BASIC ELECTRICAL AND ELCTRONICS ENGINEERING LABORATORY

LAB MANUAL

Academic Year	$:$
Course Code	: AEE103-2019
Regulations	$:$
IARE - R16	
Semester	$:$
Branch	$:$

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

Dundigal - 500 043, Hyderabad
Department of Electrical and Electronics Engineering

Program Outcomes	
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
P011	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
PO12	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

Program Specific Outcomes

PSO1	Professional Skills: Able to utilize the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.
PSO2	Problem - Solving Skills: To explore the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally.
PSO3	Successful Career and Entrepreneurship: To be able to utilize of technologies like PLC, PMC, process controllers, transducers and HMI and design, install, test, and maintain power systems and industrial applications.

INDEX

S. No	Name of the Experiment	Page No
1	Verification of Kirchhoff's current and voltage laws.	$7-9$
2	Verification of ohms law.	$10-12$
3	Magnetization characteristics of DC shunt generator.	$13-15$
4	Swinburne's test on DC shunt machine.	$16-19$
5	Open circuit and short circuit test on single phase transformer.	$20-24$
6	Study the performance characteristics of three phase induction motor by brake test.	$25-28$
7	Determine the regulation of alternator using synchronous impedance method.	$29-33$
8	PN junction diode characteristics.	$34-37$
9	Zener diode characteristics.	$38-42$
10	Half wave rectifier circuit.	$43-47$
11	Full wave rectifier circuit.	$48-52$
12	Transistor common emitter characteristics.	$53-56$
13	Transistor common base characteristics.	$57-61$
14	Study of CRO.	

$\begin{gathered} \text { Exp. } \\ \text { No } \end{gathered}$	Experiment	Program Outcomes Attained	Program Specific Outcomes Attained
1	Verification of Kirchhoff's current and voltage laws.	PO1,PO2	PSO2
2	Verification of ohms law.	PO1,PO2	PSO2
3	Magnetization characteristics of DC shunt generator.	PO1,PO2	PSO2
4	Predetermination of efficiency (Swinburne's test) of DC shunt machine.	PO1,PO2, PO3	PSO2
5	Open circuit and short circuit test on single phase transformer.	PO1,PO2,PO4	PSO1
6	Study the performance characteristics of three phase induction motor by brake test.	PO1,PO2	PSO2
7	Determine the regulation of alternator using synchronous impedance method.	PO1,PO2	PSO1
8	PN junction diode characteristics.	PO1,PO2	PSO2
9	Zener diode characteristics.	PO1,PO2,PO4	PSO1
10	Half wave rectifier circuit.	PO1,PO2,PO4	PSO1
11	Full wave rectifier circuit.	PO1,PO2	PSO2
12	Transistor common emitter characteristics.	PO1,PO2,PO4	PSO2
13	Transistor common base characteristics.	PO1,PO2,PO4	PSO2
14	Study of CRO.		

BASIC ELECTRICAL AND ELCTRONICS ENGINEERING LABORATORY

OBJECTIVE:

The objective of Basic electrical and electronics engineering laboratory is to learn the practical experience with operation and applications electromechanical energy conversion devices such as DC machines, transformers, three phase induction motors and alternators. It also aims to get the knowledge of the different electronic devices like diodes, rectifiers, transistors and how these devices are used in real time applications. It also makes the students to learn how to measure the electrical quantities with different measuring devices and with CRO.

OUTCOMES:

Upon the completion of electrical and electronics practical course, the student will be able to:

1. Understand the operation and applications of electromechanical energy conversion devices.
2. Understand identification and selection of various electrical and electronic components.
3. Analyze the characteristics of various electronics components.

EXPERIMENT - 1

VERIFICATION OF KIRCHHOFF'S CURRENT AND VOLTAGE LAWS

1.1 AIM:

To verify Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL) in a passive resistive network

1.2 APPARATUS REQUIRED:

S. No	Apparatus Name	Range	Type	Quantity
1	RPS			
2	Ammeter			
3	Voltmeter			
4	Resistors			
5	Bread Board			
6	Connecting Wires			

1.3 CIRCUIT DIAGRAMS:

Circuit to verify KVL:

Fig - 1 KVL
To Verify KCL:

Fig - 1 KCL

1.4 PROCEDURE:

To Verify KVL

1. Connect the circuit diagram as shown in Figure 1.
2. Switch ON the supply to RPS.
3. Apply the voltage (say 5 v) and note the voltmeter readings.
4. Sum up the voltmeter readings (voltage drops), that should be equal to applied voltage.
5. Thus KVL is verified practically.

To Verify KCL

1. Connect the circuit diagram as shown in Figure 2.
2. Switch ON the supply to RPS.
3. Apply the voltage (say 5 v) and note the ammeter readings.
4. Sum up the Ammeter readings (I_{1} and I_{2}), that should be equal to total current (I).
5. Thus KCL is verified practically.

1.5 OBSERVATIONS:

For KVL

Applied Voltage V (volts)	\mathbf{V}_{1} (volts)		\mathbf{V}_{2} (volts)		\mathbf{V}_{3} (volts)		$\mathbf{V}_{1}+\mathbf{V}_{2}+\mathbf{V}_{3}$ (volts)	
	Theoretical	Practical	Theoretical	practical	Theoretical	practical	Theoretical	practical

For KCL

Applied Voltage V (volts)	I(A)		$\mathbf{I}_{1}(\mathbf{A})$		$\mathbf{I}_{2}(\mathbf{A})$		$\mathbf{I}_{1}+\mathbf{I}_{2}(\mathbf{A})$	
	Theoretical	Practical	Theoretical	practical	Theoretical	practical	Theoretical	practical

1.6 PRECAUTIONS:

1. Check for proper connections before switching ON the supply.
2. Make sure of proper color coding of resistors.
3. The terminal of the resistance should be properly connected.

1.7 RESULT:

1.8 PRE LAB VIVA QUESTIONS:

1. What is current?
2. What is voltage?
3. What is resistance?
4. What is ohm's law?
5. What is KCL and KVL?

1.9 POST LAB VIVA QUESTIONS:

1. What do you mean by junction?
2. What directions should be assumed for KCL?
3. What are the positive and negative signs in KVL?
4. What is the colour coding of resistors?
5. What are the precautions to be taken while doing the experiment?
6. What is the range of ammeters and voltmeters you used in this experiment?

EXPERIMENT - 2
 VERIFICATION OF OHM'S LAW

2.1 AIM:

To verify Ohm's law for a given resistive network.

2.2 APPARATUS REQUIRED:

S. No	Apparatus Name	Range	Type	Quantity
1	RPS			
2	Ammeter			
3	Voltmeter			
4	Resistor			
5	Rheostat			
6	Bread Board			
7	Connecting Wires			

2.3 CIRCUIT DIAGRAM:

Fig-2.1 Circuit Diagram

2.4 PROCEDURE:

1. Make the connections as per circuit diagram.
2. Switch ON the power supply to RPS and apply a voltage (say 10 V) and take the reading of voltmeter and ammeter.
3. Adjust the rheostat in steps and take down the readings of ammeter and voltmeter.
4. Plot a graph with \mathbf{V} along x -axis and \mathbf{I} along y -axis.
5. The graph will be a straight line which verifies Ohm's law.
6. Determine the slope of the V-I graph. The reciprocal of the slope gives resistance of the wire.

2.5 OBSERVATIONS:

S. No.	Voltage (V)	Current (mA)

2.6 MODEL GRAPH:

Fig: 2.2 Voltage and Current Characteristics

2.7 PRECAUTIONS:

1. Take care to connect the ammeter and voltmeter with their correct polarity.
2. Make sure of proper color coding of resistors.
3. The terminal of the resistance should be properly connected.

2.8 RESULT:

2.9 PRE LAB QUESTIONS:

1. What is current?
2. What is voltage?
3. Define charge.
4. Define power.
5. What is the resistance?
6. What is ohm's law?

2.10 POST LAB QUESTIONS:

1. What do you mean by junction?
2. What is the colour coding of resistors?
3. What are the precautions to be taken while doing the experiment?
4. What is the range of ammeters and voltmeters you used in this experiment?
5. What are the limitations of ohm's law?
6. What is the condition of ohm's law?

EXPERIMENT - 3

MAGNETIZATION CHARACTERISTICS OF DC SHUNT GENERATOR

3.1 AIM:

To determine experimentally the Magnetization (or) Open Circuit Characteristics of a D.C. Shunt Generator and also to determine the critical field resistance.

