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       INSTITUTE OF AERONAUTICAL ENGINEERING 
(Autonomous) 

Dundigal, Hyderabad - 500 043 
 

   MECHANICAL ENGINEERING 
 

Program Outcomes 

PO1 Apply advanced level knowledge, techniques, skills and modern tools in the field of 

computer aided engineering to critically assess the emerging technological issues. 

PO2 Have abilities and capabilities in developing and applying computer software and 

hardware to mechanical design and manufacturing fields. 

PO3 Conduct experimental and/or analytical study and analyzing results with modern 

mathematical / scientific methods and use of software tools.  

PO4 Function on multidisciplinary environments by working cooperatively, creatively and 

responsibly as a member of a team. 

PO5 Write and present a substantial technical report / document. 

PO6 Independently carry out research / investigation and development work to solve 

practical problems. 

PO7 Design and validate technological solutions to defined problems and recognize the 

need to engage in lifelong learning through continuing education. 
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COMPUTATIONAL TECHNIQUE LABARATORY SYLLABUS 

Week-1   INTRODUCTION TO MATLAB PROGRAM 

 Applications to MATLAB in Mechanical Engineering. 

Week-2 
  MATLAB PROGRAM TO PLOT THE INTERNAL FORCES, AND BENDING 

MOMENT. 

The radius of the semicircular member is 25 mm and supported with roller and hinged supports. The load 300N  

acting vertically downward at the center and 200 N acting horizontally at the roller support toward left direction  

Write a MATLAB program to plot the internal forces, namely, the axial forces, shearing force and bending 

moment  as functions of α for 0 < α < 90º. 

 

 

 

 

Week-3   THERMAL STRESS ANALYSIS OF PISTON USING MATLAB PROGRAM 

Temperature distribution around the given piston dimensions. 

Week-4  FORMULATION OF IDEAL AND REAL GAS EQUATIONS. 

Gas phase thermodynamic equations of state relate the three state variables of temperature, pressure, and 
volume for a gas. One of the three state variables can be calculated through the equation of state if values for 
the other two variables are known. For example, the ideal gas law states PV = RT ~ where P : pressure,  
Pa: V  : specific or molar gas volume, m

3
 mol R : ideal gas constant, (= 8.314 J/(mol K)) T : absolute 

temperature, K 

Week-5  USING MATLAB PROGRAM PLOT THE FUNCTION OF ONE VARIABLE AND TWO 

VARIABLES 

 Graphing-functions of one variable and two variables 

Week-6   MULTI BODY DYNAMIC ANALYSIS THROUGH MATLAB PROGRAM 

Use of MATLAB to solve simple problems in vibration, Mechanism Simulation using multi body dynamic 

software 

Week-7   MATLAB PROGRAM FOR EULERS EQUATION OF MOTION 

Solution of Difference Equations using Euler Method. 

Week-8 MATLAB PROGRAM FOR CURVE FITTING. 

Determination of polynomial using method of Least Square Curve Fitting. 
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Week-9 DYNAMIC ANALYSIS USING MATLAB PROGRAM 

   Dynamics and vibration analysis 

Plot the response of the system using MATLAB for n=5rad/s,  = 0.05, 0.1, 0.2 subjected to the initial 

conditions  x(0) = 0, (0) xo = v0 = 60 cm/s. 

Week-10 MATLAB PROGRAM TO PLOT THE RESULTANT ACCELERATION AND THE 

VARIATION OF ACCELERATION PROGRAM 

  A jet plane is going in a parabolic path described by y=0.05x
2
. At a point in the path, it has a velocity of 200 

m/s, which is increasing at the rate of 0.8 m/s
2
. Find the resultant acceleration and plot the variation of 

acceleration as a function of its horizontal position x. 

 

 

 

ATTAINMENT OF PROGRAM OUTCOMES  

& PROGRAM SPECIFIC OUTCOMES 

 

Exp. 

No. 

