
1

 ADVANCED DATA STRUCTURES

LAB MANUAL

Course Code : BCSB09

Regulations : IARE - R18

Semester : I

Branch : CSE

Prepared by

Ms. S SWARAJYA LAXMI, ASSISTANT PROFESSOR

COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

Dundigal, Hyderabad - 500 043

2

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

1. PROGRAM OUTCOMES:

 PROGRAM OUTCOMES (POS)

PO 1 Apply Analyze a problem, identify and define computing requirements, design and

implement appropriate solutions.

PO 2 Solve complex heterogeneous data intensive analytical based problems of real time

scenario using state of the art hardware/software tools.

PO 3 Demonstrate a degree of mastery in emerging areas of CSE/IT like IoT, AI, Data

Analytics, Machine Learning, cyber security, etc.

PO 4 Write and present a substantial technical report/document.

PO 5 Independently carry out research/investigation and development work to solve practical

problems.

PO 6 Function effectively on teams to establish goals, plan tasks, meet deadlines, manage risk

and produce deliverables.

PO 7 Engage in life-long learning and professional development through self-study, continuing

education, professional and doctoral level studies.

2. ATTAINMENT OF PROGRAM OUTCOMES:

WEEK NO Experiment
Program Outcomes

Attained

1. DIVIDE AND CONQUER - 1 PO1, PO2, PO5

2. DIVIDE AND CONQUER - 2 PO1, PO2, PO5

3. IMPLEMENTATION OF STACK AND QUEUE PO1, PO2, PO5

4. HASHING TECHNIQUES PO1, PO2, PO5

5. APPLICATIONS OF STACK PO1, PO2, PO5

6. BINARY SEARCH TREE PO1, PO2, PO3

7. DISJOINT SET OPERATIONS PO1, PO2, PO3

8. GRAPH TRAVERSAL TECHNIQUES PO1, PO2, PO3, PO4

9. SHORTEST PATHS ALGORITHM PO1, PO2, PO3, PO4

10. MINIMUM COST SPANNING TREE PO1, PO2, PO3, PO4, PO5

11. TREE TRAVESRSALS PO1, PO2, PO3, PO4, PO5

12. ALL PAIRS SHORTEST PATHS PO1, PO2, PO3, PO4, PO6

3

3. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM

OUTCOMES:

Course Objectives

(COs)

Program Outcomes (POs)

PO1 PO2 PO3 PO4 PO5 PO6 PO7

I
√

√

√

II
√

√

√

√

III
√

√

IV
√

√

√

4

4 SYLLUBUS

ADVANCED DATA STRUCTURES LABORATORY

 I Semester: CSE

Course Code Category Hours / Week Credits Maximum Marks

BCSB09 Core

L T P C CIA SEE Total

3 - - 2 30 70 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

COURSE OBJECTIVES:

The course should enable the students to:

I. Implement linear and non linear data structures.

II. Analyze various algorithms based on their time complexity.

III. Choose appropriate data structure and algorithm design method for a specific application.

IV. Identify suitable data structure to solve various computing problems.

COURSE OUTCOMES (COs):

 CO 1: Implement divide and conquer techniques to solve a given problem.

 CO 2: Implement hashing techniques like linear probing, quadratic probing, random probing and

double hashing/rehashing.

 CO 3: Perform Stack operations to convert infix expression into post fix expression and evaluate the

post fix expression.

 CO 4: Differentiate graph traversal techniques Like Depth First Search, Breadth First Search.

 CO 5: Identify shortest path to other vertices using various algorithms.

COURSE LEARNING OUTCOMES (CLOs):

1. Analyze time and space complexity of an algorithm for their performance analysis.
2. Understand arrays, single and doubly linked lists in linear data structure and tress , graphs in non-linear data structure.

3. Master a variety of advanced abstract data type (ADT) and their implementations

4. Understand dynamic data structures and relevant standard algorithms

5. Design and analyze and Concepts of heap, priority queue

6. Analyze probing methods like linear probing and quadratic probing

7. Understand and implement hash table and linear list representation

8. Understand the properties of binary tress and implement recursive and non-recursive traversals

9. Understand graphs terminology, representations and traversals in Graphs

10. Implement Depth First Search and Breath First Searching methods of non –linear data structures

11. Analyze Dijkstra‟s algorithm for single source shortest path problem for minimum cost spanning trees

12. Implement binary search ADT for finding parent node, smallest and largest values in binary search

13. Understand and implement operations and applications of red-Black and splay Trees

14. Implement Huffman Coding and decoding for text compression.

LIST OF EXPERIMENTS

Week-1 DIVIDE AND CONQUER - 1

a. Implement Quick Sort on 1D array of Student structure (contains student name,
student_roll_no,total_marks), with key as student_roll_no and count the number of swap performed.

b. Implement Merge Sort on 1D array of Student structure (contains student_name,
student_roll_no,total_marks), with key as student_roll_no and count the number of swap performed.

5

Week-2 DIVIDE AND CONQUER - 2

a. Design and analyze a divide and conquer algorithm for following maximum sub-array sum problem:given
an array of integer‟s find a sub-array [a contagious portion of the array] which gives the maximum sum.

b. Design a binary search on 1D array of Employee structure (contains employee_name,
emp_no, emp_salary), with key as emp_no and count the number of comparison happened.

Week-3 IMPLEMENTATION OF STACK AND QUEUE

a. Implement 3-stacks of size „m‟ in an array of size „n‟ with all the basic operations such as Is
Empty(i),Push(i), Pop(i), IsFull(i) where „i‟ denotes the stack number (1,2,3), Stacks are not overlapping
each other.

b. Design and implement Queue and its operations using Arrays

Week-4 HASHING TECHNIQUES

Write a program to store k keys into an array of size n at the location computed using a hash function, loc =key
% n, where k<=n and k takes values from [1 to m], m>n. To handle the collisions use the following collision
resolution techniques

a. Linear probing
b. Quadratic probing
c. Random probing
d. Double hashing/rehashing

Week-5 APPLICATIONS OF STACK

Write C programs for the following:
a. Uses Stack operations to convert infix expression into post fix expression.

b. Uses Stack operations for evaluating the post fix expression.

Week-6 BINARY SEARCH TREE

Write a program for Binary Search Tree to implement following operations:
a. Insertion
b. Deletion
 i. Delete node with only child
 ii. Delete node with both children
c. Finding an element
d. Finding Min element
e. Finding Max element
f. Left child of the given node
g. Right child of the given node
h. Finding the number of nodes, leaves nodes, full nodes, ancestors, descendants.

Week-7 DISJOINT SET OPERATIONS

a. Write a program to implement Make_Set, Find_Set and Union functions for Disjoint Set
 Data Structure for a given undirected graph G(V,E) using the linked list representation
 with simple implementation of Union operation.
b. Write a program to implement Make_Set, Find_Set and Union functions for Disjoint Set
 Data Structure for a given undirected graph G(V,E) using the linked list representation
 with weighted-union heuristic approach.

6

Week-8 GRAPH TRAVERSAL TECHNIQUES

a. Print all the nodes reachable from a given starting node in a digraph using BFS method.

b. Check whether a given graph is connected or not using DFS method.

Week-9 SHORTEST PATHS ALGORITHM

From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra‟s
algorithm.

Week-10 MINIMUM COST SPANNING TREE

 Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal‟s

WeeK-11 TREE TRAVESRSALS

 Perform various tree traversal algorithms for a given tree.

7

Week-12 ALL PAIRS SHORTEST PATHS

 Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.

