COMPUTER AIDED MODELLING AND ANALYSIS LABORATORY

LAB MANUAL

Course Code	:	AME114
Regulations	•	IARE -R16
Class	:	IV Year I Semester (ME)

Prepared by

Mrs. T Vanaja, Assistant Professor

Department of Mechanical Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal – 500 043, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad-500 043

	Program Outcomes
PO1	Engineering Knowledge: Capability to apply knowledge of Mathematics, Science Engineering in the field of Mechanical Engineering
PO2	Problem Analysis: An ability to analyze complex engineering problems to arrive at relevant conclusion using knowledge of Mathematics, Science and Engineering.
PO3	Design/ Development of solution: Competence to design a system, component or process to meet societal needs within realistic constants.
PO4	Conduct investigation of complex problems: To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies.
PO5	Modern Tool usage: An ability to formulate solve complex engineering problems using modern engineering and information technology tools.
PO6	The Engineer society: To utilize the engineering practices, techniques, skills to meet needs of health, safety legal, cultural and societal issues.
PO7	Environment and Sustainability: To understand the impact of engineering solution in the societal context and demonstrate the knowledge for sustainable development.
PO8	Ethics: An understanding and implementation of professional and Ethical responsibilities.
PO9	Individual Team work: To function as an effective individual and as a member or leader in multi- disciplinary environment and adopt in diverse teams.
PO10	Communication: An ability to assimilate, comprehends, communicate, give and receive instructions to present effectively with engineering community and society.
PO11	Project Management and Finance: An ability to provide leadership in managing complex engineering project at multi-disciplinary environment and to become a professional engineer.
PO12	Life-Long learning: Recognition of the need and an ability to engage in lifelong learning to keep abreast with technological changes.
	Program Specific Outcomes
PSO1	Professional Skills: To produce engineering professional capable of synthesizing and analyzing mechanical system including allied engineering streams.
PSO2	Design/ Analysis: An ability to adapt and integrate current technologies in the design and manufacturing domain to enhance the employability.
PSO3	Successful Career and Entrepreneurship: To build the nation by imparting technological inputsand managerial skills to become a Technocrats.

INSTITUTE OF A	ERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad – 500 043
	Certificate
	ofB.Techsemesterbranch has satisfactorily
	laboratory during the academic yea
SignatureofHOD	Signature ofFaculty
Signature ofInternalExaminer	Signature of ExternalExaminer

INSTRUMENTATION AND CONTROL SYSTEMS LABORATORY

VII Semester: ME

Course Code	Category	Hours / EXPERIMENT		Credits	Maximum Marks		/larks	
AME114	C	L	Т	Р	С	CIA	SEE	Total
AME114	Core	-	-	3	2	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes:			36	To	tal Classes	: 36

OBJECTIVES:

The course should enable the students to:

- Understand the features and specifications of CAD and 3D Modeling tools. I.
- II. Develop the part design and drafting methods.
- III. Use the CAE software and analyse the load conditions.
- IV. Execute the results of reaction forces and stress and strain diagrams.

LIST OF EXPERIMENTS

EXPERI INTRODUCTION TO CATIA MENT - 1

Familiarization and practicing of drawing and modifying commands, template creation, lettering, object snapping and sectioning.

EXPERI MENT - 2

DRAFTING OF SIMPLE 2D DRAWINGS

Prepare the 2D drawings using draw and modify commands for simple geometric assemblies, sectional views for part drawing and assemblies.

EXPERI SOLID MODELING **MENT - 3**

Preparing the 2D and 3D models (wire frame, surface and solid models) by using B-REP, CSG. Introduction of Boolean operations. Generation of 2D, 3D models, through protrusion, revolve, sweep.

EXPERI CREATING ORTHOGRAPHIC VIEWS FROM SOLID MODELS MENT - 4

Development of orthographic views for assembly drawings and preparation of bill of materials(IC engine components, Machine tool accessories, Jigs and Fixtures).

EXPERI INTRODUCTION TO ANSYS MENT - 5

Determination of deflection and stresses in bar.

EXPERI **TRUSSES AND BEAMS MENT - 6**

Determination of deflection and stresses in 2D and 3D trusses and beams.

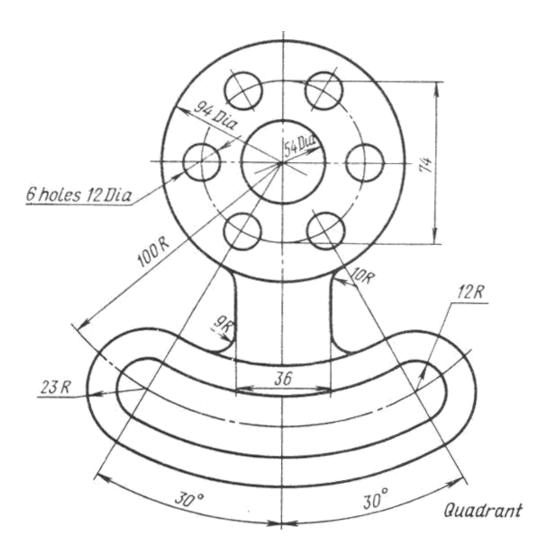
EXPERI SHELL STRUCTURES **MENT - 7**

Determination of stresses in 3D and shell structures (one example in each case).