 

                                Experiment 

Program Outcomes 

Attained 

1 Introduction to MATLAB. 
PO1, PO3, PO5 

2 Solving of PDE PO1, PO2, 
PO5 

3 Using MATLAB program plot the function of one variable 
and two variable 

PO1, PO2, PO3, 
PO5 

4 MATLAB program to plot the internal forces, and bending 
moment. 

PO1, PO3, PO5 

5 Thermal stress analysis of piston using MATLAB program 
PO2, PO3,PO5 

6 Multi body dynamic analysis through MATLAB program 
PO1, PO2, PO3 

7 Analysis of kinematics in 4 bar mechanism 
PO2, PO3, PO5 

8 MATLAB program for curve fitting 
PO2, PO3,PO5 

9 Dynamic analysis using MATLAB program 
PO1, PO2, PO3 

10 Variation  of acceleration with total acceleration 
PO2, PO3, PO5 
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WEEK-1 

APPLICATIONS OF MAT-LAB IN MECHANICAL ENGINEERS 

Introduction 

MATLAB is a high-level language and interactive environment for numericalcomputation, 

visualization, and programming. Using MATLAB, you can analyse data, develop algorithms, and 

create models and applications. The language, tools, and built-inmath functions enable you to 

explore multiple approaches and reach a solution fasterthan with spread sheets or traditional 

programming languages, such as C/C++ or Java. You can use MATLAB for a range of applications, 

including signal processing andcommunications, image and video processing, control systems, test 

and measurement, computational finance, and computational biology. More than a million 

engineers andscientists in industry and academia use MATLAB, the language of technical 

computing. 

Strengths 

 MATLAB may behave as a calculator or as a programming language 

 MATLAB combine nicely calculation and graphic plotting. 

 MATLAB is relatively easy to learn 

 MATLAB is interpreted (not compiled), errors are easy to fix 

 MATLAB is optimized to be relatively fast when performing matrix            

operations 

 MATLAB does have some object-oriented elements 

 

Weaknesses 

 MATLABis not a general purpose programming language such as C, C++,  or  

FORTRAN. 

 MATLAB is designed for scientific computing, and is not well suitable for other 

applications 
 

MATLAB is commercial software and a trademark of The MathWorks, Inc., USA. It is an 

integrated programming system, including graphical interfaces and a large number of 

specialized toolboxes. MATLAB is getting increasingly popular in all fields of science and 

engineering. 

Some capabilities of MATLAB in Mechanical Engineering are: 

1. Structural Analysis 

2. Computational Fluid Dynamics 

3. Thermal Analysis 

4. Analysis of composite structures 

5. Industrial Production technology 
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6. Control systems 

MATLAB is extensively used in Defence, Space technology, Aerospace and Automobile 

industries because of its application in modelling and finite element analysis. It is also used in 

Mass production industries. 

 

MATLAB's Power of Computational Mathematics 

MATLAB is used in every facet of computational mathematics. Following are some 
commonly used mathematical calculations where it is used most commonly: 

 

 Dealing with Matrices and Arrays 

 2-D and 3-D Plotting and graphics 

 Linear Algebra 

 Algebraic Equation 

 Non-linear Functions 

 Statistic 

 Data Analysis 

 Calculus and Differential Equations 

 Numerical Calculations 

 Integration 

 Transforms 

 Curve Fitting 

 Various other special functions 
 



7 

 

WEEK-2 

MATLAB PROGRAM TO PLOT THE INTERNAL FORCES, AND BENDING 

MOMENT 
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WEEK-3 

THERMAL STRESS ANALYSIS OF PISTON. 

SOFTWARE REQUIRED 

1. MATLAB R2013a.  

2. Windows 7/XP SP2. 

 

PROCEDURE 

1. Open MATLAB 

2. Open new M-file 

3. Type the program 

4. Save in current directory 

5. Compile and Run the program 

6. For the output see command window\ Figure window 

 

PROGRAM 

PISTON FUNCTION AND ASSOCIATED PROBLEM AREAS 
 

The function of the piston is to absorb the energy by the gas / air which enters in the 

cylinder and then accelerates to produce useful mechanical energy. So to prevent the 

leakage & proper compressor of air /gas the piston must be sealed with the cylinder surface. 