Reference Books:

1. Kernighan Brian W, Dennis M. Ritchie, “The C Programming Language”, Prentice Hall of India,

RePrint, 2008.

2. Balagurusamy E, “Programming in ANSIC”, Tata McGraw Hill, 6
th
 Edition, 2008.

3. Gottfried Byron, “Schaum's Outline of Programming with C”, Tata McGraw Hill, 1
st
 Edition, 2010.

4. Lipschutz Seymour, “Data Structures Schaum's Outlines Series”, Tata McGraw Hill, 3
rd

 Edition,

2014.

 5. Horowitz Ellis, Satraj Sahni, Susan Anderson, Freed, “Fundamentals of Data Structures in C”,

W. H.Freeman Company, 2
nd

Edition, 2011.

Web References:

1. http://www.tutorialspoint.com/data_structures_algorithms

2. http://www.geeksforgeeks.org/data-structures/

3. http://www.studytonight.com/data-structures/

4. http://www.coursera.org/specializations/data-structures-algorithms

http://www.coursera.org/specializations/data-structures-algorithms

8

5. INDEX:

WEEK.NO Experiment Page Numbers

1.

DIVIDE AND CONQUER - 1 9

2.
DIVIDE AND CONQUER - 2

13

3.
IMPLEMENTATION OF STACK AND QUEUE

16

4.
HASHING TECHNIQUES

22

5.
APPLICATIONS OF STACK

25

6.
BINARY SEARCH TREE

27

7.
DISJOINT SET OPERATIONS

30

8.
GRAPH TRAVERSAL TECHNIQUES

32

9.
SHORTEST PATHS ALGORITHM

39

10.
MINIMUM COST SPANNING TREE

44

11.
TREE TRAVESRSALS

49

12.
ALL PAIRS SHORTEST PATHS

52

9

WEEK-1

DIVIDE AND CONQUER - 1
1.1 OBJECTIVE:

a. To implement Quick Sort on 1D array of Student structure (contains student name,

student_roll_no,total_marks), with key as student_roll_no and count the number of

swap performed.

b. To implement Merge Sort on 1D array of Student structure (contains student_name,

student_roll_no,total_marks), with key as student_roll_no and count the number of

swap performed.

1.2 RESOURCES:

Python 3.4

1.3 PROGRAM LOGIC:

To implement Quick Sort

This function takes last element as pivot, places

the pivot element at its correct position in sorted

array, and places all smaller (smaller than pivot)

to left of pivot and all greater elements to right

of pivot

def partition(arr,low,high):

 i = (low-1) # index of smaller element

 pivot = arr[high] # pivot

 for j in range(low , high):

 # If current element is smaller than the pivot

 if arr[j] < pivot:

 # increment index of smaller element

 i = i+1

 arr[i],arr[j] = arr[j],arr[i]

 arr[i+1],arr[high] = arr[high],arr[i+1]

 return (i+1)

The main function that implements QuickSort

arr[] --> Array to be sorted,

low --> Starting index,

high --> Ending index

Function to do Quick sort

def quickSort(arr,low,high):

 if low < high:

10

 # pi is partitioning index, arr[p] is now

 # at right place

 pi = partition(arr,low,high)

 # Separately sort elements before

 # partition and after partition

 quickSort(arr, low, pi-1)

 quickSort(arr, pi+1, high)

Driver code to test above

arr = [10, 7, 8, 9, 1, 5]

n = len(arr)

quickSort(arr,0,n-1)

print ("Sorted array is:")

for i in range(n):

 print ("%d" %arr[i])

To implement Merge Sort

Python program for implementation of MergeSort

def mergeSort(arr):

 if len(arr) >1:

 mid = len(arr)//2 #Finding the mid of the array

 L = arr[:mid] # Dividing the array elements

 R = arr[mid:] # into 2 halves

 mergeSort(L) # Sorting the first half

 mergeSort(R) # Sorting the second half

 i = j = k = 0

 # Copy data to temp arrays L[] and R[]

 while i < len(L) and j < len(R):

 if L[i] < R[j]:

 arr[k] = L[i]

 i+=1

 else:

 arr[k] = R[j]

 j+=1

 k+=1

 # Checking if any element was left

 while i < len(L):

 arr[k] = L[i]

 i+=1

 k+=1

 while j < len(R):

 arr[k] = R[j]

11

 j+=1

 k+=1

Code to print the list

def printList(arr):

 for i in range(len(arr)):

 print(arr[i],end=" ")

 print()

driver code to test the above code

if __name__ == '__main__':

 arr = [12, 11, 13, 5, 6, 7]

 print ("Given array is", end="\n")

 printList(arr)

 mergeSort(arr)

 print("Sorted array is: ", end="\n")

 printList(arr)

1.4 INPUT/OUTPUT

To implement Quick Sort

Case 1:

Enter the list of numbers: 5 2 8 10 3 0 4

Sorted list: [0, 2, 3, 4, 5, 8, 10]

Case 2:

Enter the list of numbers: 7 4 3 2 1

Sorted list: [1, 2, 3, 4, 7]

Case 3:

Enter the list of numbers: 2

Sorted list: [2]

To implement Merge Sort

Case 1:

Enter the list of numbers: 3 1 5 8 2 5 1 3

Sorted list: [1, 1, 2, 3, 3, 5, 5, 8]

Case 2:

Enter the list of numbers: 5 3 2 1 0

Sorted list: [0, 1, 2, 3, 5]

Case 3:

Enter the list of numbers: 1

Sorted list: [1]

12

1.5 PRE LAB VIVA QUESTIONS:

1. What is the classification of control structures?

2. What is the syntax of for loop?

3. What is the difference between for loop and while loop?

1.6 LAB ASSIGNMENT:

1. Write a Python program to Concatenate Two Strings

2. Write a Python program to Remove all Characters in a String Except Alphabets.

3. Write a Python program to Find Largest Element of an Array

1.7 POST LAB VIVA QUESTIONS:

1. What are conditional controls?

2. What is the syntax of break statement?

3. What are jumping statements?

https://www.programiz.com/cpp-programming/examples/concatenate-string
https://www.programiz.com/cpp-programming/examples/remove-characters-string
https://www.programiz.com/cpp-programming/examples/array-largest-element

13

WEEK - 2

 DIVIDE AND CONQUER – 2

2.1 OBJECTIVE:

a. Design and analyze a divide and conquer algorithm for following maximum sub-array

sum problem: given an array of integer‟s find a sub-array [a contagious portion of the
array] which gives the maximum sum.

b. Design a binary search on 1D array of Employee structure (contains employee_name,
emp_no, emp_salary), with key as emp_no and count the number of comparison
happened.

2.2 RESOURCES:

Python 3.4

2.3 PROGRAM LOGIC:

a)Divide and conquer algorithm

A Divide and Conquer based program

for maximum subarray sum problem

Find the maximum possible sum in

arr[] auch that arr[m] is part of it

def maxCrossingSum(arr, l, m, h) :

 # Include elements on left of mid.

 sm = 0; left_sum = -10000

 for i in range(m, l-1, -1) :

 sm = sm + arr[i]

 if (sm > left_sum) :

 left_sum = sm

 # Include elements on right of mid

 sm = 0; right_sum = -1000

 for i in range(m + 1, h + 1) :

 sm = sm + arr[i]

 if (sm > right_sum) :

 right_sum = sm

 # Return sum of elements on left and right of mid

 return left_sum + right_sum;

Returns sum of maxium sum subarray in aa[l..h]

14

def maxSubArraySum(arr, l, h) :

 # Base Case: Only one element

 if (l == h) :

 return arr[l]

 # Find middle point

 m = (l + h) // 2

 # Return maximum of following three possible cases

 # a) Maximum subarray sum in left half

 # b) Maximum subarray sum in right half

 # c) Maximum subarray sum such that the

 # subarray crosses the midpoint

 return max(maxSubArraySum(arr, l, m),

 maxSubArraySum(arr, m+1, h),

 maxCrossingSum(arr, l, m, h))

Driver Code

arr = [2, 3, 4, 5, 7]

n = len(arr)

max_sum = maxSubArraySum(arr, 0, n-1)

print("Maximum contiguous sum is ", max_sum)

b) binary search

Python Program for recursive binary search.