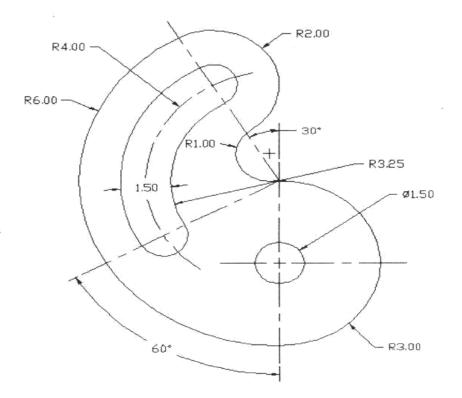
EXPERI MENT - 8	HARMONIC ANALYSIS					
Estimation o	f natural frequencies and mode shapes, harmonic responses of 2D beams.					
EXPERI MENT - 9	HEAT TRANSFER ANALYSIS					
Steady state h	eat transfer analysis of plane and axi-symmetric components					
EXPERIM ENT - 10	CONVENTIONAL REPRESENTATION OF MATERIALS					
	l representation of parts screw joints, welded joints, springs, gears, electrical, hydraulic and pneumatic hods of indicating notes on drawings.					
EXPERIM ENT - 11	LIMTS FITS AND TOLERANCES					
Limits, Fits a from tables.	and Tolerances: Types of fits, exercises involving selection, interpretation of fits and estimation of limits					
EXPERIM ENT - 12	FORM AND POSITIONAL TOLERANCES					
Introduction indication.	and indication of form and position tolerances on drawings, types of run out, total run out and their					
EXPERI MENT - 13	SURFACE ROUHNESS AND ITS INTRODUCTION					
	Definition, types of surface roughness indication surface roughness obtainable from various manufacturing processes, recommended surface roughness on mechanical components. Heat treatment and surface treatment symbols used on					
EXPERIM ENT - 14	DETAILED AND PART DRAWINGS					
Drawing of parts from assembly drawings with indications of size, tolerances, roughness, form and position errors.						
EXPERIM ENT - 15	DETAILED AND PART DRAWINGS					
Part drawings using computer aided drafting by CAD software.						
Reference Bo	poks:					
2. Gouth	 K.L. Narayana, P. Kannaiah, —Production Drawingl, New Age publishers, 3rd Edition, 2009 Goutham Pohit, Goutham Ghosh, —Machine Drawing with Auto CAD, Pearson, 1st Edition, 2004. 					
Web References:						