This is accomplished by the piston rings which also help to prevent oil from entering in the 

cylinder from underneath the piston. Another function of the rings is to keep the piston from 

contacting the cylinder wall. Less contact area between the cylinder and piston reduces 

friction, thereby increasing efficiency. As a result of this process, heat is transferred from 

the combustion gases into the piston and other components that makeup the cylinder walls. 

This reduces the thermodynamic efficiency of the process, and therefore also diminishes 

power. 

PISTON COOLING 
 

The reduction of Temperature in the piston can be done by heat pipe cooling method. This 

system allows for a channel inside the piston skirt that directs heat away from the piston 

itself. This will increases the heat transfer through the piston, which does not help the 

efficiency of the compressor, but we can use the special light alloys to form the piston. 

Magnesium and its alloys have much larger creep rates than other metals and therefore can 

usually not sustain the same load and temperatures as steel or aluminium. A heat pipe 

system can drastically reduce the temperature of the piston crown from about 700ºC to only 

350ºC.Therefore, using heat-pipe technology makes it easier to employ magnesium alloys in 
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pistons. Cooling gallery pistons are manufactured with water soluble salt cores or as 

‘‘cooled ring carriers’’ with a sheet metal cooling gallery attached to the ring carrier. An 

adjusted jet with a fixed housing injects the cooling oil into the annular cooling gallery 

through an inlet orifice in the piston. Maintaining the correct quantity of oil decisively 

influences heat dissipation. The outlet is formed by one or more bores inside a piston, 

preferably positioned on the side of the cooling gallery approximately opposite the inlet. 

PISTON TEMPERATURE DISTRIBUTION 
 

Generally the heat flux is highest in the centre of the cylinder head, in the exhaust valve seat 

region, and to the centre of the piston. Cast-iron pistons run about40 to 800 C h otter than 

aluminium pistons. In the flat topped piston the centre of the crown is hottest and the outer 

edge cooler by 20 to 500 C. The maximum temperatures occur where the heat flux is high 

and access for cooling is difficult. Such locations are the bridge between the valves and the 

region between the exhaust valves of adjacent cylinders. The heat generated by friction 

between the piston and the liner is a significant fraction of the liner thermal loading. 

Temperature distributions in the piston can be calculated from the knowledge of the heat 

fluxes across the component surface using finite element analysis techniques. For steady-

state engine operation, the depth within a component to which the unsteady temperature 

fluctuations (caused by the variations in heat flux during the cycle) penetrate is small, so a 

quasi-steady solution is satisfactory. In this finite element analysis, the actual piston shape 

was approximated with a three-dimensional grid for one quadrant of the piston. A standard 

finite element analysis 

of the heat flow through the piston yields the temperature distribution within the piston. The 

thermal stresses can therefore be calculated and added to the mechanical stress field to 

determine the total stress distribution. This can be used to define the potential fatigue 

regions in the actual piston design. 

DESIGN DATA OF COMPRESSOR: 
 

• Power Capacity : 5 H.P 

• Speed : 1440 R.P.M 

• Piston Displacement : 500 LPM 

• Atmospheric Pressure : 1.01325 bar 

• Working Pressure : 10 bar 
• Temperature on top surface of Piston: 158.530 C  

The above data is taken for the design of piston through which various geometries of the 

piston can be found out which are mentioned below. The material of the piston is 
Aluminium alloy 6061. Design of the Piston can be done by general programme in 

MATLAB Software. 