Returns index of x in arr if present, else -1

def binarySearch (arr, l, r, x):

 # Check base case

 if r >= l:

 mid = l + (r - l)/2

 # If element is present at the middle itself

 if arr[mid] == x:

 return mid

 # If element is smaller than mid, then it

 # can only be present in left subarray

 elif arr[mid] > x:

 return binarySearch(arr, l, mid-1, x)

 # Else the element can only be present

15

 # in right subarray

 else:

 return binarySearch(arr, mid + 1, r, x)

 else:

 # Element is not present in the array

 return -1

Test array

arr = [2, 3, 4, 10, 40]

x = 10

Function call

result = binarySearch(arr, 0, len(arr)-1, x)

if result != -1:

 print "Element is present at index % d" % result

else:

 print "Element is not present in array"

2.4 INPUT/OUTPUT:

a) Divide and conquer algorithm

5

None

b) Binary search

 Element is present at index 3

2.5 PRE LAB VIVA QUESTIONS:

1. What are vectors used for in Python?

2. What are maps in Python?

3. What is the use of standard template library in Python?

2.6 LAB ASSIGNMENT:

1. Write a Python program to Reverse a Sentence Using Recursion

2. Write a Python Program to Find G.C.D Using Recursion

3. Write a Python Program to Check Whether a Number can be Express as Sum of Two

Prime Numbers

2.7 POST LAB VIVA QUESTIONS:

1. How STL is different from the Python Standard Library?

2. What are vectors used for in Python?

3. What are maps in Python?

https://www.programiz.com/cpp-programming/examples/reverse-sentence-recursion
https://www.programiz.com/cpp-programming/examples/hcf-recursion
https://www.programiz.com/cpp-programming/examples/sum-prime-numbers
https://www.programiz.com/cpp-programming/examples/sum-prime-numbers

16

WEEK- 3

 IMPLEMENTATION OF STACK AND QUEUE

OBJECTIVE:

a. Implement 3-stacks of size „m‟ in an array of size „n‟ with all the basic operations

such as Is Empty(i),Push(i), Pop(i), IsFull(i) where „i‟ denotes the stack number

(1,2,3), Stacks are not overlapping each other.

b. Design and implement Queue and its operations using Arrays.

 3.2 RESOURCES:

Python 3.4

3.3 PROGRAM LOGIC:

a. Stack operations

class StackContainer(object):

 def __init__(self, stack_count=3, size=256):

 self.stack_count = stack_count

 self.stack_top = [None] * stack_count

 self.size = size

 # Create arena of doubly linked list

 self.arena = [{'prev': x-1, 'next': x+1} for x in range(self.size)]

 self.arena[0]['prev'] = None

 self.arena[self.size-1]['next'] = None

 self.arena_head = 0

 def _allocate(self):

 new_pos = self.arena_head

 free = self.arena[new_pos]

 next = free['next']

 if next:

 self.arena[next]['prev'] = None

 self.arena_head = next

 else:

 self.arena_head = None

 return new_pos

 def _dump(self, stack_num):

 assert 0 <= stack_num < self.stack_count

 curr = self.stack_top[stack_num]

 while curr is not None:

 d = self.arena[curr]

 print '\t', curr, d

 curr = d['prev']

 def _dump_all(self):

 print '-' * 30

 for i in range(self.stack_count):

17

 print "Stack %d" % i

 self._dump(i)

 def _dump_arena(self):

 print "Dump arena"

 curr = self.arena_head

 while curr is not None:

 d = self.arena[curr]

 print '\t', d

 curr = d['next']

 def push(self, stack_num, value):

 assert 0 <= stack_num < self.stack_count

 # Find space in arena for new value, update pointers

 new_pos = self._allocate()

 # Put value-to-push into a stack element

 d = {'value': value, 'prev': self.stack_top[stack_num], 'pos': new_pos}

 self.arena[new_pos] = d

 self.stack_top[stack_num] = new_pos

 def pop(self, stack_num):

 assert 0 <= stack_num < self.stack_count

 top = self.stack_top[stack_num]

 d = self.arena[top]

 assert d['pos'] == top

 self.stack_top[stack_num] = d['prev']

 arena_elem = {'prev': None, 'next': self.arena_head}

 # Link the current head to the new head

 head = self.arena[self.arena_head]

 head['prev'] = top

 # Set the curr_pos to be the new head

 self.arena[top] = arena_elem

 self.arena_head = top

 return d['value']

if __name__ == '__main__':

 sc = StackContainer(3, 10)

 sc._dump_arena()

 sc.push(0, 'First')

 sc._dump_all()

 sc.push(0, 'Second')

 sc.push(0, 'Third')

 sc._dump_all()

 sc.push(1, 'Fourth')

 sc._dump_all()

 print sc.pop(0)

 sc._dump_all()

 print sc.pop(1)

 sc._dump_all()

18

b)Implement Queue

Class Queue to represent a queue

class Queue:

 # __init__ function

 def __init__(self, capacity):

 self.front = self.size = 0

 self.rear = capacity -1

 self.Q = [None]*capacity

 self.capacity = capacity

 # Queue is full when size becomes

 # equal to the capacity

 def isFull(self):

 return self.size == self.capacity

 # Queue is empty when size is 0

 def isEmpty(self):

 return self.size == 0

 # Function to add an item to the queue.

 # It changes rear and size

 def EnQueue(self, item):

 if self.isFull():

 print("Full")

 return

 self.rear = (self.rear + 1) % (self.capacity)

 self.Q[self.rear] = item

 self.size = self.size + 1

 print("%s enqueued to queue" %str(item))

 # Function to remove an item from queue.

 # It changes front and size

 def DeQueue(self):

 if self.isEmpty():

 print("Empty")

 return

 print("%s dequeued from queue" %str(self.Q[self.front]))

 self.front = (self.front + 1) % (self.capacity)

 self.size = self.size -1

 # Function to get front of queue

 def que_front(self):

 if self.isEmpty():

 print("Queue is empty")

19

 print("Front item is", self.Q[self.front])

 # Function to get rear of queue

 def que_rear(self):

 if self.isEmpty():

 print("Queue is empty")

 print("Rear item is", self.Q[self.rear])

Driver Code

if __name__ == '__main__':

 queue = Queue(30)

 queue.EnQueue(10)

 queue.EnQueue(20)

 queue.EnQueue(30)

 queue.EnQueue(40)

 queue.DeQueue()

 queue.que_front()

 queue.que_rear()

3.4 INPUT/OUTPUT:

a)Stack operations

1) Push in stack

2) Pop from stack

3) Display stack

4) Exit

Enter choice:

1

Enter value to be pushed:

12

Enter choice:

1

Enter value to be pushed:

52

Enter choice:

1

Enter value to be pushed:

45

Enter choice:

1

Enter value to be pushed:

52

Stack Overflow

20

Enter choice:

2

The popped element is 45

Enter choice:

3

Stack elements are:52 12

Enter choice:

2

The popped element is 52

Enter choice:

3

Stack elements are:12

b) Queue operations

 1) Insert element to queue

 2) Delete element from queue

 3) Display all the elements of queue

 4) Exit

 Enter your choice :

 1

 Insert the element in queue :

 12

 Enter your choice :

 1

 Insert the element in queue :

 45

 Enter your choice :

 1

 Insert the element in queue :

 65

 Enter your choice :

 1

 Queue Overflow

 Enter your choice :

 2

 Element deleted from queue is: 0

 Enter your choice:

 52

 Invalid choice

 Enter your choice:

21

3.5 PRE-LAB VIVA QUESTIONS:

1. What are stacks and queues?

2. What is peek in stack?

3. What is a stack coding?

4. What are the real time applications of stack?

3.6 LAB ASSIGNMENT:

1. Write a Python program to Check Armstrong Number

2. Write a Python program to Find ASCII Value of a Character

3. Write a Python program to Check Leap Year

3.7 POST-LAB VIVA QUESTIONS:

1. What are the applications of stacks and queues?

2. Why is top in stack?

3. What does top do in stack?

4. What is stack with example?

https://www.programiz.com/cpp-programming/examples/check-armstrong-number
https://www.programiz.com/cpp-programming/examples/ASCII-value-character
https://www.programiz.com/cpp-programming/examples/leap-year

22

WEEK-4

 HASHING TECHNIQUES

4.1 OBJECTIVE:

To write a program to store k keys into an array of size n at the location computed

using a hash function, loc =key % n, where k<=n and k takes values from [1 to m],

m>n. To handle the collisions use the following collision resolution techniques

a. Linear probing

4.2 RESOURCES:
Python 3.4

4.3 PROGRAM LOGIC:

import random

def linear_probe(n, r_list):

 """ a linear probe checks every element in r_list

 """

 for ix in range(len(r_list)):

 if n == r_list[ix]:

 if test_print:

 print("ix = %s" % ix)

 return True

 return False

def quadratic_probe(n, r_list):

 """ a quadratic probe checks the r_list every n^2 element

 if not found it shifts the probing

 needs work to reach all index values!!!!

 """ # for test

 qix_list = []

 r_len = len(r_list)

 q_len = int(len(r_list)**0.5)

23

 shift = 0

 for shift in range(0, r_len):

 for ix in range(shift, q_len):

 qix = ix**2 + shift

 qix_list.append(qix)

 if test_print:

 print("ix=%s shift=%s qix=%s" % (ix, shift, qix))

 if r_list[qix] == n:

 if test_print:

 print(sorted(qix_list))

 return True

 if test_print:

 print(sorted(qix_list))

 return False

 # for debugging set to True

test_print = True

create a list of count random integers in the range low to high-1

low = 100 #1000

high = 120 #12000

count = 17 #9000

r_list = random.sample(range(low, high), count)

test the first 10 elements

print(r_list[:10])

#print(len(r_list))

now create a another randomm integer in the range low to high-1

24

n = random.randrange(low, high)

testing ...

print("n = %s" % n)

and probe the list for collision (does the value exist?)

if linear_probe(n, r_list):

 print("linear probe found collision")

if quadratic_probe(n, r_list):

 print("qudratic probe found collision")

4.4 INPUT/OUTPUT:

3

4

1

0

['foo', 1, None, 73, 93]

4

True

False

4.5 PRE LAB VIVA QUESTIONS:

1. How many parameters can a resize method take?

2. How do you define a set in Python?

3. How do you define a set?

4.6 LAB ASSIGNMENT

1. Write a Python program to Swap two numbers.

2. Write a Python program to find factorial of a number.

3. Write a Python program to find largest number among three numbers.

4.7 POST LAB VIVA QUESTIONS:

1. What is Auto Type Python?

2. Is set in Python sorted?

3. How do you clear a set in Python?

https://www.programiz.com/cpp-programming/examples/swapping
https://www.programiz.com/cpp-programming/examples/factorial
https://www.programiz.com/cpp-programming/examples/largest-number-among-three
https://www.geeksforgeeks.org/the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/the-c-standard-template-library-stl/

25

WEEK-5

 APPLICATIONS OF STACK

5.1 OBJECTIVE:

Write C programs for the following:

a. Uses Stack operations to convert infix expression into post fix expression.

b. Uses Stack operations for evaluating the post fix expression.

5.2 RESOURCES:
 Python 3.4

5.3 PROGRAM LOGIC:

a) convert infix expression into post fix expression

Class to convert the expression

class Evaluate:

 # Constructor to initialize the class variables

 def __init__(self, capacity):

 self.top = -1

 self.capacity = capacity

 # This array is used a stack

 self.array = []

 # check if the stack is empty

 def isEmpty(self):

 return True if self.top == -1 else False

 # Return the value of the top of the stack

 def peek(self):

 return self.array[-1]

 # Pop the element from the stack

 def pop(self):

 if not self.isEmpty():

 self.top -= 1

 return self.array.pop()

 else:

 return "$"

 # Push the element to the stack

 def push(self, op):

 self.top += 1

 self.array.append(op)

 # The main function that converts given infix expression

 # to postfix expression

 def evaluatePostfix(self, exp):

 # Iterate over the expression for conversion

26

 for i in exp:

 # If the scanned character is an operand

 # (number here) push it to the stack

 if i.isdigit():

 self.push(i)

 # If the scanned character is an operator,

 # pop two elements from stack and apply it.

 else:

 val1 = self.pop()

 val2 = self.pop()

 self.push(str(eval(val2 + i + val1)))

 return int(self.pop())

 # Driver program to test above function

exp = "231*+9-"

obj = Evaluate(len(exp))

print "postfix evaluation: %d"%(obj.evaluatePostfix(exp))

5.4 INPUT/OUTPUT:

a) convert infix expression into post fix expression

 abcd^e-fgh*+^*+i-

 b)evaluating the post fix expression

 Enter postfix expression, press right parenthesis ')' for end expression : 456*+)

 Result of expression evaluation : 34

5.5 PRE-LAB VIVA QUESTIONS:

1. How do you sort a pair in Python?

2. Which sorting is best and why?

3. What is merge sort and how it works

5.6 LAB ASSIGNMENT:

1. Write a Python program to check whether a number is palindrome or not.

2. Write a Python program to create pyramid and pattern.

3. Write a Python program to find all roots of a quadratic equation

5.6 POST-LAB VIVA QUESTIONS:

1. What are the types of sorting?

2. What is sorting with example?

3. Which sort is best?

https://www.programiz.com/cpp-programming/examples/palindrome-number
https://www.programiz.com/cpp-programming/examples/pyramid-pattern
https://www.programiz.com/cpp-programming/examples/quadratic-roots

27

WEEK-6
BINARY SEARCH TREE

6.1 OBJECTIVE:
Write a program for Binary Search Tree to implement following operations:
a. Insertion
b. Deletion
 i. Delete node with only child
 ii. Delete node with both children
c. Finding an element
d. Finding Min element
e. Finding Max element
f. Left child of the given node
g. Right child of the given node
h. Finding the number of nodes, leaves nodes, full nodes, ancestors, descendants.