1. https://nptel.ac.in/courses/112107240/

ATTAINMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES

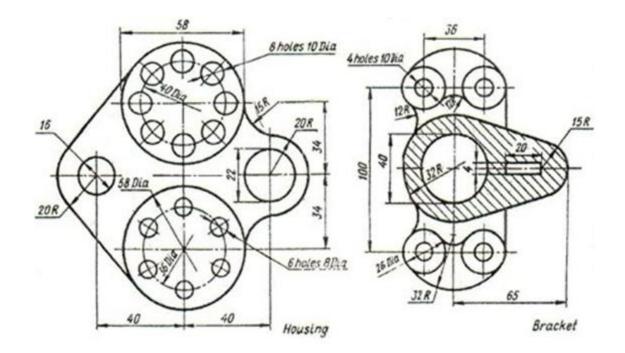

Exp. No.	Experiment	Program Outcomes Attained	Program Specific Outcomes Attained
1	Familiarization and practicing of drawing and modifying commands, template creation, lettering, object snapping and sectioning.	PO1, PO2, PO3	PSO1, PSO2
2	Prepare the 2D drawings using draw and modify commands for simple geometric assemblies, sectional views for part drawing and assemblies.	PO1, PO2, PO3	PSO1, PSO2
3	Preparing the 2D and 3D models (wire frame, surface and solid models) by using B-REP, CSG. Introduction of Boolean operations. Generation of 2D, 3D models, through protrusion, revolve, sweep.	PO1, PO2, PO3	PSO1, PSO2
4	Development of orthographic views for assembly drawings and preparation of bill of materials(IC engine components, Machine tool accessories, Jigs and Fixtures).	PO1, PO2, PO3	PSO1, PSO2
5	Determination of deflection and stresses in bar.	PO1, PO2, PO3	PSO1, PSO2
6	Determination of deflection and stresses in 2D and 3D trusses and beams.	PO1, PO2, PO3	PSO1, PSO2
7	Determination of stresses in 3D and shell structures (one example in each case).	PO1, PO2, PO3	PSO1, PSO2
8	Estimation of natural frequencies and mode shapes, harmonic responses of 2D beams.	PO1, PO2, PO3	PSO1, PSO2
9	Steady state heat transfer analysis of plane and axi-symmetric components	PO1, PO2, PO3	PSO1, PSO2
10	Conventional representation of parts screw joints, welded joints, springs, gears, electrical, hydraulic and pneumatic circuits, methods of indicating notes on drawings.	PO1, PO2, PO3	PSO1, PSO2
11	Limits, Fits and Tolerances: Types of fits, exercises involving selection, interpretation of fits and estimation of limits from tables.	PO1, PO2, PO3	PSO1, PSO2
12	Introduction and indication of form and position tolerances on drawings, types of run out, total run out and their indication.	PO1, PO2, PO3	PSO1, PSO2
13	Definition, types of surface roughness indication surface roughness obtainable from various manufacturing processes, recommended surface roughness on mechanical components. Heat treatment and surface treatment symbols used on drawings.	PO1, PO2, PO3	PSO1, PSO2
14	Drawing of parts from assembly drawings with indications of size, tolerances, roughness, form and position errors.	PO1, PO2, PO3	PSO1, PSO2
15	Part drawings using computer aided drafting by CAD software.	PO1, PO2, PO3	PSO1, PSO2

	INDEX				
S.NO.	NAME OF EXPERIMENT	PAGE NO.	DATE	REMARK	SIGN
1	Familiarization and practicing of drawing and modifying commands, template creation, lettering, object snapping and sectioning.				
2	Prepare the 2D drawings using draw and modify commands for simple geometric assemblies, sectional views for part drawing and assemblies.				
3	Preparing the 2D and 3D models (wire frame, surface and solid models) by using B-REP, CSG. Introduction of Boolean operations. Generation of 2D, 3D models, through protrusion, revolve, sweep.				
4	Development of orthographic views for assembly drawings and preparation of bill of materials(IC engine components, Machine tool accessories, Jigs and Fixtures).				
5	Determination of deflection and stresses in bar.				
6	Determination of deflection and stresses in 2D and 3D trusses and beams.				
7	Determination of stresses in 3D and shell structures (one example in each case).				
8	Estimation of natural frequencies and mode shapes, harmonic responses of 2D beams.				
9	Steady state heat transfer analysis of plane and axi- symmetric components				
10	Conventional representation of parts screw joints, welded joints, springs, gears, electrical, hydraulic and pneumatic circuits, methods of indicating notes on drawings.				
11	Limits, Fits and Tolerances: Types of fits, exercises involving selection, interpretation of fits and estimation of limits from tables.				
12	Introduction and indication of form and position tolerances on drawings, types of run out, total run out and their indication.				
13	Definition, types of surface roughness indication surface roughness obtainable from various manufacturing processes, recommended surface roughness on mechanical components. Heat treatment and surface treatment symbols used on drawings.				
14	Drawing of parts from assembly drawings with indications of size, tolerances, roughness, form and position errors.				
15	Part drawings using computer aided drafting by CAD software.				