PROGRAMME IN MATLAB 

clc 
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clear 

k=0.04 

n=1.25 

p1=input('Enter the Value of atm. Pressure') 

p3=input('Enter the Value of working Pressure') 

p2=sqrt(p1*p3) 

% VE=Volumetric 

Efficiency VE=1-

(k*((p2/p1)^(1/n)-1)) 

% ME=Mechanical Efficiency 

% BP=Brake Power 

% IP=Indicated Power 

% WD=Work 

Done ME=0.80 

BP=input('Enter the Value of Brake 

Power') IP=(ME)*(BP) 

WD=(IP)*60 

R=0.287 

T1=273 

T2=T1*((p2/p1)^((n-

1)/n)) 

% T1=atm. Temperature 

% T2=Intermediate Temperature 

% m=Mass of Air Delivery 

m=(WD*(n-1))/(R*n*((p2/p1)^((n-1)/n)-1)*(T1+T2)) 

m1=m/60 

FAD=Free Air Delivery 

% N=Revolution per Minute 

N=1440 

FAD=(m1*R*T2*10)/(p2*10

*) 

% Vs=Swept 

Volume 

Vs=FAD/VE 

% L=Stroke of Piston 

% D=Diameter of Piston 

% th=Thickness of head 

% ts=Tensile Stress 

% p=Working 

Pressure p=1 

ts=56.4 

th=sqrt((3*p*(D1^2))/(16*ts)) 

 ts=input('Enter the Value of Tensile Stress') 

% t1=Radial Thickness of 

Piston Ring Pw=0.035 

t1=D1*(sqrt((3*Pw)/ts)) 

% mu=Coefficient Of Friction 

% R=Maximum Side Thrust 

mu=0.1 
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R=(mu*pi*(D1^2)*p)/4 

% l=Length of Piston skirt 

% Pb=Bearing 

Pressure Pb=0.25 

l=R/(Pb*D1) 
The above programme is for Design of Piston of Reciprocating air Compressor. By 
entering various Input parameter we can get the Output of the Programme which 
shows the design of Piston. 

 

OUTPUT 

k = 0.0400 

n = 1.2500 

Enter the Value of atm. Pressure1.01325 

p1 = 1.0133 bar 

Enter the Value of working Pressure14 

p3 = 14 bar 

p2 = 3.7664 bar 

VE = 0.9257 

ME = 0.8000 

Enter the Value of Brake Power 3.73 KW 

BP =3.7300 KW 

IP =2.9840 KW 

WD =179.0400 KW 

R = 0.2870 KJ/Kg K 

T1 =273 K 

T2 = 354.9799 K 

m = 0.6616 kg/sec 

m1 = 0.0110 kg/min 

N =1440 R.P.M 

FAD = 2.0714 x 10 -6 m3 

Vs = 2.2377 x 10 -6 m3 

L = 0.1000 m 

D = 0.0534 m 

D1 = 53.3777 mm 

p = 1 N/mm2 

ts = 56.4000 mm 

th =3.0777 mm 

Enter the Value of Tensile Stress19.6 N/mm2 

ts =19.6000 mm 

Pw = 0.0350 N/mm2 

t1 = 3.9068 mm 

mu = 0.1000 

R = 223.7736 N 

Pb = 0.2500 N/mm2 

l = 16.7691 mm 
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WEEK-4 

FORMULATION OF IDEAL AND REAL GAS EQUATIONS 

SOFTWARE REQUIRED 

1. MATLAB R2013a.  

2. Windows 7/XP SP2. 

 

PROCEDURE 

1. Open MATLAB 

2. Open new M-file 

3. Type the program 

4. Save in current directory 

5. Compile and Run the program 

6. For the output see command window\ Figure window 

 

PROGRAM 

The gas law, for example, 

P = f(n,T,V) [ = nRT/V] 

  

if you give the function values for n,T,V, the function returns a value for P. The formula in 

brackets is what the ideal gas law would use to compute the value of the function, but other 

formula could also be used. 

 

In Matlab, we would write such a function for the ideal gas law like this: 

function P = idealP(V) 

% computes pressure using the ideal gas law 

% for 1 mole 

% assumes the temperature is 293 

R = .08206; 

T = 293.0;  

n = 1.0; 

P = n*R*T./V; 

Important things to note: 

 The first word in the file is function. 