6.2 RESOURCES:
 Python 3.4

6.3 PROGRAM LOGIC:

A binary tree node has data, pointer to left child

and a pointer to right child

class Node:

 def __init__(self,data):

 self.data = data

 self.left = None

 self.right = None

Function to insert a new node in BST

def insert(root, data):

 # 1. If the tree is empty, return a new,

 # single node

 if not root:

 return Node(data)

 # 2. Otherwise, recur down the tree

 if data < root.data:

 root.left = insert(root.left, data)

 if data > root.data:

 root.right = insert(root.right, data)

 # return the (unchanged) node pointer

 return root

Function to find the node with maximum value

28

i.e. rightmost leaf node

def maxValue(root):

 current = root

 #loop down to find the rightmost leaf

 while(current.right):

 current = current.right

 return current.data

Driver code

if __name__=='__main__':

 root=None

 root = insert(root,2)

 root = insert(root,1)

 root = insert(root,3)

 root = insert(root,6)

 root = insert(root,5)

 print("Maximum value in BST is {}".format(maxValue(root)))

6.4 INPUT/OUTPUT:

20

30

40

50

60

70

80

6.5 PRE-LAB VIVA QUESTIONS:

1. What is the index number of the last element of an array with 9 elements?

2. What is array data structure in Python?

3. What is Python language interview question?

6.6 LAB ASSIGNMENT:

1. Write a Python programs to find GCD of two numbers

2. Write a Python programs to addition of two matrix

3. Write a Python programs to reverse array element using function

6.7 POST-LAB VIVA QUESTIONS:

1. What is array in data structure with example?

2. What is array with example?

3. What is array and its types?

https://www.sitesbay.com/cpp-program/cpp-find-gcd-of-two-numbers
https://www.sitesbay.com/cpp-program/cpp-matrix-program
https://www.sitesbay.com/cpp-program/cpp-reverse-array-elements-using-function

29

WEEK-7

DISJOINT SET OPERATIONS

7.1 OBJECTIVE:

a. Write a program to implement Make_Set, Find_Set and Union functions for Disjoint
Set Data Structure for a given undirected graph G(V,E) using the linked list
representation with simple implementation of Union operation.

7.2 RESOURCES:
Python 3.4

7.3 PROGRAM LOGIC:

 //finding root of an element.

int root(int Arr[],int i)

{

 while(Arr[i] != i) //chase parent of current element until it reaches root.

 {

 i = Arr[i];

 }

 return i;

}

/*modified union function where we connect the elements by changing the root of one of the

element */

int union(int Arr[] ,int A ,int B)

{

 int root_A = root(Arr, A);

 int root_B = root(Arr, B);

 Arr[root_A] = root_B ; //setting parent of root(A) as root(B).

}

bool find(int A,int B)

{

 if(root(A)==root(B)) //if A and B have same root,means they are connected.

 return true;

 else

 return false;

}

7.4 INPUT/OUTPUT:

graph contains cycle

7.5 PRE-LAB VIVA QUESTIONS:

1. What is the difference between map and set in Python?

2. What is the use of maps in Python?

3. What is the difference between map and Multimap?

30

7.6 LAB ASSIGNMENT:

1. Write a Python program to Compare Two Strings.

2. Write a Python program to Calculate Area and Perimeter of Rectangle.

3. Write a Python program to swap two number with the help of third variable.

7.7 POST-LAB VIVA QUESTIONS:

1. What is a multiset in Python ?

2. What is unordered set in Python?

https://www.sitesbay.com/cpp-program/cpp-compare-two-strings

31

WEEK-8

GRAPH TRAVERSAL TECHNIQUES

8.1 OBJECTIVE:

a. To print all the nodes reachable from a given starting node in a digraph using

BFS method.

b. To check whether a given graph is connected or not using DFS method.

8.2 RESOURCES:
Python 3.4

8.3 PROGRAM LOGIC:

a) BFS method

class Graph:

 def __init__(self):

 # dictionary containing keys that map to the corresponding vertex object

 self.vertices = {}

 def add_vertex(self, key):

 """Add a vertex with the given key to the graph."""

 vertex = Vertex(key)

 self.vertices[key] = vertex

 def get_vertex(self, key):

 """Return vertex object with the corresponding key."""

 return self.vertices[key]

 def __contains__(self, key):

32

 return key in self.vertices

 def add_edge(self, src_key, dest_key, weight=1):

 """Add edge from src_key to dest_key with given weight."""

 self.vertices[src_key].add_neighbour(self.vertices[dest_key], weight)

 def does_edge_exist(self, src_key, dest_key):

 """Return True if there is an edge from src_key to dest_key."""

 return self.vertices[src_key].does_it_point_to(self.vertices[dest_key])

 def __iter__(self):

 return iter(self.vertices.values())

class Vertex:

 def __init__(self, key):

 self.key = key

 self.points_to = {}

 def get_key(self):

 """Return key corresponding to this vertex object."""

 return self.key

 def add_neighbour(self, dest, weight):

 """Make this vertex point to dest with given edge weight."""

 self.points_to[dest] = weight

 def get_neighbours(self):

 """Return all vertices pointed to by this vertex."""

 return self.points_to.keys()

 def get_weight(self, dest):

 """Get weight of edge from this vertex to dest."""

 return self.points_to[dest]

 def does_it_point_to(self, dest):

 """Return True if this vertex points to dest."""

 return dest in self.points_to

class Queue:

 def __init__(self):

 self.items = []

 def is_empty(self):

 return self.items == []

 def enqueue(self, data):

 self.items.append(data)

33

 def dequeue(self):

 return self.items.pop(0)

 def find_all_reachable_nodes(vertex):

 """Return set containing all vertices reachable from vertex."""

 visited = set()

 q = Queue()

 q.enqueue(vertex)

 visited.add(vertex)

 while not q.is_empty():

 current = q.dequeue()

 for dest in current.get_neighbours():

 if dest not in visited:

 visited.add(dest)

 q.enqueue(dest)

 return visited

g = Graph()

print('Menu')

print('add vertex <key>')

print('add edge <src> <dest>')

print('reachable <vertex key>')

print('display')

print('quit')

while True:

 do = input('What would you like to do? ').split()

 operation = do[0]

 if operation == 'add':

 suboperation = do[1]

 if suboperation == 'vertex':

 key = int(do[2])

 if key not in g:

 g.add_vertex(key)

 else:

 print('Vertex already exists.')

 elif suboperation == 'edge':

 src = int(do[2])

 dest = int(do[3])

 if src not in g:

 print('Vertex {} does not exist.'.format(src))

 elif dest not in g:

 print('Vertex {} does not exist.'.format(dest))

 else:

 if not g.does_edge_exist(src, dest):

 g.add_edge(src, dest)

34

 else:

 print('Edge already exists.')

 elif operation == 'reachable':

 key = int(do[1])

 vertex = g.get_vertex(key)

 reachable = find_all_reachable_nodes(vertex)

 print('All nodes reachable from {}:'.format(key),

 [v.get_key() for v in reachable])

 elif operation == 'display':

 print('Vertices: ', end='')

 for v in g:

 print(v.get_key(), end=' ')

 print()

 print('Edges: ')

 for v in g:

 for dest in v.get_neighbours():

 w = v.get_weight(dest)

 print('(src={}, dest={}, weight={}) '.format(v.get_key(),

 dest.get_key(), w))

 print()

 elif operation == 'quit':

 break

b)DFS method

Python program to check if a given directed graph is strongly

connected or not

from collections import defaultdict

#This class represents a directed graph using adjacency list representation

class Graph:

 def __init__(self,vertices):

 self.V= vertices #No. of vertices

 self.graph = defaultdict(list) # default dictionary to store graph

 # function to add an edge to graph

 def addEdge(self,u,v):

 self.graph[u].append(v)