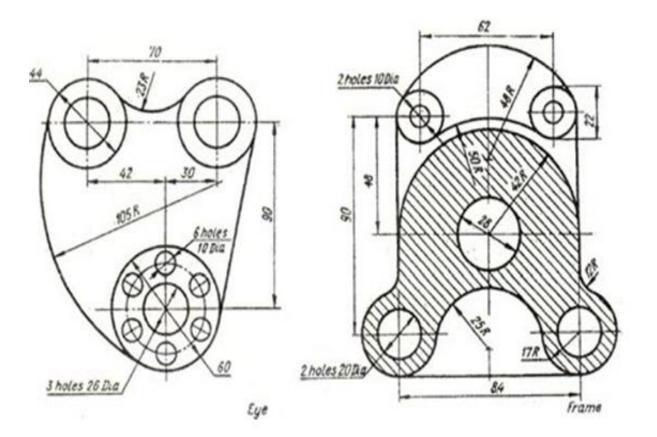

EXPERIMENT -1

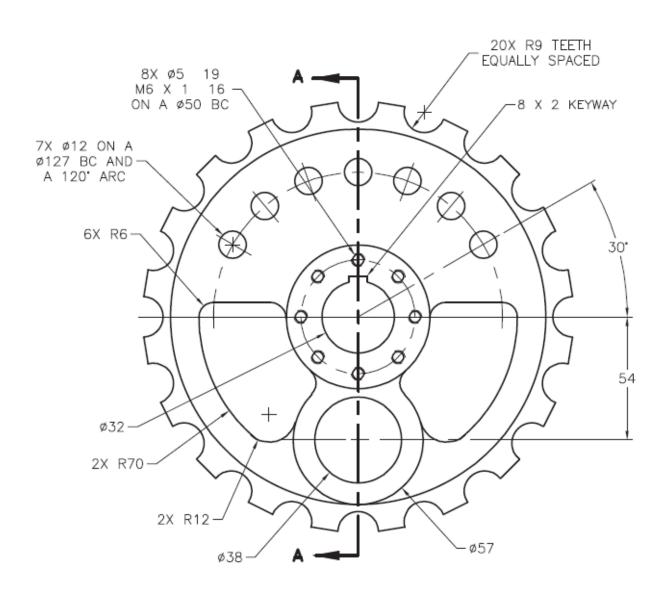
INTRODUCTION TO CATIA

EXERCISE-I

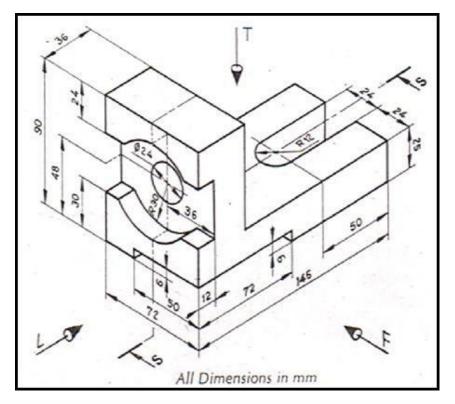


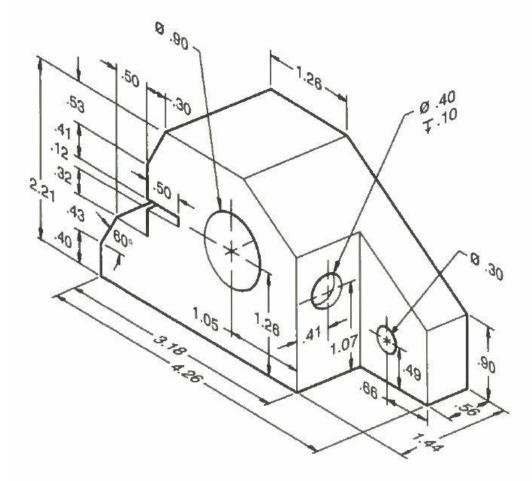
EXERCISE -2

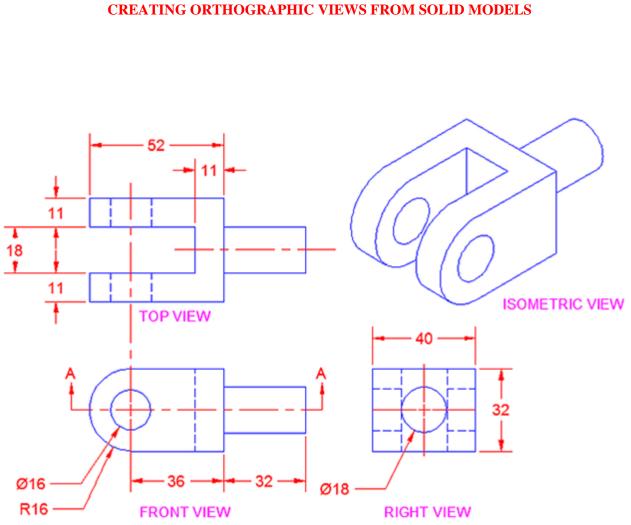


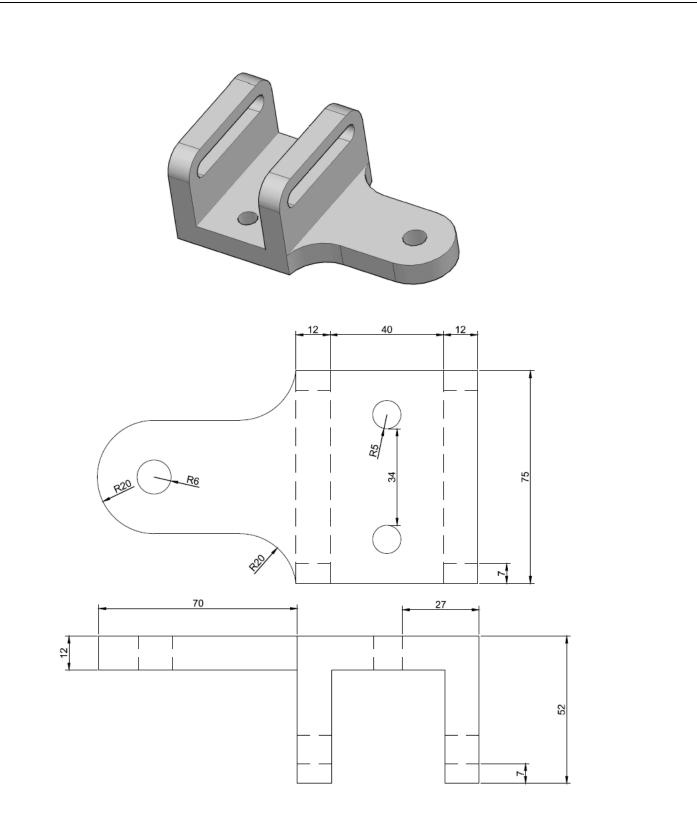

9

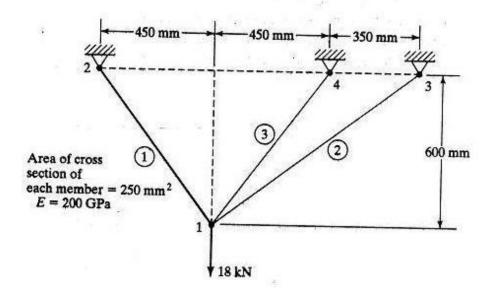
EXERCISE -3

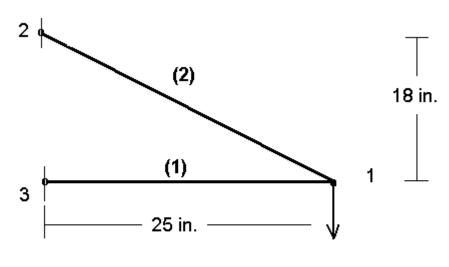



EXPERIMENT -2 DRAFTING OF SIMPLE 2D DRAWINGS




EXPERIMENT -3 SOLID MODELING



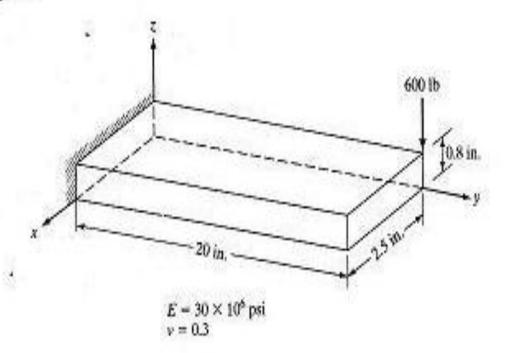

EXPERIMENT -4 CREATING ORTHOGRAPHIC VIEWS FROM SOLID MODELS

EXPERIMENT – 5 INTRODUCTION TO ANSYS