 The variable to be computed, P, is on the left  

 The name of the function appears to the right of =and is followed by parameters or 
arguments to be supplied when the function is called. 

 

 Somewhere in the function body, the variable P must be given value.  
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 All variables used in the function are local> to the function.  

If you expect to send in a vector as an argument, make certain any formulas in the function 

can handle vectors. 

 

                     A more general version, as a function of n,V,T: 

 Function P = ideal P(n,V,T) 

%  computes pressure using the ideal gas law for given values of n,V,T 

% can compute P for a range of V 

R = .08206; 

P = n*R*T. /V; 
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WEEK-5 

USING MATLAB PROGRAM PLOT THE FUNCTION OF ONE VARIABLE AND 

TWO 

VARIABLES 

Line plot 

Bar graph 

Surface plot 

Contour plot 

MATLAB tutorial on 2D, 3D visualization tools as well as other graphics packages available 

in our tutorial series. 

Line Plot 

>> t = 0:pi/100:2*pi; 

>> y = sin(t); 

>> plot(t,y) 

 

Line Plot – continues 

>> xlabel('t'); 

>> ylabel('sin(t)'); 

>> title('The plot of t vs sin(t)'); 
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Line Plot – continues 

>> y2 = sin(t-0.25); 

>> y3 = sin(t+0.25); 

>> plot(t,y,t,y2,t,y3)   % make 2D line plot of 3 curves 

>> legend('sin(t)','sin(t-0.25)','sin(t+0.25',1) 

 

Customizing Graphical Effects 

Generally, MATLAB’s default graphical settings are adequate which makes plotting fairly 

effortless. For more customized effects, use the get and set commands to change the 

behaviour of specific rendering properties. 
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>>> hp1 = plot(1:5)   % returns the handle of this line plot 

>> get(hp1)    % to view line plot's properties and their values 

>> set(hp1, 'lineWidth')   % show possible values for line Width 

>> set(hp1, 'lineWidth', 2)     % change line width of plot to 2 

>> gcf             % returns current figure handle 

>> gca            % returns current axes handle 

>> get(gcf)      % gets current figure's property settings 

>> set(gcf, 'Name', 'My First Plot')   % Figure 1 => Figure 1: My First Plot 

>> get(gca)     % gets the current axes.  property settings 

>> figure(1)     % create/switch to Figure 1 or pop Figure 1 to the front 

>> clf               % clears current figure 

>> close          % close current figure; "close 3" closes Figure 3 

>> close all     % close all figures 

2D Bar Graph 

>> x = magic(3);    % generate data for bar graph 

>> bar(x)               % create bar chart 

>> grid                  % add grid for clarity 

 



18 

 

Save a Plot with print 

To add a legend, either use the legend command or use the insert command in the Menu Bar 

on the figure. Many other actions are available in Tools. 

It is convenient to use the Menu Bar to change a figure’s properties interactively. However, 

the set command is handy for non-interactive changes, as in an m-file. 

Similarly, save a graph via the Menu Bar’s File/’Save as’ or 

>> print -djpeg 'mybar'      % file mybar.jpg saved in current dir 

Use MATLAB Command Syntax or Function Syntax? 

Many MATLAB utilities are available in both command and function forms. 

For this example, both forms produce the same effect: 

>> print  -djpeg  'mybar'     % print as a command 

>> print('-djpeg', 'mybar')   % print as a function 

For this example, the command form yields an unintentional outcome: 

>> myfile = 'mybar';          % myfile is defined as a string 

>> print -djpeg    myfile     % as a command, myfile is 'myfile' (verbatim), not 'mybar' 

>> print('-djpeg', myfile)    % as a function, myfile is treated as a variable 

Other frequently used utilities that are available in both forms are save and load 

Surface Plot 

>> Z = peaks;   % generate data for plot 

>> surf(Z)      % surface plot of Z 
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Try these commands to see their effects: 

>> shading flat 

>> shading interp 

>> shading faceted 

>> grid off 

>> axis off 

>> colorbar 

>> colormap('winter') 