3.2 APPARATUS REQUIRED:

S. No.	Apparatus Name	Range	Type	Quantity
1	Ammeter			
2	Voltmeter			
3	Rheostat			
4	Tachometer			
5	Connecting Wires			

3.3 NAME PLATE DETAILS:

MOTOR	
Voltage (V)	
Current (A)	
Output (KW/HP)	
Speed (RPM)	
Excitation type	Shunt
Excitation voltage (V)	
Excitation current (A)	

GENERATOR
Voltage (V) Current (A) Output (KW/HP) Speed (RPM) Excitation type Shunt Excitation voltage (V) Excitation current (A)

3.4 CIRCUIT DIAGRAM:

Fig - 3.1Magnetization characteristics (or) open circuit characteristics of a DC shunt generator

3.5 PROCEDURE:

1. Choose the proper ranges of meters after noting the name plate details of the given machine and make the connections as per the circuit diagram.
2. Keep the field rheostat of motor in minimum position and field rheostat of generator in maximum position.
3. Switch ON the power supply and start the M-G set by slowly moving the handle of three point starter.
4. Observe the speed of the generator using a tachometer and adjust the speed to rated value by varying the motor field rheostat. Keep the same speed throughout the experiment.
5. Note down the terminal voltage of the generator at zero field current. This is the E.M.F. due to residual magnetism.
6. Increase the generator field current I_{f} (ammeter) by gradually moving the jockey of generator field rheostat. For every value of I_{f}, note down the corresponding voltmeter reading. Increase the field current till induced E.M.F. is about 120% of rated value.
7. Repeat the same procedure for decreasing values of the same field currents (I_{f}) and finally note down the E.M.F. generated due to residual magnetism.
8. Draw the characteristics of generated E.M.F. $\left(\mathrm{E}_{\mathrm{g}}\right)$ versus field current $\left(\mathrm{I}_{\mathrm{f}}\right)$ for both increasing and decreasing values of field current.
9. Draw a tangent line to the initial portion of Characteristics from the origin. The slope of this straight line gives the critical field resistance.

3.6 OBSERVAIONS:

S. No.	ASCENDING		DESCENDING	
		Field Current If (amp)	Generated Voltage Eg (volts)	Field Current If (amp)
			Generated Voltage Eg (volts)	

3.7 MODEL GRAGH:

Fig - 3.2 Open Circuit Characteristics of DC shunt generator

3.8 PRECAUTIONS:

1. The experiment should be done at constant speed.
2. The jockey should be moved only in one direction. It should not be moved back and forth for obtaining a particular field current.
3. At zero field there would be some EMF due to residual magnetism
4. Avoid parallax errors and loose connections

3.9 RESULT:

3.10 PRE LAB QUESTIONS:

1. What is a generator?
2. What is the principle of operation of generator?
3. What are the different types of generators?
4. What is residual magnetism?
5. What is the Flemings right hand rule?
6. What is the EMF equation of generator?

3.11 POST LAB QUESTIONS:

1. What is the rating of generator used?
2. What is the motor rating used?
3. What is meant by starter?
4. What type of starter is used in your experiment?
5. How you can vary the speed of generator?

EXPERIMENT - 4

SWINBURNE'S TEST ON DC SHUNT MACHINE

4.1 AIM:

To pre-determine the efficiency of a DC shunt machine when run both as generator and motor.
4.2 APPARATUS REQUIRED:

S. No.	Name of the Apparatus	Range	Type	Quantity
1	Voltmeter			
2	Ammeter			
3	Ammeter			
4	Rheostat			
5	Tachometer			

4.3 NAME PLATE DETAILS

MOTOR

Voltage (V)	
Current (A)	
Output (KW/HP)	
Speed (RPM)	
Excitation Type	Shunt
Excitation Voltage	
Excitation current	

4.4 CIRCUIT DIAGRAM:

Fig - 4.1 Swinburne's test on a D.C. Shunt Machine

4.5 PROCEDURE:

1. Choose the proper ranges of meters after noting the name plate details of the given machine and make the connections as per the circuit diagram.
2. Keep the motor field rheostat the minimum position, and start the motor by closing the switch and operating the starter slowly.
3. Run the motor at rated speed by adjusting the motor field rheostat.
4. Note down the voltage, no load current and field current.

4.6 OBSERVATIONS:

S. No.	$\mathbf{V}_{\mathrm{L}}(\mathrm{V})$	$\mathbf{I}_{\mathrm{L} 0}(\mathbf{A})$	$\mathbf{I}_{\mathrm{f}}(\mathbf{A})$

4.7 MODEL GRAPH:

Fig - 4.2 Performance characteristics of DC shunt machine

4.8 CALCULATIONS FOR SWINBURNE'S TEST:

From the no load test results,
Supply voltage $=\mathrm{V}_{\mathrm{L}}$ Volts.
No load line current $=\mathrm{I}_{\mathrm{Lo}}$ Amperes.
Field current $=I_{f}$ Amperes.
Therefore No load Armature Current $=\mathrm{I}_{\mathrm{ao}}=\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{f}}$ Amperes.
No load copper losses are $=\mathrm{I}_{\mathrm{ao}}{ }^{2} \mathrm{R}_{\mathrm{a}}$
Where R_{a} is the armature resistance
No load power input= $\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}$
Constant losses $=($ No load power input - No load copper losses $)$.
Efficiency as motor:
Efficiency=output/input $=($ input - total losses $) /$ input.
Where total losses $=$ constant losses + variable losses.
Constant losses are known value from the equation (1)
Variable loss $=I_{a}{ }^{2} R_{a}$, where $I_{a}=I_{L}-I_{f}$

Input $=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}}$ is rated voltage of the machine
Assume line currents (I_{L}) as $2 \mathrm{~A}, 4 \mathrm{~A}, 6 \mathrm{~A},---$-and find corresponding efficiency

Efficiency as generator:

Efficiency=output/input $=$ output $/($ output + total losses $)$.
Where losses $=$ constant losses + variable losses
Constant losses are same for both motor and Generator
Armature Current $=\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{f}}$
Variable loss $=I_{a}{ }^{2} R_{a}$
Output power $=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} . \mathrm{V}_{\mathrm{L}}$ is rated voltage of the machine
Assume load currents (I_{L}) as 2A, 4A,6A,---- and find corresponding efficiencies

4.9 OBSERVATIONS:

As a Motor: Rated voltage $\mathbf{V}_{\mathrm{L}}=$
Rated speed $\mathbf{N}=$

Copper
losses
$\mathbf{W}_{\mathrm{cu}}=\mathbf{I}_{\mathrm{a}}{ }^{2}$
\mathbf{R}_{a}
:---:
$=$$\left(\mathbf{W}_{\text {cons }}\right.$ $\left.+\mathbf{W}_{\text {cu }}\right)$

As a Generator:

Rated voltage $\mathrm{VL}=$

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	I_{L}	Output Power $\mathrm{P}_{\mathrm{o}}=$ $\mathbf{V}_{\mathrm{L}} \mathbf{I}_{\mathrm{L}}$	Constant losses $\mathrm{W}_{\text {const. }}$	$\begin{gathered} \text { Copper } \\ \text { losses } \\ \mathbf{W}_{\mathrm{cu}}=\mathbf{I}_{\mathrm{a}}{ }^{2} \\ \mathbf{R}_{\mathrm{a}} \end{gathered}$	$\begin{gathered} \text { Total losses } \\ = \\ \left(\mathbf{W}_{\text {conss }}+\right. \\ \left.\mathbf{W}_{\mathrm{cu}}\right) \end{gathered}$	$\begin{gathered} \text { Input power } \\ = \\ \left(\mathbf{P}_{0}+\right.\text { Total } \\ \text { losses }) \end{gathered}$	η

4.10 PRECAUTIONS:

1. Run the motor at rated speed and rated voltage.
2. Avoid loose connections and parallax errors.

4.11 RESULTS:

4.12 PRE LAB QUESTIONS:

1. What is the principle of alternator?
2. What is meant by regulation?
3. What is meant by synchronous impedance?
4. What is meant by mmf ?
5. How the alternators be rated?

4.13 POST LAB QUESTIONS:

1. How you determine the synchronous impedance in this method?
2. How the input to an alternator be given in your experiment?
3. Why DC supply only given to Field winding of an alternator?
4. How the frequency of an alternator is changes?
5. What is the effect of excitation on Current and Power factor?

EXPERIMENT - 5

OPEN CIRCUIT AND SHORT CIRCUIT TESTS ON SINGLE PHASE TRANSFORMER

5.1 AIM:

To perform open circuit and short circuit tests on a single phase transformer and to pre-determine the efficiency, regulation and equivalent circuit of the transformer.

5.2 APPARATUS REQUIRED:

S. No.	Apparatus Name	Range	Type	Quantity
1	Voltmeter			
2	Voltmeter			
3	Ammeter			
4	Ammeter			
3	Wattmeter			
4	Wattmeter			
5	Connecting Wires			

5.3 NAME PLATE DETAILS:

Transformer Specifications

Capacity (KVA)	
Primary Voltage (V)	
Secondary Voltage (V)	
Phase	
Frequency (Hz)	

Autotransformer Specifications

Capacity (KVA)	
Input Voltage (V)	
Output Voltage (V)	
Phase	
Frequency (Hz)	

5.4 CIRCUIT DIAGRAMS:

Fig -5.1 Open Circuit Test

Fig-5.2 Short Circuit Test

5.5 PROCEDURE:

Open Circuit Test:

1. Connections are made as per the circuit diagram.
2. Ensure that variac is set to zero output voltage position before starting the experiment.
3. Switch ON the supply. Now apply the rated voltage to the Primary winding by using Variac.
4. The readings of the Voltmeter, ammeter and wattmeter are noted down in Tabular form.
5. Then Variac is set to zero output position and switch OFF the supply.
6. Calculate R_{o} and X_{o} from the readings.