 #A function used by isSC() to perform DFS

35

 def DFSUtil(self,v,visited):

 # Mark the current node as visited

 visited[v]= True

 #Recur for all the vertices adjacent to this vertex

 for i in self.graph[v]:

 if visited[i]==False:

 self.DFSUtil(i,visited)

 # Function that returns reverse (or transpose) of this graph

 def getTranspose(self):

 g = Graph(self.V)

 # Recur for all the vertices adjacent to this vertex

 for i in self.graph:

 for j in self.graph[i]:

 g.addEdge(j,i)

 return g

 # The main function that returns true if graph is strongly connected

 def isSC(self):

 # Step 1: Mark all the vertices as not visited (For first DFS)

 visited =[False]*(self.V)

 # Step 2: Do DFS traversal starting from first vertex.

 self.DFSUtil(0,visited)

 # If DFS traversal doesnt visit all vertices, then return false

 if any(i == False for i in visited):

 return False

 # Step 3: Create a reversed graph

 gr = self.getTranspose()

 # Step 4: Mark all the vertices as not visited (For second DFS)

 visited =[False]*(self.V)

 # Step 5: Do DFS for reversed graph starting from first vertex.

 # Staring Vertex must be same starting point of first DFS

 gr.DFSUtil(0,visited)

 # If all vertices are not visited in second DFS, then

 # return false

 if any(i == False for i in visited):

36

 return False

 return True

 # Create a graph given in the above diagram

g1 = Graph(5)

g1.addEdge(0, 1)

g1.addEdge(1, 2)

g1.addEdge(2, 3)

g1.addEdge(3, 0)

g1.addEdge(2, 4)

g1.addEdge(4, 2)

print "Yes" if g1.isSC() else "No"

 g2 = Graph(4)

g2.addEdge(0, 1)

g2.addEdge(1, 2)

g2.addEdge(2, 3)

print "Yes" if g2.isSC() else "No"

 INPUT/OUTPUT:

BFS

Case 1:

Menu

add vertex <key>

add edge <src> <dest>

bfs <vertex key>

display

quit

DFS

Case 1:

Menu

add vertex <key>

add edge <src> <dest>

dfs <vertex key>

display

quit

8.4 PRE-LAB VIVA QUESTIONS:

1. What is unordered set in Python?

2. What is the difference between set and unordered set?

3. How do you check if an element is in a set Python?

8.5 LAB ASSIGNMENT:

1. Write a program in Python to find the greatest number in two numbers with the help

of if/else.

2. Write a Python program for union and intersection of two sorted arrays

3. Write a Python program for bubble sort

8.2 POST-LAB VIVA QUESTIONS:

1. What is the difference between ordered and unordered sets?

2. What is the difference between set and multiset in Python?

3. Explain whether set in Python sorted?

https://www.geeksforgeeks.org/union-and-intersection-of-two-sorted-arrays-2/
http://geeksquiz.com/bubble-sort/

37

WEEK-9

 SHORTEST PATHS ALGORITHM

9.1 OBJECTIVE:

From a given vertex in a weighted connected graph, find shortest paths to other

vertices using Dijkstra‟s algorithm.

9.2 RESOURCES:
Python 3.4

9.3 PROGRAM LOGIC:

class Graph:

 def __init__(self):

 # dictionary containing keys that map to the corresponding vertex object

 self.vertices = {}

 def add_vertex(self, key):

 """Add a vertex with the given key to the graph."""

 vertex = Vertex(key)

 self.vertices[key] = vertex

 def get_vertex(self, key):

 """Return vertex object with the corresponding key."""

 return self.vertices[key]

 def __contains__(self, key):

 return key in self.vertices

 def add_edge(self, src_key, dest_key, weight=1):

 """Add edge from src_key to dest_key with given weight."""

 self.vertices[src_key].add_neighbour(self.vertices[dest_key], weight)

 def does_edge_exist(self, src_key, dest_key):

 """Return True if there is an edge from src_key to dest_key."""

 return self.vertices[src_key].does_it_point_to(self.vertices[dest_key])

38

 def __iter__(self):

 return iter(self.vertices.values())

class Vertex:

 def __init__(self, key):

 self.key = key

 self.points_to = {}

 def get_key(self):

 """Return key corresponding to this vertex object."""

 return self.key

 def add_neighbour(self, dest, weight):

 """Make this vertex point to dest with given edge weight."""

 self.points_to[dest] = weight

 def get_neighbours(self):

 """Return all vertices pointed to by this vertex."""

 return self.points_to.keys()

 def get_weight(self, dest):

 """Get weight of edge from this vertex to dest."""

 return self.points_to[dest]

 def does_it_point_to(self, dest):

 """Return True if this vertex points to dest."""

 return dest in self.points_to

def dijkstra(g, source):

 """Return distance where distance[v] is min distance from source to v.

 This will return a dictionary distance.

 g is a Graph object.

 source is a Vertex object in g.

 """

 unvisited = set(g)

 distance = dict.fromkeys(g, float('inf'))

 distance[source] = 0

 while unvisited != set():

 # find vertex with minimum distance

 closest = min(unvisited, key=lambda v: distance[v])

 # mark as visited

 unvisited.remove(closest)

39

 # update distances

 for neighbour in closest.get_neighbours():

 if neighbour in unvisited:

 new_distance = distance[closest] + closest.get_weight(neighbour)

 if distance[neighbour] > new_distance:

 distance[neighbour] = new_distance

 return distance

g = Graph()

print('Undirected Graph')

print('Menu')

print('add vertex <key>')

print('add edge <src> <dest> <weight>')

print('shortest <source vertex key>')

print('display')

print('quit')

while True:

 do = input('What would you like to do? ').split()

 operation = do[0]

 if operation == 'add':

 suboperation = do[1]

 if suboperation == 'vertex':

 key = int(do[2])

 if key not in g:

 g.add_vertex(key)

 else:

 print('Vertex already exists.')

 elif suboperation == 'edge':

 src = int(do[2])

 dest = int(do[3])

 weight = int(do[4])

 if src not in g:

 print('Vertex {} does not exist.'.format(src))

 elif dest not in g:

 print('Vertex {} does not exist.'.format(dest))

 else:

 if not g.does_edge_exist(src, dest):

 g.add_edge(src, dest, weight)

 g.add_edge(dest, src, weight)

 else:

 print('Edge already exists.')

 elif operation == 'shortest':

 key = int(do[1])

 source = g.get_vertex(key)

40

 distance = dijkstra(g, source)

 print('Distances from {}: '.format(key))

 for v in distance:

 print('Distance to {}: {}'.format(v.get_key(), distance[v]))

 print()

 elif operation == 'display':

 print('Vertices: ', end='')

 for v in g:

 print(v.get_key(), end=' ')

 print()

 print('Edges: ')

 for v in g:

 for dest in v.get_neighbours():

 w = v.get_weight(dest)

 print('(src={}, dest={}, weight={}) '.format(v.get_key(),

 dest.get_key(), w))

 print()

 elif operation == 'quit':

 break

9.4 INPUT / OUTPUT :

Vertex Distance from Source

0 0

1 4

2 12

3 19

4 21

5 11

6 9

7 8

8 14

9.5 PRE-LAB VIVA QUESTIONS:

1. How do you find the union and intersection of two arrays in Java?

2. How do you find the kth largest element in an unsorted array?

3. What is Union in array?

9.6 LAB ASSIGNMENT:
1. Write a Python program for insertion Sort?

2. Write a Python program to raise any number x to a positive power n?

3. Write a Python program to calculate square root of any number?

9.7 PRE-LAB VIVA QUESTIONS:

1. How do you find the intersection of two sets?

2. What are the examples of intersection of sets?

http://geeksquiz.com/insertion-sort/
http://thecrazyprogrammer.com/2011/03/c-program-to-raise-any-number-x-to.html
http://thecrazyprogrammer.com/2011/03/c-program-to-calculate-square-root-of.html