>> colormap('jet') 

Contour Plots 

>> Z = peaks; 

>> contour(Z, 20)      % contour plot of Z with 20 contours 
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>> contourf(Z, 20);    % with color fill 

>> colormap('hot')     % map option 

>> colorbar            % make color bar 

 

Integration Example 
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WEEK-6 

MULTI BODY DYNAMIC ANALYSIS THROUGH MATLAB PROGRAM 

 

Simscape™ Multibody™ models are similar in composition to the systems they represent. A 

typical model comprises bodies, joints and constraints, forces and torques, and sensors. Start 

your model by creating the subsystems that represent the bodies. Then, connect the 

subsystems with joints and constraints to define kinematic relationships. To measure the 

dynamic response of system components, add forces and torques—or, equivalently, motion 

inputs—to drive the model and sensors. 

 Bodies 
Model body geometries, inertias, colors, and frames 

 

 Assembly 
Connect bodies through joints, gears, and constraints 

 

 Dynamics 
Apply and sense force, torque, and motion 

 

 Applications 
Examples of real-world multibody systems 

 

Bodies 

Model body geometries, inertias, colors, and frames 

Model the bodies of an articulated mechanical assembly. Bodies can be rigid or flexible, the 

latter being free to deform when acted upon by a force or torque. All bodies are characterized 

by their physical properties, among them geometry, inertia, and color. Flexible bodies have 

the additional properties of stiffness, damping, and discretization level. 

Rigid bodies are based on the various solid blocks, the File Solid block, or, in special cases, 

their equivalents of variable mass and geometry. You can find the latter in the Body 

Elements > Variable Mass library. Use the File Solid block to import a body from a 3-D 

part file. Flexible bodies are based on the General Flexible Body block—a representation of a 

slender body with a specified cross section. 

A single Brick Solid, File Solid, or General Flexible Beam block may suffice to completely 

model a body. More often, several are required. The body is then a composite of simpler 

body elements fixed to one another. Frame connection lines between the blocks establish the 

necessary rigid connections between the body elements. Rigid Transform blocks, normally 

inserted in the connection lines, provide the relative positions and orientations required for 

proper assembly. 

https://in.mathworks.com/help/physmod/sm/rigid-bodies-1.html
https://in.mathworks.com/help/physmod/sm/multibody-systems.html
https://in.mathworks.com/help/physmod/sm/internal-mechanics-actuation-and-sensing.html
https://in.mathworks.com/help/physmod/sm/sm_examples_applications.html
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Dynamics 

Apply and sense force, torque, and motion 

Add forces, torques, and motion inputs to drive your model and use sensors to measure its 

dynamic response. Use the joint blocks in your model to actuate those joints, model their 

internal mechanics, and sense joint-specific dynamic variables. Only Joints blocks allow you 

to specify trajectories in a model. 

Use Forces and Torques blocks to model interactions between unconnected bodies or to add 

special dynamic elements such as gravitational fields and nonlinear spring-dampers—the 

latter using the generic Internal Force block. You can sense the relative motions of 

unconnected bodies using the Transform Sensor block. 

Specify Joint Actuation Torque 

Model Overview 

In Simscape™ Multibody™, you actuate a joint directly using the joint block. Depending on 

the application, the joint actuation inputs can include force/torque or motion variables. In this 

example, you prescribe the actuation torque for a revolute joint in a four-bar linkage model. 

Transform Sensor blocks add motion sensing to the model. You can plot the sensed variables 

and use the plots for kinematic analysis. In this example, you plot the coupler curves of three 

four-bar linkage types: crank-rocker, double-crank, and double-rocker. 

 

Four-Bar Linkages 

The four-bar linkage contains four links that interconnect with four revolute joints to form a 

planar closed loop. This linkage converts the motion of an input link into the motion of an 

output link. Depending on the relative lengths of the four links, a four-bar linkage can convert 

rotation into rotation, rotation into oscillation, or oscillation into oscillation. 
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Links 

Links go by different names according to their functions in the four-bar linkage. For example, 

coupler links transmit motion between crank and rocker links. The table summarizes the 

different link types that you may find in a four-bar linkage. 