Short Circuit Test:

1. Connections are made as per the circuit diagram.
2. Ensure that variac is set to zero output voltage position before starting the experiment.
3. Switch ON the supply. Now apply the rated Current to the Primary winding by using variac.
4. The readings of the Voltmeter, ammeter and wattmeter are noted down in Tabular form.
5. Then Variac is set to zero output position and switch OFF the supply.
6. Calculate R_{ol} and X_{ol} from the readings.

5.6 OBSERVATIONS:

Open Circuit Test		
Voltage $\left(\mathbf{V}_{\mathrm{o}}\right)$	Current $\left(\mathbf{I}_{\mathbf{o}}\right)$	Power $\left(\mathbf{W}_{\mathbf{o}}\right)$

Short Circuit Test		
Voltage $\left(\mathbf{V}_{\mathrm{SC}}\right)$	Current $\left(\mathbf{I}_{\mathrm{SC}}\right)$	Power $\left(\mathbf{W}_{\mathrm{SC}}\right)$

5.7 EQUIVALENT CIRCUIT OF TRANSFORMER:

Fig - 5.3 Equivalent circuit of single phase transformer

5.8 MODEL CALCULATIONS:

Find the equivalent circuit parameters $\mathrm{R}_{0}, \mathrm{X}_{0}, \mathrm{R}_{1 \mathrm{e}}, \mathrm{R}_{2 \mathrm{e}}, \mathrm{X}_{1 \mathrm{e}}$ and $\mathrm{X}_{2 \mathrm{e}}$ from the O. C. and S. C. test results and draw the equivalent circuit referred to primary side.
Let the transformer be the step-up transformer $(115 / 230 \mathrm{~V})$, then
Primary is H. V. side.
Secondary is L. V. side
From OC test:
$\cos \emptyset_{0}=\frac{W_{0}}{V_{o} * I_{o}}$
Working component of current $\mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{o}} * \cos \phi_{0}$
Magnetizing component of current $\mathrm{I}_{\mathrm{m}}=\mathrm{I}_{0} * \sin \phi_{0}$
$R_{0}=\frac{V_{0}}{I_{c}} \quad$ Where $\mathrm{I}_{\mathrm{c}}=\mathrm{I}_{0} \cos \phi_{0}$
$X_{0}=\frac{V_{0}}{I_{m}}$ Where $\mathrm{I}_{\mathrm{m}}=\mathrm{I}_{0} \sin \phi_{0}$
From SC Test:

$$
\begin{array}{ll}
\mathrm{R}_{2 \mathrm{e}}= & \frac{\mathrm{W}_{\mathrm{SC}}}{\mathrm{I}_{\mathrm{SC}}^{2}} \\
\mathrm{Z}_{2 \mathrm{e}}=\frac{\mathrm{V}_{\mathrm{SC}}}{\mathrm{I}_{\mathrm{SC}}}=\sqrt{\mathrm{R}_{2 \mathrm{e}}^{2}+\mathrm{X}_{2 \mathrm{e}}^{2}} \\
\therefore \quad & \mathrm{X}_{2 \mathrm{e}}=\sqrt{\mathrm{Z}_{2 \mathrm{e}}^{2}-\mathrm{R}_{2 \mathrm{e}}^{2}}
\end{array}
$$

Thus we will get the equivalent circuit parameters referred to primary side of the transformer. The secondary side parameters also calculated by using the transformation ratio K .

$$
\begin{aligned}
& \mathrm{R}_{1 \mathrm{e}}=\mathrm{R}_{1 \mathrm{e}} / \mathrm{K}^{2} \\
& \mathrm{X}_{1 \mathrm{e}}=\mathrm{X}_{1 \mathrm{e}} / \mathrm{K}^{2}
\end{aligned}
$$

Where $\mathrm{K}=\frac{V_{2}}{V_{1}}=$ Transformation ratio.

Calculations to find efficiency and regulation from OC and SC tests

The efficiency and Regulation can be Predetermined at any load (n) and any power factor using the formulas given below
$\% \eta$ at any load $=\frac{n *(V A) * \cos \emptyset}{n *(V A) * \cos \emptyset+W_{o}+n^{2} * W_{s c}}$

Where $\mathrm{n}=$ Fraction of full load
$\mathrm{n}=1$ (at full load)
$\mathrm{n}=1 / 2($ at half load $)$
$\mathrm{n}=1 / 4($ at quarter load $)$
$\%$ Re gulation $(\% R)=\frac{I_{1} R_{1 e} \cos \phi \pm I_{1} X_{1 e} \sin \phi}{V_{1}} \times 100$
Where V_{1} is the rated Voltage and
I_{1} is the rated current for full load, and for any load $I_{1}=n * I_{\text {rated }}$
'+' for lagging power factors
'-' for leading power factor
$\operatorname{Cos} \phi=1.0$

Load \mathbf{n}	Pcu (W) $=\mathbf{n}^{2 *} \mathbf{W s c}$	$\mathbf{P}_{\mathbf{i}}(\mathbf{W})$ $=\mathbf{W o}$	O/P (W) $=\mathbf{n}^{*}(\mathbf{V A}) * \mathbf{C o s} \phi$	$\mathbf{I} / \mathbf{P}(\mathbf{W})$ $=\mathbf{O} / \mathbf{P}+\mathbf{P c u}+\mathbf{P i}$	$\eta(\%)$	\%R	
					Lag	Lead	

$\operatorname{Cos} \phi=0.8$

5.9 MODEL GRAPH:

Fig - 5.4 Load vs Efficiency characteristics

5.10 PRECAUTIONS:

1. Connections must be made tight
2. Before making or breaking the circuit, supply must be switched off

5.11 RESULT:

5.12 PRE LAB QUESTIONS:

1. What is a transformer?
2. What is the principle of transformer?
3. What happens when a DC supply is given to a transformer?
4. What are the types of transformer?
5. What is transformation ratio?

5.13 POST LAB QUESTIONS:

1. How the transformer is rated?
2. Why OC and SC tests are conducted on transformers?
3. On which side of the transformer OC test is conducted? Why?
4. On which side of the transformer SC test is conducted? Why?
5. What is the condition for maximum efficiency of transformer?

EXPERIMENT - 6

BRAKE TEST ON 3- ϕ SQUIRREL CAGE INDUCTION MOTOR

6.1 AIM:

To determine the efficiency of $3-\phi$ induction motor by performing load test and to obtain the performance curves for the same.

6.2 APPARATUS REQUIRED:

S. No.	Equipment	Range	Type	Quantity
1	Voltmeter			
2	Ammeter			
3	Wattmeter			
4	Tachometer			
5	Connecting Wires			

6.3 NAME PLATE DETAILS:

3- Φ Squirrel Cage Induction Motor

Voltage (V)	
Current (A)	
Power (KW/HP)	
Speed (RPM)	
Frequency (Hz)	

3- Φ Auto Transformer

Capacity (KVA)	
Input Voltage (V)	
Output Voltage (V)	
Phase	
Frequency (Hz)	

6.4 CIRCUIT DIAGRAM:

Fig - 6.1 Brake test on three - phase squirrel cage induction motor

6.5 PROCEDURE:

1. Connections are made as per the circuit diagram.
2. Ensure that the $3-\phi$ variac is kept at minimum output voltage position and belt is freely suspended.
3. Switch ON the supply, Increase the variac output voltage gradually until rated voltage is observed in voltmeter. Note that the induction motor takes large current initially, so keep an eye on the ammeter such that the starting current should exceed the rated current.
4. By the time speed gains rated value, note down the readings of voltmeter, ammeter, and wattmeter at no-load.
5. Now the increase the mechanical load by tightening the belt around the brake drum gradually in steps.
6. Note down the various meters readings at different values of load till the ammeter shows the rated current.
7. Reduce the load on the motor and also bring the variac to minimum position, then switch OFF the supply.