For the three-bar truss shown in Fig. determine the displacements of node 1 and the stress in element 3.

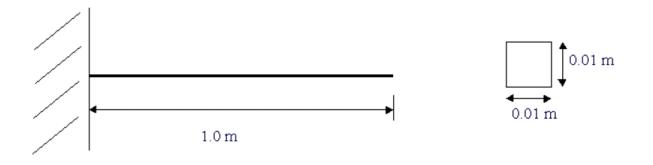
 $\circ A = 0.5$ sq in E = 3.e7 psi 1000 lbs.

EXPERIMENT- 6 TRUSSES AND BEAMS


10 kips 20 ft -20 ft -20 ft -9 10 2.5 10 kips 15 ft 7 6 8 20 ft 3 20 ft 2 Thi 8 ft 40 ft

Find the deflections at the nodes for the truss configuration shown in Fig. Area = 8 in.^2 for each member.

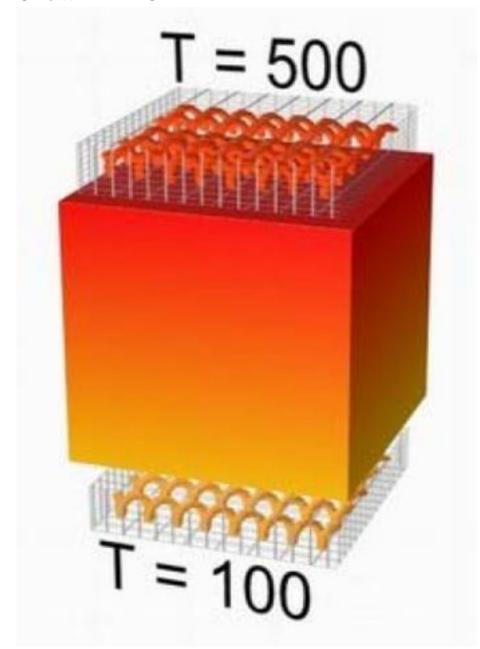
6


EXPERIMENT -7 SHELL STRUCTURES

Determine the deflections at the corner points of the steel cantilever beam shown in Fig. P9.1.