 

 

 

Link Motion 

Crank Revolves with respect to the ground link 

Rocker Oscillates with respect to the ground link 

Coupler Transmits motion between crank and rocker links 

Ground Rigidly connects the four-bar linkage to the world or another subsystem 

 

It is common for links to have complex shapes. This is especially true of the ground link, 

which may be simply the fixture holding the two pivot mounts that connect to the crank or 

rocker links. You can identify links with complex shapes as the rigid span between two 

adjacent revolute joints. In example Model a Closed-Loop Kinematic Chain, the rigid span 

between the two pivot mounts represents the ground link. 

Linkages 

The type of motion conversion that a four-bar linkage provides depends on the types of links 

that it contains. For example, a four-bar linkage that contains two crank links converts 

rotation at the input link into rotation at the output link. This type of linkage is known as a 

double-crank linkage. Other link combinations provide different types of motion conversion. 

The table describes the different types of four-bar linkages that you can model. 

Linkage Input-Output Motion 

Crank-rocker Continuous rotation-oscillation (and vice-versa) 

Double-Crank Continuous rotation-continuous rotation 

Double-rocker Oscillation-oscillation 

 

Grashof Condition 

The Grashof theorem provides the basic condition that the four-bar linkage must satisfy so 

that at least one link completes a full revolution. According to this theorem, a four-bar 
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linkage contains one or more crank links if the combined length of the shortest and longest 

links does not exceed the combined length of the two remaining links. Mathematically, the 

Grashof condition is: 

s+l ≤ p+q 

where: 

 s is the shortest link 

 l is the longest link 

 p and q are the two remaining links 

Grashof Linkages 

A Grashof linkage can be of three different types: 

 Crank-rocker 

 Double-crank 

 Double-rocker 

By changing the ground link, you can change the Grashof linkage type. For example, by 

assigning the crank link of a crank-rocker linkage as the ground link, you obtain a double-

crank linkage. The figure shows the four linkages that you obtain by changing the ground 

link. 

 

Modeling Approach 

In this example, you perform two tasks. First you add a torque actuation input to the model. 

Then, you sense the motion of the crank and rocker links with respect to the World frame. 

The actuation input is a torque that you apply to the joint connecting the base to the crank 
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link. Because you apply the torque at the joint, you can add this torque directly through the 

joint block. The block that you add the actuation input to is called Base-Crank Revolute Joint. 

You add the actuation input to the joint block through a physical signal input port. This port 

is hidden by default. To display it, you must select Provided by Input from 

the Actuation > Torque drop-down list. 

You can then specify the torque value using either Simscape or Simulink
®
 blocks. If you use 

Simulink blocks, you must use the Simulink-PS Converter block. This block converts the 

Simulink signal into a physical signal that Simscape Multibody can use. For more 

information, see Actuating and Sensing with Physical Signals. 

To sense crank and rocker link motion, you use the Transform Sensor block. With this block, 

you can sense motion between any two frames in a model. In this example, you use it to sense 

the [Y Z] coordinates of the crank and rocker links with respect to the World frame. 

The physical signal output ports of the Transform Sensor blocks are hidden by default. To 

display them, you must select the appropriate motion outputs. Using the PS-Simulink 

Converter, you can convert the physical signal outputs into Simulink signals. You can then 

connect the resulting Simulink signals to other Simulink blocks. 

In this example, you output the crank and rocker link coordinates to the workspace using 

Simulink To Workspace blocks. The output from these blocks provide the basis for phase 

plots showing the different link paths. 

Build Model 

Provide the joint actuation input, specify the joint internal mechanics, and sense the position 

coordinates of the coupler link end frames. 

Provide Joint Actuation Input 

1. At the MATLAB
®
 command prompt, enter smdoc_four_bar. A four bar model opens 

up. For instructions on how to create this model, see Model a Closed-Loop Kinematic 

Chain. 