6.6 MODEL CALCULATIONS:

Input power drawn by the motor $\mathrm{W}=\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)$ watts
Shaft Torque, $\mathrm{T}_{\mathrm{sh}}=9.81 * \mathrm{R} *\left(\mathrm{~S}_{1} \sim \mathrm{~S}_{2}\right) \quad \mathrm{N}-\mathrm{m}$
Where R is the Radius of drum in meters.
Output power $\mathrm{P}_{\mathrm{o}}=\frac{2 \pi N T_{s h}}{60}$ watts
$\%$ Efficiency $=\frac{\text { Output } \quad \text { Power in watts }}{\text { Input Power in watts }} \times 100$
\% slip $=\frac{N_{s}-N}{N_{s}} \times 100 \quad\left[\right.$ where $\left.\quad N_{s}=\frac{120 x f}{p}\right]$
Power factor of the induction motor $\cos \phi=\frac{P_{i}}{\sqrt{3} V_{I}}$

6.7 OBSERVATIONS:

S. No.	$\begin{gathered} \mathbf{V} \\ (\mathbf{V}) \end{gathered}$	(A)	Power W (Watts)		Speed N (RPM)	Spring balance (Kg)			$\begin{aligned} & \text { Torque } \\ & T \\ & (\mathbf{N}-\mathrm{m}) \end{aligned}$	Input Power $\mathbf{P}_{\mathrm{i}}=\mathrm{W}_{1}+\mathbf{W}_{2}$ (Watts)	Output Power $P_{0}=\frac{2 \pi N T}{60}$ (Watts)	\% \dagger
			\mathbf{W}_{1}	\mathbf{W}_{2}		S_{1}	\mathbf{S}_{2}	$\begin{gathered} \mathbf{S}_{1} \\ \sim \mathbf{S}_{2} \end{gathered}$				

6.8 MODEL GRAPHS:

Fig - 6.2 Performance characteristics of three phase induction motor

6.9 PRECAUTIONS:

1. Connections must be made tight.
2. Parallax errors must be avoided while taking the readings.
3. Pour the water in the brake drum for cooling purpose.

6.10 RESULT:

6.11 PRE LAB QUESTIONS:

1. What is the principle of operation of induction motor?
2. What is meant by slip of induction motor?
3. What are the types of 3-phase induction motors?
4. What is Lenz's law?
5. What is the difference between slip ring and squirrel cage induction motors?

6.12 POST LAB QUESTIONS:

1. How induction motor speed can be reversed?
2. What you do if the wattmeter shows the reading in reverse direction?
3. What is the slip at standstill?
4. How long the load on the motor be increased?
5. What is the rating of induction motor you used?

EXPERIMENT - 7

REGULATION OF AN ALTERNATOR USING SYNCHRONOUS IMPEDANCE METHOD

7.1 AIM:

To find the regulation of a three-phase alternator by using synchronous impedance method.

7.2 APPARATUS REQUIRED:

S. No.	Equipment	Type	Range	Quantity
1	Voltmeter			
2	Ammeter			
3	Ammeter			
4	Rheostat			
5	Tachometer			
6	Connecting Wires			

7.3 NAME PLATE DETAILS:

DC Motor

Voltage (V)	
Current (A)	
Output (KW/HP)	
Speed (RPM)	
Excitation Type	Shunt
Excitation Voltage	
Excitation current	

3- Φ Alternator	
KVA rating	
Voltage (V)	
Current (A)	
Speed	
Power factor	
Excitation Voltage	
Rated Current	

7.4 CIRCUIT DIAGRAM:

Fig - 7.1 Regulation of Alternator Using Synchronous Impedance Method

7.5 PROCEDURE:

Open Circuit Test:

1. Make the connections as per the circuit diagram.
2. Before starting the experiment, the potential divider network in the alternator field circuit and field regulator rheostat of motor circuit is set minimum resistance position.
3. Switch ON the supply and close the DPST switch. The DC motor is started by moving starter handle.
4. Adjust the field rheostat of DC motor to attain rated speed (equal to synchronous speed of alternator)
5. By decreasing the field resistance of Alternator, the excitation current of alternator is increased gradually in steps.
6. Note the readings of field current, and its corresponding armature voltage in a tabular column.
7. The voltage readings are taken upto and 10% beyond the rated voltage of the machine.

Short Circuit Test:

1. For Short circuit test, before starting the experiment the potential divider is brought back to zero output position, i.e., resistance should be zero in value.
2. Now close the TPST switch.
3. The excitation of alternator is gradually increased in steps until rated current flows in the machine and note down the readings of excitation current and load current (short circuit current)
4. Switch OFF the supply.

7.6 OBSERVATIONS:

S.	OC test	
	Field current	OC voltage
	\mathbf{I}_{f} (Amp.)	per phase Vo (volts)

S. No.	S.C. test	
	Field current I_{f} (Amp.)	SC current $I_{\text {sc }}$ Amp.

7.7 PROCEDURE TO FIND ARMATURE RESISTANCE OF ALTERNATOR:

1. Connections are made as per the circuit diagram.
2. Switch ON the supply. By varying the rheostat, take different readings of ammeter and voltmeter in a tabular column.
3. From the above readings, average resistance Ra of a armature is found out.

7.7.1 CONNECTION DIAGRAM TO FIND Ra:

Fig - 7.2 Circuit diagram for calculation of Resistance of armature winding of alternator

7.7.2 OBSERVATIONS:

S. No.	Armature current $\mathbf{I}(\mathrm{amp})$	Armature voltage Va (volts)	$\mathbf{R}_{\mathrm{dc}}=\mathrm{V} / \mathbf{I}$

7.8 PROCEDURE:

1. Plot open circuit voltage, short circuit current verses field current on a graph sheet.
2. From the graph, the synchronous impedance for the rated value of excitation is calculated.
3. The excitation emf is calculated at full load current which is equal to the terminal voltage at No load.
4. The voltage regulation is calculated at rated terminal voltage.

7.9 MODEL CALCULATIONS:

$Z_{s}=\frac{V_{O C}}{I_{S C}}$ for the same I_{f} and speed

$$
X_{s}=\sqrt{Z_{s}^{2}-R_{a}^{2}} \quad\left[\because \mathrm{R}_{\mathrm{a}}=\mathrm{R}_{\mathrm{dC}}\right]
$$

Generated emf of alternator on no load is

$$
E_{0}=\sqrt{\left(v \cos \phi+I_{a} R_{a}\right)^{2}+\left(v \sin \phi \pm I_{a} X_{s}\right)^{2}}
$$

+ For lagging p. f.
- For leading p. f.

The percentage regulation of alternator for a given p . f. is
$\% \operatorname{Re} g=\frac{E_{0}-V}{V} \times 100$
Where
$\mathrm{E}_{0}-$ Generated emf of alternator (or excitation voltage per phase)
V - Full load, rated terminal voltage per phase.

7.10 MODEL GRAPHS:

Draw the graph between $I_{f} V_{S} E_{0}$ per phase and $I_{f} V_{S} I_{S C}$

Fig - 7.3 OCC and SC characteristics of Alternator

7.11 PRECAUTIONS:

1. Connections must be made tight
2. Before making or breaking the circuit, supply must be switched off

7.12 RESULT:

7.13 PRE LAB QUESTIONS:

1. What is the principle of alternator?
2. What is meant by regulation?
3. What is meant by synchronous impedance?
4. What is meant by mmf ?
5. How the alternators be rated?

7.14 POST LAB QUESTIONS:

1. How you determine the synchronous impedance in this method?
2. How the input to an alternator be given in your experiment?
3. Why DC supply only given to Field winding of an alternator?
4. How the frequency of an alternator is changes?
5. What is the effect of excitation on Current and Power factor?

EXPERIMENT - 8

VOLT AMPERE CHARACTERISTICS OF P-N JUNCTION DIODE

8.1 AIM:

To plot the V-I characteristics of a P-N junction diode in both forward and reverse directions, determine Cut in voltage (knee voltage), static and dynamic resistance in forward direction at forward current of $2 \mathrm{~mA} \&$ 8 mA respectively and find static and dynamic resistance at 10 V in reverse bias condition.

8.2 APPARATUS:

S.No	Device	Range/Rating	Quantity (in No.s)
1.	Semiconductor diode trainer		
	Board	$(0-15) \mathrm{V}$	1
	Containing	1 N 4007	1
	DC Power Supply.	OA79	1
	Diode (Silicon)	$1 \mathrm{~K} \Omega, 1 / 2 \mathrm{~W}$	1
	Diode (Germanium)		
2.	Carbon Film Resistor	$(0-1) \mathrm{V}$	1
	DC Voltmeter	$(0-20) \mathrm{V}$	1
3.	DC Voltmeter	$(0-200) \mu \mathrm{A}$	1
	DC Ammeter	$(0-20) \mathrm{mA}$	1
4.	Connecting wires	5 A	10

8.3 CIRCUIT DIAGRAMS:

8.3.1 Forward Bias

Figure - 8.3.1. Forward Bias Circuit

8.3.2 Reverse Bias

Figure - 8.3.2. Reverse Bias Circuit

8.4 EXPECTED GRAPHS:

Figure - 8.4.1. Volt Ampere Characteristics of P-N Junction Diode

8.5 TABULAR COLUMN:

FORWARD BIAS

$\mathbf{E}_{\mathbf{s}}$ (volts)	$\mathbf{E}_{\mathbf{f}}$ (volts)	$\mathbf{I}_{\mathbf{f}}(\mathbf{m A})$
0.1		
0.2		
0.3		
0.4		
0.5		
0.6		
0.7		
0.8		
0.9		
1		
2		
4		
6		
8		
10		
12		
14		

REVERSE BIAS

$\mathbf{E}_{\mathbf{s}}$ (volts)	$\mathbf{E}_{\mathbf{r}}$ (volts)	$\mathbf{I}_{\mathbf{r}}(\boldsymbol{\mu} \mathbf{A})$
0.1		
0.2		
0.3		
0.4		
0.5		
0.6		
0.7		
0.8		
0.9		
1		
2		
4		
6		
8		
10		
12		
14		

8.6 PRECAUTIONS:

1. Ensure that the polarities of the power supply and the meters as per the circuit diagram.
2. Keep the input voltage knob of the regulated power supply in minimum position bothwhen switching ON or switching OFF the power supply.
3. No loose contacts at the junctions.
4. Ensure that the ratings of the meters are as per the circuit design for precision.