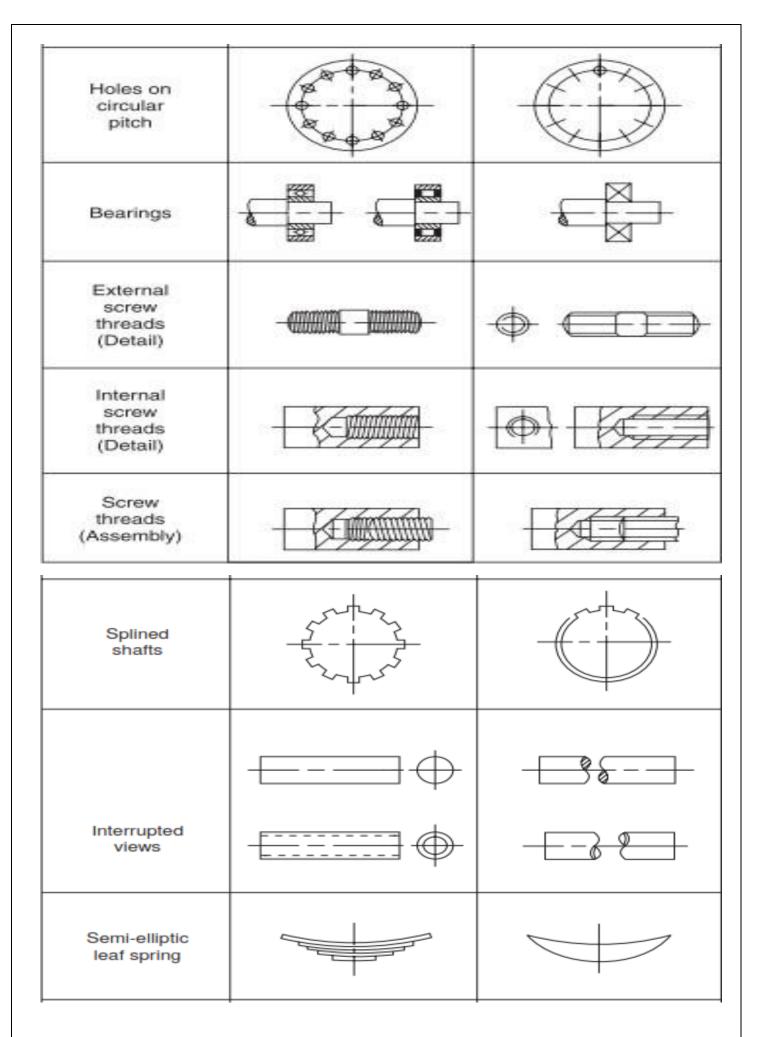
EXPERIMENT – 8 HARMONIC ANALYSIS

This tutorial was created using ANSYS 7.0 The purpose of this tutorial is to explain the steps required to perform Harmonic analysis the cantilever beam shown below.