41

WEEK-10

 MINIMUM COST SPANNING TREE

10.1 OBJECTIVE:

To find Minimum Cost Spanning Tree of a given undirected graph using Kruskal‟s

10.2 RESOURCES:

Python 3.4

10.3 PROGRAM LOGIC:

 class Graph:

 def __init__(self):

 # dictionary containing keys that map to the corresponding vertex object

 self.vertices = {}

 def add_vertex(self, key):

 """Add a vertex with the given key to the graph."""

 vertex = Vertex(key)

 self.vertices[key] = vertex

 def get_vertex(self, key):

 """Return vertex object with the corresponding key."""

 return self.vertices[key]

 def __contains__(self, key):

 return key in self.vertices

 def add_edge(self, src_key, dest_key, weight=1):

 """Add edge from src_key to dest_key with given weight."""

 self.vertices[src_key].add_neighbour(self.vertices[dest_key], weight)

 def does_vertex_exist(self, key):

 return key in self.vertices

 def does_edge_exist(self, src_key, dest_key):

42

 """Return True if there is an edge from src_key to dest_key."""

 return self.vertices[src_key].does_it_point_to(self.vertices[dest_key])

 def display(self):

 print('Vertices: ', end='')

 for v in self:

 print(v.get_key(), end=' ')

 print()

 print('Edges: ')

 for v in self:

 for dest in v.get_neighbours():

 w = v.get_weight(dest)

 print('(src={}, dest={}, weight={}) '.format(v.get_key(),

 dest.get_key(), w))

 def __len__(self):

 return len(self.vertices)

 def __iter__(self):

 return iter(self.vertices.values())

class Vertex:

 def __init__(self, key):

 self.key = key

 self.points_to = {}

 def get_key(self):

 """Return key corresponding to this vertex object."""

 return self.key

 def add_neighbour(self, dest, weight):

 """Make this vertex point to dest with given edge weight."""

 self.points_to[dest] = weight

 def get_neighbours(self):

 """Return all vertices pointed to by this vertex."""

 return self.points_to.keys()

 def get_weight(self, dest):

 """Get weight of edge from this vertex to dest."""

 return self.points_to[dest]

 def does_it_point_to(self, dest):

 """Return True if this vertex points to dest."""

 return dest in self.points_to

43

def mst_krusal(g):

 """Return a minimum cost spanning tree of the connected graph g."""

 mst = Graph() # create new Graph object to hold the MST

 if len(g) == 1:

 u = next(iter(g)) # get the single vertex

 mst.add_vertex(u.get_key()) # add a copy of it to mst

 return mst

 # get all the edges in a list

 edges = []

 for v in g:

 for n in v.get_neighbours():

 # avoid adding two edges for each edge of the undirected graph

 if v.get_key() < n.get_key():

 edges.append((v, n))

 # sort edges

 edges.sort(key=lambda edge: edge[0].get_weight(edge[1]))

 # initially, each vertex is in its own component

 component = {}

 for i, v in enumerate(g):

 component[v] = i

 # next edge to try

 edge_index = 0

 # loop until mst has the same number of vertices as g

 while len(mst) < len(g):

 u, v = edges[edge_index]

 edge_index += 1

 # if adding edge (u, v) will not form a cycle

 if component[u] != component[v]:

 # add to mst

 if not mst.does_vertex_exist(u.get_key()):

 mst.add_vertex(u.get_key())

 if not mst.does_vertex_exist(v.get_key()):

 mst.add_vertex(v.get_key())

 mst.add_edge(u.get_key(), v.get_key(), u.get_weight(v))

 mst.add_edge(v.get_key(), u.get_key(), u.get_weight(v))

 # merge components of u and v

 for w in g:

 if component[w] == component[v]:

 component[w] = component[u]

44

 return mst

g = Graph()

print('Undirected Graph')

print('Menu')

print('add vertex <key>')

print('add edge <src> <dest> <weight>')

print('mst')

print('display')

print('quit')

while True:

 do = input('What would you like to do? ').split()

 operation = do[0]

 if operation == 'add':

 suboperation = do[1]

 if suboperation == 'vertex':

 key = int(do[2])

 if key not in g:

 g.add_vertex(key)

 else:

 print('Vertex already exists.')

 elif suboperation == 'edge':

 src = int(do[2])

 dest = int(do[3])

 weight = int(do[4])

 if src not in g:

 print('Vertex {} does not exist.'.format(src))

 elif dest not in g:

 print('Vertex {} does not exist.'.format(dest))

 else:

 if not g.does_edge_exist(src, dest):

 g.add_edge(src, dest, weight)

 g.add_edge(dest, src, weight)

 else:

 print('Edge already exists.')

 elif operation == 'mst':

 mst = mst_krusal(g)

 print('Minimum Spanning Tree:')

 mst.display()

 print()

 elif operation == 'display':

 g.display()

 print()

45

 elif operation == 'quit':

 break

10.4 INPUT / OUTPUT:

After sorting:

Weight Src Dest

1 7 6

2 8 2

2 6 5

4 0 1

4 2 5

6 8 6

7 2 3

7 7 8

8 0 7

8 1 2

9 3 4

10 5 4

11 1 7

14 3 5

10.5 PRE-LAB VIVA QUESTIONS:

1. How is linked list implemented?

2. What type of memory allocation is referred for linked lists?

3. What is the need for linked representation of lists?

10.6 LAB ASSIGNMENT:

1. Write a Python program to insert an element in an array

2. Write a Python program to do linear search in an array

3. Write a Python program to print three numbers in descending order

10.7 POST-LAB VIVA QUESTIONS:

1. How many pointers are required to implement a simple linked list?

2. What are linked lists good for?

3. What are the advantages of linked list?

http://thecrazyprogrammer.com/2012/02/c-program-to-insert-element-in-array.html
http://thecrazyprogrammer.com/2011/09/c-program-to-do-linear-search-in-array.html
http://thecrazyprogrammer.com/2011/04/c-program-to-print-three-numbers-in.html

46

WEEK-11

TREE TRAVESRSALS

11.1 OBJECTIVE:

To perform various tree traversal algorithms for a given tree.