8.7 CALCULATIONS:

Forward Bias

Static Resistance at $8 \mathrm{~mA}=\mathrm{E}_{\mathrm{f}} / \mathrm{I}_{\mathrm{f}}=$ Static resistance at $2 \mathrm{~mA}=\mathrm{E}_{\mathrm{f}} / \mathrm{I}_{\mathrm{f}}=$ Dynamic resistance at $8 \mathrm{~mA}=\Delta \mathrm{E}_{\mathrm{f}} / \Delta \mathrm{I}_{\mathrm{f}}=$ Dynamic resistance at $8 \mathrm{~mA}=\Delta \mathrm{E}_{\mathrm{f}} / \Delta \mathrm{I}_{\mathrm{f}}=$

Reverse Bias

Static Resistance at $(10 \mathrm{~V})=\mathrm{E}_{\mathrm{r}} / \mathrm{I}_{\mathrm{r}}=$
Dynamic resistance at $(10 \mathrm{~V})=\Delta \mathrm{E}_{\mathrm{r}} / \Delta \mathrm{I}_{\mathrm{r}}=$

8.8 RESULT:

8.9 PRE LAB QUESTIONS:

1. Define depletion region of a diode.
2. What is meant by transition and space charge capacitance of a diode?
3. Is the V-I relationship of a diode Linear or Exponential?
4. Draw the ideal characteristics of $\mathrm{P}-\mathrm{N}$ junction diode.
5. What is the diode equation?

8.10 POST LAB QUESTIONS:

1. Define cut-in voltage of a diode and specify the values for Si and Gediodes.
2. What are the applications of a p-n diode?
3. What is PIV?
4. Define break down voltage.
5. What is the effect of temperature on PN junction diodes?

EXPERIMENT NO: 9
 ZENER DIODE CHARACTERISTICS AND VOLTAGE REGULATOR

9.1 AIM:

Plot the V-I characteristics of a Zener diode, find Zener breakdown voltage in reverse bias condition, find static and dynamic resistance in both forward and reverse bias conditions and perform Zener diode voltage regulator.

9.2 APPARATUS:

S.NO	DEVICES	RANGE /RATING	QUANTITY (in No.s)
1.	Zener diode trainer Board		
	Containing		
	a) DC Power Supply.	$(0-15) \mathrm{V}$	1
	b) Zener Diode	4.7 V	1
	c) Zener Diode	6.2 V	1
	d) Carbon Film Resistor	$1 \mathrm{~K} \Omega, 1 / 2 \mathrm{~W}$	1
2.	DC Voltmeter	$(0-1) \mathrm{V}$	1
	DC Voltmeter	$(0-20) \mathrm{V}$	1
3.	a) DC Ammeter	$(0-200) \mu \mathrm{A}$	1
	b DC Ammeter	$(0-20) \mathrm{mA}$	1
4.	Connecting wires	5 A	10

9.3 CIRCUIT DIAGRAMS:

Forward Bias

Figure - 9.1. Forward Bias Circuit

Reverse Bias

Figure - 9.2. Reverse Bias Circuit

Zener Diode as Voltage Regulator

Figure - 9.3. Zener Diode as Voltage Regulator

9.3 PROCEDURE:

Forward Bias

1. Connect the circuit as shown in figure 10.4.1.
2. Vary the supply voltage E_{s} in steps and note down the corresponding values of E_{f} and I_{f} as shown in the tabular column.

Reverse Bias

1. Connect the circuit as shown in figure10.4.2.
2. Repeat the procedure as in forward bias and note down the corresponding Values of Er and Ir as shown in the tabular column

9.4 EXPECTED GRAPH:

Figure - 9.4. Zener Diode as Voltage Regulator

9.5 TABULAR COLUMN:

Forward Bias

$\mathbf{E}_{\mathbf{s}}$ (volts)	$\mathbf{E}_{\mathbf{f}}$ (volts)	$\mathbf{I}_{\mathbf{f}}$ (mA)
0.1		
0.2		
0.3		
0.4		
0.5		
0.6		
0.7		
0.8		
0.9		
1		
2		
4		
6		
8		
10		
12		
14		

Zener Diode as Voltage Regulator:
$\mathbf{V}_{\text {in }}=\mathbf{1 5 V}, \mathbf{V}_{\mathbf{N L}}=$ _-

$\mathbf{R}_{\mathbf{L}}(\mathbf{\Omega})$	$\mathbf{V}_{\text {FL }}($ volts $)$	$\mathbf{I}_{\mathbf{L}}(\mathbf{m A})$	\%Regulation
100			
200			
500			
1 K			
2 K			
5 K			
10 K			
20 K			

$\mathbf{E}_{\mathbf{S}}$ (volts)	$\mathbf{E}_{\mathbf{F L}}$ (volts)	$\mathbf{I}_{\mathbf{L}}$ (mA)
1		
2		
4		
6		
8		
10		
12		
14		

9.6 PRECAUTIONS:

1. Ensure that the polarities of the power supply and the meters as per the circuit diagram.
2. Keep the input voltage knob of the regulated power supply in minimum position both when switching ON or switching OFF the power supply.
3. No loose contacts at the junctions.
4. Ensure that the ratings of the meters are as per the circuit design for precision.

9.7 CALCULATIONS:

Forward Static resistance at $6 \mathrm{~mA}=\mathrm{E}_{\mathrm{f}} / \mathrm{I}_{\mathrm{f}}$ Forward

Dynamic resistance at $6 \mathrm{~mA}=\Delta \mathrm{E}_{\mathrm{f}} / \Delta \mathrm{I}_{\mathrm{f}}$ Reverse

Static resistance at $6 \mathrm{~mA}=\mathrm{E}_{\mathrm{f}} / \mathrm{I}_{\mathrm{f}}$ Reverse Dynamic
resistance at $6 \mathrm{~mA}=\Delta \mathrm{E}_{\mathrm{f}} / \Delta \mathrm{I}$

9.8 RESULT:

1. V-I characteristics of Zener diode are plotted and verified in both forward and reverse directions.
2. Zener breakdown voltage for 4.7 V zener diode $=4.7 \mathrm{~V}$.
3. (i) Forward Bias:
a) Static resistance at $6 \mathrm{~mA}=$
b) Dynamic resistance at $6 \mathrm{~mA}=$
(ii) Reverse Bias:

Static resistance at $6 \mathrm{~mA}=$

Dynamic resistance at $6 \mathrm{~mA}=$

9.9 PRE LAB QUESTIONS:

1. What type of temperature Coefficient does the zener diode have?
2. If the impurity concentration is increased, how the depletion width effected?
3. How the breakdown voltage of a particular diode can be controlled?
4. What type of temperature coefficient does the Avalanche breakdown has?

9.10 LAB ASSIGNMENT:

1. To plot the V-I characteristics of a Zener diode (6.1 V) in both forward and reverse directions by using multisim.

9.11 POST LAB QUESTIONS:

1. Explain briefly about avalanche and Zener breakdowns.
2. Draw the Zener equivalent circuit.
3. Differentiate between line regulation \& load regulation.
4. In which region Zener diode can be used as a regulator?

HALF WAVE RECTIFIERS WITH / WITHOUT FILTER

10.1 AIM:

Examine the input and output waveforms of a half wave rectifier without and with filters. Calculate the ripple factor with load resistance of $500 \Omega, 1 \mathrm{~K} \Omega$ and $10 \mathrm{~K} \Omega$ respectively. Calculate ripple factor with a filter capacitor of $100 \square \mathrm{~F}$ and the load of $1 \mathrm{~K} \square, 2 \mathrm{~K} \square$ and $10 \mathrm{~K} \Omega$ respectively.

10.2 APPARATUS:

S.No	Device	Range/Rating	Quantity in No.
1	Rectifier and Filter trainer Board		
	Containing		
	a) AC Supply.		
	b) Silicon Diodes		
c) Capacitor	$(9-0-9) \mathrm{V}$	1	
		1 N 4007	7
2	a) DC Voltmeter	$0.47 \mu \mathrm{~F}$	1
	b) AC Voltmeter	$(0-20) \mathrm{V}$	1
3	DC Ammeter	$(0-20) \mathrm{V}$	1
4	Cathode Ray Oscilloscope	$(0-50) \mathrm{mA}$	1
5	Decade Resistance Box	$(0-20) \mathrm{MHz}$	1
6	Connecting wires	$10 \Omega-100 \mathrm{~K} \Omega$	1

10.3 CIRCUIT DIAGRAMS:

Figure - 10.1. Half Wave Rectifier without Filter

Figure - 10.2. Half Wave Rectifier with Filter

10.4 PROCEDURE:

Half Wave Rectifier without filter

1. Connect the circuit as shown in figure 11.4.1.
2. Adjust the load resistance, R_{L} to 500Ω, and note down the readings of input and output voltages through oscilloscope.
3. Note the readings of dc current, dc voltage and ac voltage.
4. Now, change the resistance the load resistance, RL to $1 \mathrm{~K} \Omega$ and repeat the procedure as above. Also repeat for $10 \mathrm{~K} \Omega$.
5. Readings are tabulated as per the tabular column.

