rst2 : in std_logic;

Clk1 : in std_logic;

Clk2 : in std_logic);

end Elevator;

architecture Behavioral of Elevator is

signal count1, count2, df, cf: std_logic_vector(3 downto 0);

begin

process (clk2)

begin

if(rst2 = '1') then

count2 <= "0000";

cf <= "0001";

df <= "0001";

elsif (((df < cf) or (df > cf)) and(clk2'event and clk2 = '1')) then

count2 <= "0011";

if (count2 = "0011") then count2 <= "0010";

elsif (count2 = "0010") then count2 <= "0001";

elsif (count2 = "0001") then count2 <= "0000";

end if;

end if;

end process;

process (clk1)

begin

if(rst1 = '1') then

count1 <= "0001";

elsif ((count2 = "0000") and (clk1'event and clk1 = '1')) then

cf <= count1;

IF (Ze = '1') then df <= "0000";

ELSIF (One = '1')then df <= "0001";

ELSIF (Tw = '1') then df <= "0010";

77 | P a g e

ELSIF (Thr = '1') then df <= "0011";

ELSIF (Fou = '1') then df <= "0100";

ELSIF (Fiv = '1') then df <= "0101";

ELSIF (Six = '1') then df <= "0110";

ELSIF (Sev = '1') then df <= "0111";

end if;

IF ((count1 = "0000") and (df > cf)) THEN

count1 <= "0001"; up <= '1'; down <= '0';

ELSIF ((count1 = "0001") and (df > cf)) THEN

count1 <= "0000"; up <= '1'; down <= '0';

ELSIF ((count1 = "0001") and (df < cf)) THEN

count1 <= "0010"; up <= '0'; down <= '1';

ELSIF ((count1 = "0010") and (df > cf)) THEN

count1 <= "0001"; up <= '1'; down <= '0';

ELSIF ((count1 = "0010") and (df < cf)) THEN

count1 <= "0011"; up <= '0'; down <= '1';

ELSIF ((count1 = "0011") and (df > cf)) THEN

count1 <= "0010"; up <= '1'; down <= '0';

ELSIF ((count1 = "0011") and (df < cf)) THEN

count1 <= "0100"; up <= '0'; down <= '1';

ELSIF ((count1 = "0100") and (df > cf)) THEN

count1 <= "0011"; up <= '1'; down <= '0';

ELSIF ((count1 = "0100") and (df < cf)) THEN

count1 <= "0101"; up <= '0'; down <= '1';

ELSIF ((count1 = "0101") and (df > cf)) THEN

count1 <= "0100"; up <= '1'; down <= '0';

ELSIF ((count1 = "0101") and (df < cf)) THEN

count1 <= "0111"; up <= '0'; down <= '1';

ELSIF ((count1 = "0111") and (df < cf)) THEN

count1 <= "0110"; up <= '0'; down <= '1';

ELSE

count1 <= count1;

end if;

end if;

end process;

cnt1 <= count1;

cnt2 <= count2;

end Behavioral;

78 | P a g e

14.6. PRE LAB QUESTIONS

1. Define a finite state machine.

2. Design a simple two state finite state machine.

3. Design a finite state machine using moore model.

4. Design a finite state machine using mealy model.

14.7. LAB ASSIGNMENT

1. Design a three floor lift/elevator controller.

2. Design state flow diagram for three floor lift controller.

3. Design state table for three floor lift controller.

4. Design a three floor lift/elevator controller using Verilog coding.

14.8. POST LAB QUESTIONS

1. Design a eight floor lift/elevator controller using Verilog HDL.

2. Design a 4 floor lift controller using different design strategies or

specifications.