Modulus of Elasticity (E) = $206800(10^6)$ N/m²

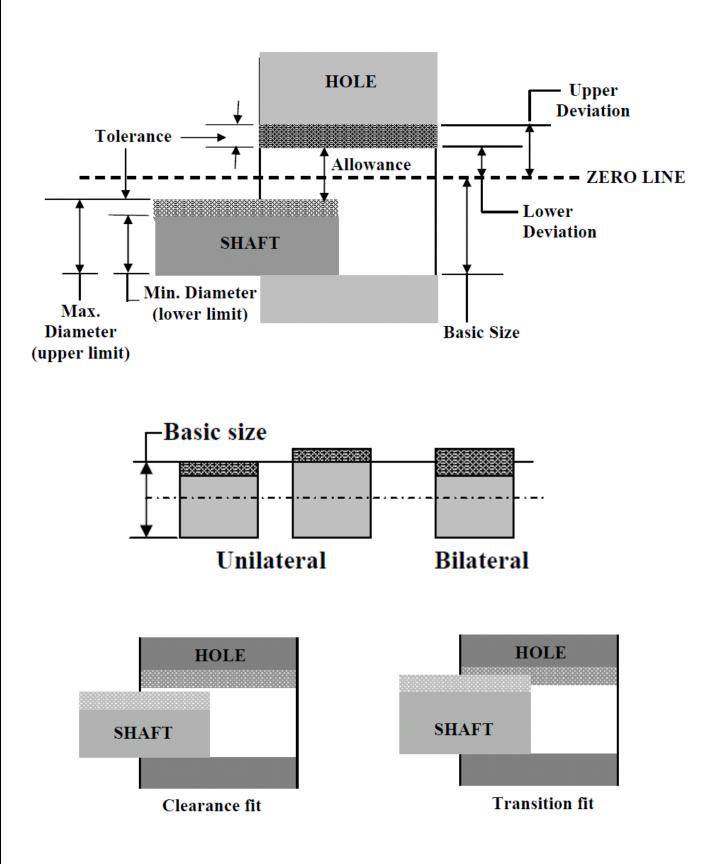
 $Density = 7830 \text{ kg/m}^3$

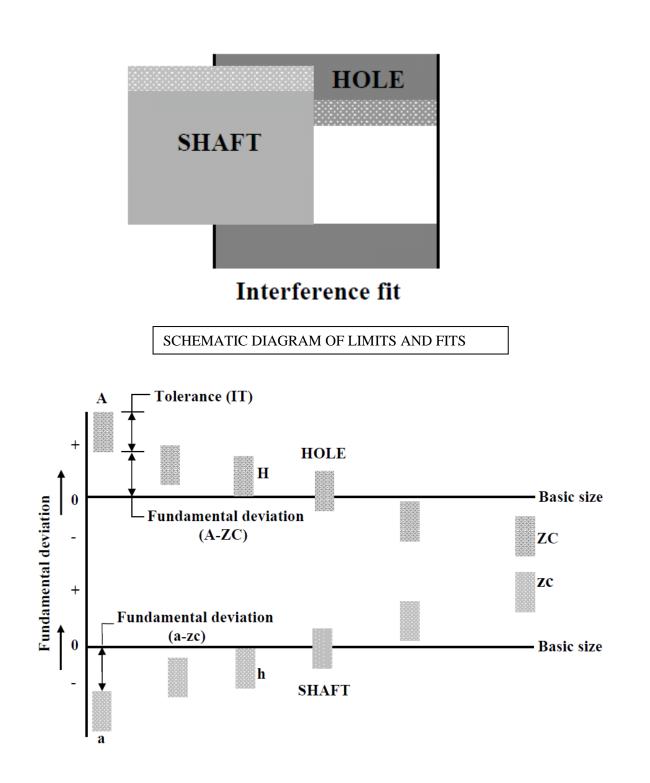

EXPERIMENT- 9 HEAT TRANSFER ANALYSIS

The example is constrained as shown in the following figure. Thermal conductivity (k) of the material is 5 W/m*K and the block is assumed to be infinitely long. Also, the density of the material is 920 kg/m^3 and the specific heat capacity (c) is 2.040 kJ/kg*K.

EXPERIMENT- 10 CONVENTIONAL REPRESENTATION OF MATERIALS

Туре	Convention	Material
Metals		Steel, Cast Iron, Copper and its Alloys, Aluminium and its Alloys, etc.
Metais		Lead, Zinc, Tin, White-metal, etc.
Glass	1/10 1/10 1/10	Glass
		Porcelain, Stoneware, Marble, Slate, etc.
Packing and Insulating material		Asbestos, Fibre, Felt, Synthetic resin products, Paper, Cork, Linoleum, Rubber, Leather, Wax, Insulating and Filling materials, etc.
Liquids		Water, Oil, Petrol, Kerosene, etc.
Wood		Wood, Plywood, etc.
Concrete		A mixture of Cement, Sand and Gravel
Title	Subject	Convention
Straight knurling		
Diamond knurling		
Square on		

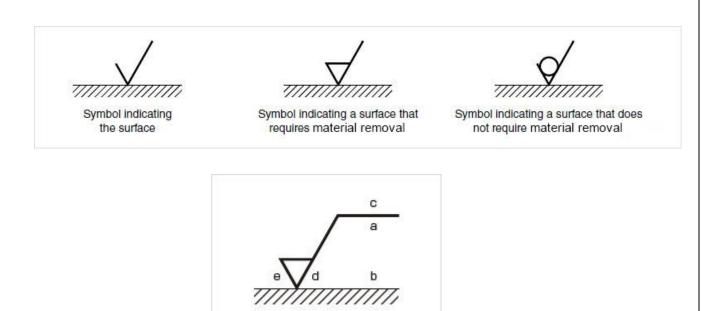

Semi-elliptic leaf spring with eyes		*	
	Subject	Convention	Diagrammatic Representation
Cylindrical compression spring	IMMM		-WWW-
Cylindrical tension spring	F	- F	(M)


Conventional representation of machine components

Title	Conver	ntion
Spur gear		
Bevel gear	×	
Worm wheel		
Worm		

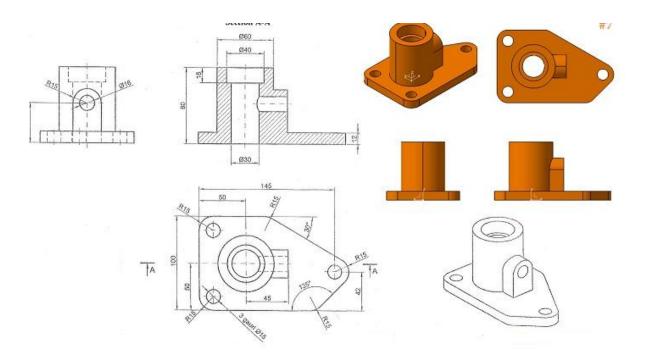
EXPERIMENT – 11 LIMTS FITS AND TOLERANCES