Half Wave Rectifier with filter

1. Connect the circuit as shown in figure 11.4.2 and repeat the procedure as for half Wave rectifier without filter.

10.5 EXPECTED GRAPHS:

10.6 PRECAUTIONS:

1. No loose contacts at the junctions.
2. Meters of correct ranges must be used for precision

10.7 TABULAR COLUMNS:

Half Wave Rectifier without Filter

S.No	Load Resistance $\left(\mathbf{R}_{\mathrm{L}}\right)$	Input Voltage Peak (\mathbf{V}_{m})	Output Voltage Peak (V_{o})	Average dc current (\mathbf{I}_{dc})	Average Dc voltage (\mathbf{V}_{dc})	RMS Voltage $\left(V_{a c}\right)$	Ripple Factor $\gamma=\frac{\mathrm{V}_{\mathrm{ac}}}{\mathrm{~V}_{\mathrm{dc}}}$
1.	500Ω						
2.	$1 \mathrm{~K} \Omega$						
3.	$10 \mathrm{~K} \Omega$						

Half Wave Rectifier with Filter $\mathrm{C}=\mathbf{1 0} \boldsymbol{\mu} \mathrm{F}$

S.No	Load Resistance $\left(\mathbf{R}_{\mathrm{L}}\right)$	Input Voltage Peak (\mathbf{V}_{m})	Output Voltage Peak (V_{o})	Average dc current ($\mathbf{I}_{\text {dc }}$)	Average Dc voltage $\left(\mathbf{V}_{\text {dc }}\right)$	RMS Voltage $\left(\mathbf{V}_{\mathrm{ac}}\right)$	Ripple Factor $\boldsymbol{\gamma}=\frac{\mathrm{V}_{\mathrm{ac}}}{\mathrm{~V}_{\mathrm{dc}}}$
1.	$1 \mathrm{~K} \Omega$						
2.	$2 \mathrm{~K} \Omega$						
3.	$10 \mathrm{~K} \Omega$						

10.8 PRE LAB QUESTIONS:

1. What is a rectifier?
2. How Diode acts as a rectifier?
3. What is the significance of PIV? What is the condition imposed on PIV?
4. Define regulation.
5. Define time constant.

10.9 LAB ASSIGNMENT:

1. Plot the wave forms of Half wave rectifier with $\mathrm{R}=5000$ ohms, $\mathrm{C}=680 \mu \mathrm{~F}$.

10.10 POST LAB QUESTIONS:

1. Draw the o / p wave form without filter.
2. Draw the o / p wave form with filter.
3. What is meant by ripple factor? For a good filter whether ripple factor should be high or low?
4. What happens to the o / p wave form if we increase the capacitor value?
5. What happens if we increase the capacitor value?

10.11 RESULT:

1. Input and Output waveforms of a half-wave with /without filter are observed and plotted.
2. For Half-wave rectifier without
filter- γ, Ripple factor at $500 \Omega=$

$$
\begin{aligned}
& 1 \mathrm{~K} \Omega= \\
& 10 \mathrm{~K} \Omega=
\end{aligned}
$$

3. For Half-wave rectifier with filter:- γ, Ripple factor at $1 \mathrm{~K} \Omega, 100 \mu \mathrm{~F}=$
$2 \mathrm{~K} \Omega, 100 \mu \mathrm{~F}=$
$10 \mathrm{~K} \Omega, 100 \mu \mathrm{~F}=$

EXPERIMENT - 11
 FULLWAVE RECTIFIERS WITH/WITHOUT FILTER

11.1 AIM:

Examine the input and output waveforms of a full wave (center tapped) rectifier without and with filters.
Calculate the ripple factor with load resistance of $500 \Omega, 1 \mathrm{~K} \Omega$ and $10 \mathrm{~K} \Omega$ respectively.
Calculate ripple factor with a filter capacitor of $100 \square \mathrm{~F}$ and the load of $1 \mathrm{~K} \square, 2 \mathrm{~K} \square$ ad $10 \mathrm{~K} \Omega$ respectively.

11.2 APPARATUS:

S.No	Device	Range /Rating	Quantity (in No.s)
1	Rectifier and Filter trainer Board Containing a) AC Supply. b) Silicon Diodes c) Capacitor	$(9-0-9) \mathrm{V}$ 	1 N 4007 $0.47 \mu \mathrm{~F}$
2	a) DC Voltmeter b) AC Voltmeter	1	
3	DC Ammeter	$(0-20) \mathrm{V}$	1
4	Cathode Ray Oscilloscope	$(0-20) \mathrm{V}$	1
5	Decade Resistance Box	$(0-50) \mathrm{mA}$	1
6	Electrolytic Capacitor	$(0-20) \mathrm{MHz}$	1
7	Connecting wires	$10 \Omega-100 \mathrm{~K} \Omega$	1

11.3 CIRCUIT DIAGRAMS:

Figure - 11.1. Full Wave Rectifier (Center-tap) Without Filter

Figure - 11.2. Full Wave Rectifier (Center-tap) With Filter

11.4 PROCEDURE:

Full-wave Rectifier without filter

1. Connect the circuit as shown in the figure (a).
2. Adjust the load resistance R_{L} to $500 \square$ and connect a capacitorof $100 \square \mathrm{~F}$ value in parallel with the load and note the readings of input and output voltages through Oscilloscope.
3. Note the readings of DC current, DC voltage and AC voltage.
4. Now change the load resistance RL to $2000 \square$ and repeat the procedure astheabove.
5. Readings are tabulate as per the tabular column.

Full-wave Rectifier with filter

1. Connect the circuit as shown in the figure (b).
2. Adjust the load resistance R_{L} to $1 \mathrm{~K} \square$ and connect a capacitorof $100 \square \mathrm{~F}$ values in parallel with the load and note the readings of input and output voltages through Oscilloscope.
3. Note the readings of DC current, DC voltage and AC voltage.
4. Now change the load resistance R_{L} to $2 \mathrm{~K} \square$ and repeat the procedure as the above. Also repeat for $10 \mathrm{~K}, 100 \mu \mathrm{~F}$ values
5. Readings are tabulate as per the tabular column.

11.5 EXPECTED GRAPHS:

11.6 PRECAUTIONS:

1. No loose contacts at the junctions.
2. Meters of correct range must be used for precision.

11.7 TABULAR COLUMNS:

Full wave Rectifier (Center-tap) Without Filter

S.No	Load Resistance $\left(\mathbf{R}_{\mathrm{L}}\right)$	Input	Ooltage	Peak ($\left.\mathbf{V}_{\mathrm{m}}\right)$	Voltage		
Peak ($\left.\mathbf{V}_{\mathbf{o}}\right)$	Average dc current $\left(\mathbf{I}_{\mathrm{dc}}\right)$	Average Dc voltage $\left(\mathbf{V}_{\mathrm{dc}}\right)$	RMS $\left(\mathbf{V}_{\mathrm{ac}}\right)$	Ripple $\gamma=\frac{\mathrm{V}_{\mathrm{ac}}}{\mathrm{V}_{\mathrm{dc}}}$			
1	500Ω						
2	$1 \mathrm{~K} \Omega$						
3	$10 \mathrm{~K} \Omega$						

Full wave Rectifier (Center-tap) With Filter C $=---\mu$ F

S.No	Load Resistance $\left(\mathbf{R}_{\mathrm{L}}\right)$	Input	Ooltage				
Peak (Vm)	Output	Average dc current $\left(\mathbf{I}_{\mathbf{d}}\right)$	Average Deak ($\left.\mathbf{V}_{\mathbf{o}}\right)$	RMS voltage $\left(\mathbf{V}_{\mathrm{dc}}\right)$	Roltage $\left(\mathbf{V}_{\mathrm{ac}}\right)$	Factor $\gamma=\frac{\mathrm{V}_{\mathrm{ac}}}{\mathrm{V}_{\mathrm{dc}}}$	
1	500Ω						
2	$1 \mathrm{~K} \Omega$						
3	10 K						

11.8 PRE LAB QUESTIONS:

1. What is a full wave rectifier?
2. How Diode acts as a rectifier?
3. What is the significance of PIV requirement of Diode in full-wave rectifier?
4. Compare capacitor filter with an inductor filter.
5. What is the theoretical maximum value of ripple factor for a full wave rectifier?

11.9 LAB ASSIGNMENT:

Plot the wave forms of full wave rectifier with $\mathrm{R}=500$ ohms, $\mathrm{C}=470 \mu \mathrm{~F}$.