11.2 RESOURCES:

Python 3.4

11.3 PROGRAM LOGIC:

Python program to for tree traversals

A class that represents an individual node in a

Binary Tree

class Node:

 def __init__(self,key):

 self.left = None

 self.right = None

 self.val = key

A function to do inorder tree traversal

def printInorder(root):

 if root:

 # First recur on left child

 printInorder(root.left)

 # then print the data of node

 print(root.val),

 # now recur on right child

 printInorder(root.right)

47

A function to do postorder tree traversal

def printPostorder(root):

 if root:

 # First recur on left child

 printPostorder(root.left)

 # the recur on right child

 printPostorder(root.right)

 # now print the data of node

 print(root.val),

A function to do preorder tree traversal

def printPreorder(root):

 if root:

 # First print the data of node

 print(root.val),

 # Then recur on left child

 printPreorder(root.left)

 # Finally recur on right child

 printPreorder(root.right)

Driver code

root = Node(1)

root.left = Node(2)

root.right = Node(3)

root.left.right = Node(4)

root.right.left = Node(5)

root.right.right = Node(6)

root.right.left.left = Node(7)

root.right.right.left = Node(8)

root.right.right.right = Node(9)

print("Preorder traversal of binary tree is")

printPreorder(root)

print("\nInorder traversal of binary tree is")

printInorder(root)

print("\nPostorder traversal of binary tree is")

printPostorder(root)

48

11.4 INPUT/OUTPUT:

Inorder traversal

5 ->12 ->6 ->1 ->9 ->

Preorder traversal

1 ->12 ->5 ->6 ->9 ->

Postorder traversal

5 ->6 ->12 ->9 ->1 ->

11.5 PRE-LAB VIVA QUESTIONS:

1. How do you find permutations?

2. What is permutations and combination?

3. Where permutation and combination is used?

11.6 LAB ASSIGNMENT:

1. Write a Python program to check whether a number is odd or even.

2. Write a Python program to print fibonacci series.

3. Write a Python program to Count no. of words in a string.

11.7 POST-LAB VIVA QUESTIONS:

1. How do you tell if a question is a permutation or combination?

2. What is permutation formula?

3. What is permutation example?

http://thecrazyprogrammer.com/2011/03/c-program-to-check-whether-number-is_19.html
http://thecrazyprogrammer.com/2011/03/c-program-to-print-fibonacci-series.html
http://thecrazyprogrammer.com/2011/03/c-program-to-count-no-of-words-in-string.html

49

WEEK-12

 ALL PAIRS SHORTEST PATHS

12.1 OBJECTIVE:

 To implement All-Pairs Shortest Paths Problem using Floyd's algorithm.

12.2 RESOURCES:

Python 3.4

12.3 PROGRAM LOGIC:

class Graph:

 def __init__(self):

 # dictionary containing keys that map to the corresponding vertex object

 self.vertices = {}

 def add_vertex(self, key):

 """Add a vertex with the given key to the graph."""

 vertex = Vertex(key)

 self.vertices[key] = vertex

 def get_vertex(self, key):

 """Return vertex object with the corresponding key."""

 return self.vertices[key]

 def __contains__(self, key):

 return key in self.vertices

 def add_edge(self, src_key, dest_key, weight=1):

 """Add edge from src_key to dest_key with given weight."""

 self.vertices[src_key].add_neighbour(self.vertices[dest_key], weight)

 def does_edge_exist(self, src_key, dest_key):

 """Return True if there is an edge from src_key to dest_key."""

 return self.vertices[src_key].does_it_point_to(self.vertices[dest_key])

 def __len__(self):

 return len(self.vertices)

 def __iter__(self):

 return iter(self.vertices.values())

50

class Vertex:

 def __init__(self, key):

 self.key = key

 self.points_to = {}

 def get_key(self):

 """Return key corresponding to this vertex object."""

 return self.key

 def add_neighbour(self, dest, weight):

 """Make this vertex point to dest with given edge weight."""

 self.points_to[dest] = weight

 def get_neighbours(self):

 """Return all vertices pointed to by this vertex."""

 return self.points_to.keys()

 def get_weight(self, dest):

 """Get weight of edge from this vertex to dest."""

 return self.points_to[dest]

 def does_it_point_to(self, dest):

 """Return True if this vertex points to dest."""

 return dest in self.points_to

def floyd_warshall(g):

 """Return dictionaries distance and next_v.

 distance[u][v] is the shortest distance from vertex u to v.

 next_v[u][v] is the next vertex after vertex v in the shortest path from u

 to v. It is None if there is no path between them. next_v[u][u] should be

 None for all u.

 g is a Graph object which can have negative edge weights.

 """

 distance = {v:dict.fromkeys(g, float('inf')) for v in g}

 next_v = {v:dict.fromkeys(g, None) for v in g}

 for v in g:

 for n in v.get_neighbours():

 distance[v][n] = v.get_weight(n)

 next_v[v][n] = n

 for v in g:

 distance[v][v] = 0

 next_v[v][v] = None

51

 for p in g:

 for v in g:

 for w in g:

 if distance[v][w] > distance[v][p] + distance[p][w]:

 distance[v][w] = distance[v][p] + distance[p][w]

 next_v[v][w] = next_v[v][p]

 return distance, next_v

def print_path(next_v, u, v):

 """Print shortest path from vertex u to v.

 next_v is a dictionary where next_v[u][v] is the next vertex after vertex u

 in the shortest path from u to v. It is None if there is no path between

 them. next_v[u][u] should be None for all u.

 u and v are Vertex objects.

 """

 p = u

 while (next_v[p][v]):

 print('{} -> '.format(p.get_key()), end='')

 p = next_v[p][v]

 print('{} '.format(v.get_key()), end='')

g = Graph()

print('Menu')

print('add vertex <key>')

print('add edge <src> <dest> <weight>')

print('floyd-warshall')

print('display')

print('quit')

while True:

 do = input('What would you like to do? ').split()

 operation = do[0]

 if operation == 'add':

 suboperation = do[1]

 if suboperation == 'vertex':

 key = int(do[2])

 if key not in g:

 g.add_vertex(key)

 else:

 print('Vertex already exists.')

 elif suboperation == 'edge':

 src = int(do[2])

 dest = int(do[3])

52

 weight = int(do[4])

 if src not in g:

 print('Vertex {} does not exist.'.format(src))

 elif dest not in g:

 print('Vertex {} does not exist.'.format(dest))

 else:

 if not g.does_edge_exist(src, dest):

 g.add_edge(src, dest, weight)

 else:

 print('Edge already exists.')

 elif operation == 'floyd-warshall':

 distance, next_v = floyd_warshall(g)

 print('Shortest distances:')

 for start in g:

 for end in g:

 if next_v[start][end]:

 print('From {} to {}: '.format(start.get_key(),

 end.get_key()),

 end = '')

 print_path(next_v, start, end)

 print('(distance {})'.format(distance[start][end]))

 elif operation == 'display':

 print('Vertices: ', end='')

 for v in g:

 print(v.get_key(), end=' ')

 print()

 print('Edges: ')

 for v in g:

 for dest in v.get_neighbours():

 w = v.get_weight(dest)

 print('(src={}, dest={}, weight={}) '.format(v.get_key(), dest.get_key(), w))

 print()

 elif operation == 'quit':

 break

12.4 INPUT/OUTPUT:

Shortest distance matrix

 0 5 8 9

 INF 0 3 4

 INF INF 0 1

 INF INF INF 0

12.5 PRE-LAB VIVA QUESTIONS:

1. What is lexicographical order in string?

2. What does Lexicographically greater mean?

53

3. How do you compare two strings lexicographically?

12.6 LAB ASSIGNMENT:

1. Write a Python program to find length of a string.

2. Write a Python program to find sum of square of n natural numbers.

3. Write a Python program to find sum of digits of a number.

12.7 POST-LAB VIVA QUESTIONS:

1. What is lexicographic order of numbers?

2. What is lexicographic order example?

3. What does lexicographical mean?

http://thecrazyprogrammer.com/2011/03/c-program-to-find-length-of-string.html
http://thecrazyprogrammer.com/2011/03/c-program-to-find-sum-of-square-of-n.html
http://thecrazyprogrammer.com/2011/03/c-program-to-find-sum-of-digits-of.html