HOLE AND SAHFT BASIS SYSTEM

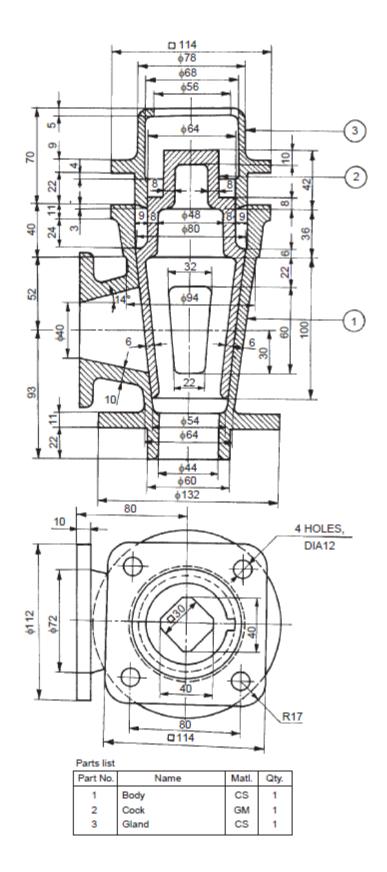


Features and	d tolerances	Toleranced characteristics	Symbols
		Straightness	
Single features		Flatness	
	Form tolerances	Circularity	0
-		Cylindricity	Ø
Single or related features		Profile of any line	\cap
	Profile of any surface	Δ	
a.	р. ,	Parallelism	//
	Orientation tolerances	Perpendicularity	
		Angularity	\angle
Related features		Position	\$
	Location tolerances	Concentricity and coaxiality	\bigcirc
		Symmetry	
		Circular run-out	1
		Total run-out	1

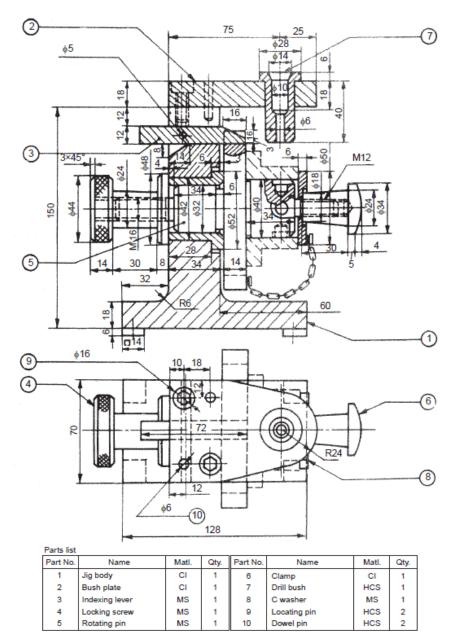
EXPERIMENT – 12 FORM AND POSITIONAL TOLERANCES


EXPERIMENT – 13 SURFACE ROUHNESS AND ITS INTRODUCTION

If it is required that the required **surface texture** be produced by one **particular production method**, this method shall be indicated in plain language on an extension of the longer arm of the symbol

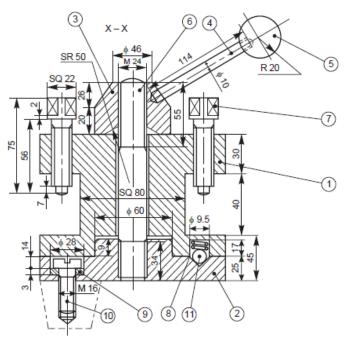

Roughness Value (Microns)	Roughness Grade	Conventional Symbol	a
50	N12	~	TITATION DE
25	N11		- (
12.5	N10		a c(f)
6.3	N9	$\nabla \nabla$	e V d
3.2	N8	······	1111111
1.6	N7	$\nabla \nabla \nabla$	a = Roughness value Ra in micrometres or
0.8	N6	L.	= Roughness grade number N1 to N12.
0.4	N5		b = Production method, treatment or coating
0.2	N4		c = Sampling length d = Direction of lay
0.1	N3		e = Machining allowance f = Other roughness values (in brackets).

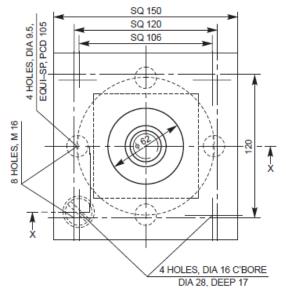
EXPERIMENT – 14 DETAILED AND PART DRAWINGS



EXPERIMENT – 15 PRODUCTION DRAWING PRACTICE

BLOW OFF COCK




INDEX DRILL JIG

30

SQUARE POST

S. No	Name	Material	Qty
1	Tool holder	Steel	1
2	Base plate	Steel	1
3	Clamp	Steel	1
4	Handle	Steel	1
5	Knob	Ebonite	1
6	Stud	MS	1
7	Screw	Steel	8
8	Spring	Steel	4
9	Spring washer	Steel	4
10	Machine screw	MS	4
11	Ball	Steel	4