11.10 POST LAB QUESTIONS:

1. Draw the o/p wave form without filter? Draw the O/P? What is wave formwith Filter.
2. Define ripple factor. For a good filter whether ripple factor should be high or low? What happens to the ripple factor if we insert the filter?
3. Define regulation. Why regulation is poor in the case of inductor filter?
4. Define time constant.
5. What happens to the o / p wave form if we increase the capacitor value? What happens if we increase the capacitor value?

11.11 RESULT:

1. Input and Output waveforms of a full-wave (center tapped) and bridge rectifier with /without filters are observed and plotted.
2. For Full-wave rectifier(center tapped) without filter-
i. γ, Ripple factor at $500 \Omega, 100 \mu \mathrm{~F}=$
a. $2 \mathrm{~K} \Omega, 100 \mu \mathrm{~F}=$
3. For full-wave rectifier (Center tapped) with filter-
i. γ, Ripple factor at $500 \Omega, 100 \mu \mathrm{~F}=$
a. $2 \mathrm{~K} \Omega, 100 \mu \mathrm{~F}=$

EXPERIMENT - 12

TRANSISTOR CB CHARACTERISTICS

12.1 AIM:

Plot the input and output characteristics of a transistor connected in Common Base configuration. Calculate the input resistance R_{i} at $I_{e}=12 \mathrm{~mA}$, output resistance R_{o} at $V_{C B}=8 \mathrm{~V}$ and current gain at $\mathrm{V}_{\mathrm{CB}}=6 \mathrm{~V}$.

12.2 APPARATUS:

S.No.	Device	Range /Rating	Quantity (in No.s)
1.	Transistor CB trainer Board		
	Containing		
	a) DC Power Supply.	$(0-12) \mathrm{V}$	2
	b) PNP Transistor		
	c) Carbon Film Resistor	CK100	$470 \Omega, 1 / 2 \mathrm{~W}$
2.	a) DC Voltmeter	2	
3.	b) DC Voltmeter	$(0-1) \mathrm{V}$	1
4.	Connecting wires	$(0-20) \mathrm{V}$	1

12.3 CIRCUIT DIAGRAM:

Figure - 12.1. Transistor CB Characteristics

12.4 PROCEDURE:

12.4.1 Input Characteristics:

1. Connect the transistor as shown in figure12.3.1
2. Keep the $V_{C B}$ constant at 4 V and 8 V .Vary the V_{EB} in steps and note corresponding I_{E} values asper tabular form.

Output Characteristics:

1. Keep the I_{E} constant at 4 mA and 8 mA . Vary the $V_{C B}$ in steps and note Corresponding I_{C} values.
2. Readings are tabulated as shown in tabular column

12.5 EXPECTED GRAPHS:

Input Characteristics:

Figure - 12.2. Transistor CB Input Characteristics

Output characteristics:

Figure - 12.3. Transistor CB output Characteristics

12.6 PRECAUTIONS:

1. Keep the knobs of supply voltages V_{EB} \& V_{CB} at minimum positions when switching ON or switching OFF the power supply.
2. No loose contacts at the junctions.
3. Do not overload the meters above its rated ranges.

12.7 TABULAR COLUMN:

Input Characteristics

$\mathbf{V}_{\mathbf{C B}}=\mathbf{- 4} \mathbf{V}$		$\mathbf{V}_{\mathbf{C B}}=\mathbf{- 8 V}$	
$\mathbf{V}_{\text {EB }}$ $($ Volts $)$	$\mathbf{I}_{\mathbf{E}}$ $(\mathbf{m A})$	$\mathbf{V}_{\mathbf{E B}}$ $($ Volts $)$	$\mathbf{I}_{\mathbf{E}}$ $(\mathbf{m A})$

Output Characteristics

$\mathbf{I}_{\mathbf{E}}=\mathbf{8 m A}$		$\mathbf{I}_{\mathbf{E}}=\mathbf{4 m A}$	
$\mathbf{V}_{\mathbf{C B}}$ (Volts)	\mathbf{I}_{C} $(\mathbf{m A})$	$\mathbf{V}_{\mathbf{C B}}$ (Volts)	$\mathbf{I}_{\mathbf{C}}(\mathbf{m A})$

12.8 CALCULATIONS:

Input Resistance $\left(\mathrm{I}_{\mathrm{E}}=12 \mathrm{~mA}\right)=\Delta \mathrm{V}_{\mathrm{EB}} / \Delta \mathrm{I}_{\mathrm{E}}=\mathrm{At}$
$\mathrm{V}_{\mathrm{EB}}=4 \mathrm{~V}$
Input Resistance $\left(\mathrm{I}_{\mathrm{E}}=12 \mathrm{~mA}\right)=\Delta \mathrm{V}_{\mathrm{EB}} / \Delta \mathrm{I}_{\mathrm{E}}=$ At $\mathrm{V}_{\mathrm{EB}}=8 \mathrm{~V}$
Output resistance $\left(\mathrm{I}_{\mathrm{E}}=8 \mathrm{~mA}\right)=\Delta \mathrm{V}_{\mathrm{CB}} / \Delta \mathrm{I}_{\mathrm{C}}=$ At $\mathrm{V}_{\mathrm{CB}}=-8 \mathrm{~V}$.
Output resistance $\left(\mathrm{I}_{\mathrm{E}}=4 \mathrm{~mA}\right)=\Delta \mathrm{V}_{\mathrm{CB}} / \Delta \mathrm{I}_{\mathrm{C}}=$ At $V_{C B}=-8 \mathrm{~V}$.
Current Amplification Factor ' α ' $=\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{I}_{\mathrm{E}}=$

12.9 PRE LAB QUESTIONS:

1. What is the range of α for the transistor?
2. Draw the input and output characteristics of the transistor in CB configuration?
3. Identify various regions in output characteristics?
4. What is the relation between α and β ?

12.10 LAB ASSIGNMENT:

Plot the I/O characteristics of CB configuration for $\mathrm{Vcc}=12 \mathrm{~V}, \mathrm{VEE}=6 \mathrm{~V}, \mathrm{RE}=100 \mathrm{~K}$ ohms, $\mathrm{Rc}=1 \mathrm{~K}$ ohms, α $=0.98$, $\mathrm{Vbe}=0.7 \mathrm{~V}$.

12.11 POST LAB QUESTIONS:

1. Discuss the applications of CB configuration?
2. What are the input and output impedances of CB configuration?
3. Define α (alpha)?
4. What is EARLY effect?
5. Discuss the power gain of CB configuration

12.12 RESULT:

1. Input and output curves are plotted.
2. R_{i} Input Resistance:
(i) $\mathrm{V}_{\mathrm{EB}}=4 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{E}}=12 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=$
(ii) $\mathrm{V}_{\mathrm{EB}}=8 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{E}}=12 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=$
3. R_{o} Output Resistance:
(i) $\quad \mathrm{V}_{\mathrm{CB}}=8 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{E}}=8 \mathrm{~mA}, \mathrm{R}_{\mathrm{o}}=$
(ii) $\mathrm{V}_{\mathrm{CB}}=8 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{E}}=4 \mathrm{~mA}, \mathrm{R}_{\mathrm{o}}=$
4. Current Amplification factor

$$
\begin{aligned}
& ‘ \alpha ’= \\
& \quad\left(\text { at } V_{C B}=6 \mathrm{~V}\right)
\end{aligned}
$$

EXPERIMENT NO: 13

TRANSISTOR CE CHARACTERISTICS

13.1 AIM:

Plot the input and output characteristics of a transistor connected in Common Emitter configuration. Calculate the input resistance Ri_{i} at $\mathrm{IB}=20 \mu \mathrm{~A}$, output resistance R_{o} at $\mathrm{VCE}=10 \mathrm{~V}$ and current gain at $\mathrm{VCE}=10 \mathrm{~V}$.

13.2 APPARATUS:

S. No	Devices	Range / Rating	Quantity (in No's)
1.	Transistor CE trainer Board		
	Containing		
	a) DC Power Supply.	$(0-12) \mathrm{V} \mathrm{BC}$	2
	b) NPN Transistor	107	1
	c) Carbon Film Resistor	$470,1 / 2 \mathrm{~W}$	1
2.	a) DC Voltmeter	$100 \mathrm{~K} \Omega, 1 / 2$	1
	b) DC Voltmeter	$(0-1) \mathrm{V}$	1
4.	DC Ammeter	$(0-20) \mathrm{V}$	1

13.3 CIRCUIT DIAGRAM:

Figure - 13.1. Transistor CE Characteristics

13.4 PROCEDURE:

Input Characteristics:

1. Connect the transistor as shown in figure 13.3.1
2. Keep the V_{CE} constant at 2 V and 6 V .
3. Vary the I_{B} in steps and note down the corresponding V_{EB} values as per tabular column.

Output Characteristics:

1. Keep the I_{B} constant at $20 \mu \mathrm{~A}$ and $40 \mu \mathrm{~A}$.
2. Vary the V_{CE} in steps and note corresponding I_{C} values.
3. Readings are tabulated as shown in tabular column.

13.5 EXPECTED GRAPHS:

Input Characteristics:

Figure - 13.5.1. Transistor CE Input characteristics

Output characteristics:

Figure - 13.5.2. Transistor CE Output Characteristics

13.6 PRECAUTIONS:

1. Keep the knobs of supply voltages $\mathrm{V}_{\mathrm{BE}} \& \mathrm{~V}_{\mathrm{CE}}$ at minimum positions when switching ON or switching OFF the power supply.
2. No loose contacts at thejunctions.
3. Do not overload the meters above its rated ranges.

13.7 TABULAR COLUMNS:

Input Characteristics:

$\begin{aligned} & \mathbf{V}_{\mathrm{CB}}= \\ & 2 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathbf{V}_{\mathrm{CB}}= \\ \mathbf{6 V} \end{gathered}$	
$\mathrm{V}_{\text {BE }}$ (Volts)	$\begin{gathered} \mathbf{I}_{\mathbf{B}} \\ (\mu \mathbf{A}) \end{gathered}$	$\mathbf{V}_{\text {BE }}$ (Volts)	$\begin{gathered} \mathbf{I}_{\mathbf{B}} \\ (\boldsymbol{\mu} \mathbf{A}) \end{gathered}$
	0		0
	0.2		0.2
	0.4		0.4
	0.6		0.6
	0.8		0.8
	1		1
	2		2
	4		4
	6		6
	8		8
	10		10
	20		20
	30		30
	40		40
	50		50
	60		60

Output characteristics:

$\begin{gathered} \mathbf{I}_{\mathbf{B}}= \\ \mathbf{2 0 \mu \mathrm { A }} \end{gathered}$	
$\begin{gathered} \mathbf{V}_{\text {CE }} \\ \text { (Volts) } \end{gathered}$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$
0	
0.5	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

$\begin{array}{r} I_{B}= \\ 40 \mu \mathrm{~A} \end{array}$	
$\mathbf{V}_{\text {CE }}$ (Volts)	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$
0	
0.5	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

13.8 CALCULATIONS:

Input Resistance $(\mathrm{IB}=20 \mu \mathrm{~A})=\Delta \mathrm{VBE} / \Delta \mathrm{IB}=\mathrm{At} \mathrm{VCE}$
$=2 \mathrm{~V}$

Input Resistance $(\mathrm{IB}=20 \mu \mathrm{~A})=\Delta \mathrm{VBE} / \Delta \mathrm{IB}=\mathrm{At}$
VCE $=6 \mathrm{~V}$

Output resistance $(\mathrm{VCE}=10 \mathrm{~V})=\Delta \mathrm{VCE} / \Delta \mathrm{IC}=\mathrm{At}$ $\mathrm{IB}=20 \mu \mathrm{~A}$

Output resistance $(\mathrm{VCE}=10 \mathrm{~V})=\Delta \mathrm{VCE} / \Delta \mathrm{IC}=\mathrm{At}$ $\mathrm{IB}=20 \mu \mathrm{~A}$

Current Amplification Factor ' β ' $=\Delta \mathrm{IC} / \Delta \mathrm{IB}=$

13.9 RESULT:

1. Input and Output curves are plotted.
2. Ri, Input Resistance:
a. $\mathrm{VCE}=2 \mathrm{~V}$ and $\mathrm{IB}=20 \mu \mathrm{~A}, \mathrm{Ri}=$
b. $\mathrm{VCE}=6 \mathrm{~V}$ and $\mathrm{IB}=20 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{i}}=$
3. Ro, Output Resistance:
a. $\mathrm{VCE}=10 \mathrm{~V}$ and $\mathrm{IB}=20 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{O}}=$
b. $\mathrm{VCE}=10 \mathrm{~V}$ and $\mathrm{IB}=40 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{O}}=$
4. Current Amplification factor ' β ' = (at VCE $=10 \mathrm{~V}$)

13.10 PRE LAB QUESTIONS:

1. What is the range of ' β ' for the transistor?
2. What are the input and output impedances of CE configuration?
3. Identify various regions in the output characteristics?
4. What is the relation between ' α ' and ' β '?

13.11 POST LAB QUESTIONS:

1. Define current gain in CE configuration.
2. Why CE configuration is preferred foramplification?
3. What is the phase relation between input andoutput?
4. Draw diagram of CE configuration for PNP transistor.
5. What is the power gain of CE configuration?

EXPERIMENT - 14

STUDY OF CRO

AIM:- To study blockwise construction of Cathode Ray Oscilloscope

THEORY:

CRO:

The Cathode Ray Oscilloscope is probably the most versatile tool for deployment of electronic circuit and system. The CRO allow the amplitude of the electronic signals where they are voltage, current or power to be displayed as a function of time. The CRO depends on the moments of an electron beam which is being bombarded (impinged) on a screen coated with a fluorescent material to produce a visual spot. If the electron is being deflected along the conventional axes, i.e. x-axis \& y-axis, two different displays are produced.

Fig:14.1 Block Diagram of CRO

MAIN PARTS OF CRO:

CRT: This is cathode ray tube in which electron beam strikes the screen internally to provide visual display of signal.

Vertical Amplifier: This is a wide band amplifier used to amplify signal in the vertical section of the signal.

Delay line: It is used to delay signal for sometime in the vertical section.
Time Base: It is used to generate sawtooth voltage which it is applied to Horizontal deflection plates.

Horizontal Amplifier: This is used to amplify the sawtooth voltage before it is applied to horizontal deflection plates.

Trigger Circuit: This is used to convert the incoming signal into trigger pulse so that the input signal and the sweep frequency can be synchronized.

Power Supply: There are two power supplies, A negative high voltage (HV). supply and a + ve low voltage supply (LV). . The + ve voltage supply is from +300 V to 400 V , the negative voltage supply is from -1000 V to -1500 V .

FRONT PANEL CONTROLS:

Fig:14.2 Front Panel of CRO
Power 'ON/OFF' : Turns ‘On' \& 'Off'. LED indicates power 'On'. Use position \& Int/Focus controls to get the beam. All are push buttons

Time / Div : Rotary Switch for TB speed control.
Trigger Input : For feeding external trigger signal.
Volts/Div : For sensitivity selection of CH $1 \&$ CH 2.

DC-AC-Gnd : Switch provided for Input coupling. BNC inputs provided for connecting the Input signal.

Component Tester : Switch when pressed converts scope into Component Tester mode.
CT : Input \& Gnd terminals to be used for CT.

CONTROLS ON PCB

Intensity : Controls the brightness.
Focus : Controls the sharpness.

Trace Rotation : Controls the horizontal alignment of the trace.
X Pos: Controls the horizontal position.
Y Pos I \& III : Controls vertical position of the trace.
X Y: When pressed cuts-off internal TB \& connects external horizontal signal via. CH II.
X 5 : When pressed gives 5 times magnification.
External : When pressed allows ext. trigger

Fig: 14.3 Controls on PCB
TV : When pressed allows TV frame to be synchronized.
Cal Variable : Controls the time speed in between the steps.
Auto/ Norm : In AT gives display of trace \& auto trigger. When pressed becomes normal \& gives variable level trigger.

Level : Controls the trigger level from positive peak to negative peak.
$+/=:$ Selects the slope of triggering.
Trig 1/ Trig 2 : When out triggers CH I and when pressed triggers CH II
CH I Alt/: When out selects CH I and when pressed selects CH II. When dual switch also pressed this selects Alt or Chop modes.
Mono / Dual : When out, selects CH I only. When pressed selects both.

AMPLITUDE MEASUREMENTS :

Fig:14.4 Amplitude measurement using CRO
$\mathrm{V}_{\mathrm{rms}}=$ effective value
$\mathrm{V}_{\mathrm{p}}=$ simple peak or crest value $\mathrm{Vpp}=$ peak-to-peak value $\mathrm{Vmom}=$ momentary value

FREQUENCY MEASUREMENT

$\mathrm{T}=$ time in seconds for one period
$\mathrm{F}=$ recurrence frequency in Hz of the signals, $\mathrm{F}=1 / \mathrm{T}$,
$\mathrm{T}_{\text {tot }}=1.6 \mathrm{~cm} \times 0.5 \mathrm{~s} / \mathrm{cm}: 5=160 \mathrm{~ns}$

Fig:14.5 Frequency measurement using CRO

PHASE MEASUREMENT:
$\operatorname{Sin} q=a / b$

Fig: 6 Phase measurement using CRO

PRECAUTIONS:

1. Connections must be made tight
2. Before making or breaking the circuit, supply must be switched off

RESULT:

PRE LAB QUESTIONS:

1. What is a cathode ray oscilloscope?
2. What are the essential components of a CRT?
3. Why is the grid in a CRO provided with a hole in it?
4. What is meant by the deflection factor of a CRO?
5. What vertical and horizontal plates are provide in a CRO?

POST LAB QUESTIONS:

1. What is the need of CRO in radio applications?
2. What is meant by curve tracers?
3. How to measure the AC and DC current in CRO?
4. What is the stage of amplifier?
5. Why is a delay line used in a CRO?

Prepared By:

Mr. N Shivaprasad, Assistant Professor, EEE
HOD, AE