2. In the Base-Crank Revolute Joint block dialog box, in the Actuation > Torque drop-

down list, select Provided by Input. The block exposes a physical signal input port, 

labeled t. 

3. Drag these blocks into the model. The blocks enable you to specify the actuation 

torque signal. 

 

Library Block 

Simulink > Sources Constant 

Simscape > Utilities Simulink-PS Converter 

 

 

 

 

 

https://in.mathworks.com/help/physmod/simscape/ref/simulinkpsconverter.html
https://in.mathworks.com/help/physmod/sm/ug/actuating-and-sensing-using-physical-signals.html
https://in.mathworks.com/help/physmod/simscape/ref/pssimulinkconverter.html
https://in.mathworks.com/help/physmod/simscape/ref/pssimulinkconverter.html
https://in.mathworks.com/help/simulink/slref/toworkspace.html
https://in.mathworks.com/help/simulink/slref/constant.html
https://in.mathworks.com/help/physmod/simscape/ref/simulinkpsconverter.html
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1. Connect the blocks as shown in the figure. The new blocks are shaded gray. 

 

Specify Joint Internal Mechanics 

Real joints dissipate energy due to damping. You can specify joint damping directly in the 

block dialog boxes. In each Revolute Joint block dialog box, under Internal 

Mechanics > Damping Coefficient, enter 5e-4 and press OK. 

Sense Link Position Coordinates 

1. Add these blocks to the model. The blocks enable you to sense frame position during 

simulation. 

Library Block 

Simscape > Multibody > Frames and Transforms Transform Sensor 

Simscape > Multibody > Frames and Transforms World Frame 

Simscape > Utilities PS-Simulink Converter 

Simulink > Sinks To Workspace 

 

 

2. In the Transform Sensor block dialog boxes, 

select Translation > Y and Translation > Z. Resize the block as needed. 

https://in.mathworks.com/help/physmod/sm/ref/transformsensor.html
https://in.mathworks.com/help/physmod/sm/ref/worldframe.html
https://in.mathworks.com/help/physmod/simscape/ref/pssimulinkconverter.html
https://in.mathworks.com/help/simulink/slref/toworkspace.html
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3. In the Output signal unit parameters of the PS-Simulink Converter block dialog 

boxes, enter cm. 

4. In the Variable Name parameters of the To Workspace block dialog boxes, enter the 

variable names: 

o y_crank 

o z_crank 

o y_rocker 

o z_rocker 

5. Connect and name the blocks as shown in the figure, rotating them as needed. Ensure 

that the To Workspace blocks with the z_crank and z_rocker variable names connect to 

the z frame ports of the Transform Sensor blocks. The new blocks are shaded yellow. 
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Simulate Model 

Run the simulation. You can do this in the Simulink tool bar by clicking the run button. 

Mechanics Explorer plays a physics-based animation of the four bar assembly. 

 

Once the simulation ends, you can plot the position coordinates of the coupler link end 

frames, e.g., by entering the following code at the MATLAB command line: 

figure; 

plot(y_crank.data, z_crank.data, 'color', [60 100 175]/255);  

hold; 

plot(y_rocker.data, z_rocker.data, 'color', [210 120 0]/255);  

xlabel('Y Coordinate (cm)');  

ylabel('Z Coordinate (cm)');  

axis equal; grid on; 

The figure shows the plot that opens. This plot shows that the crank completes a full 

revolution, while the rocker completes a partial revolution, e.g., it oscillates. This behavior is 

characteristic of crank-rocker systems. 
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Simulate Model in Double-Crank Mode 

Try simulating the model in double-crank mode. You can change the four-bar linkage into a 

double-crank linkage by changing the binary link lengths according to the table. 

Block Parameter Value 

Binary Link A Length 25 

Binary Link B Length 20 

Binary Link A1 Length 30 

Crank-Base Transform Translation > Offset 5 

Rocker-Base Transform Translation > Offset 5 

Update and simulate the model. The figure shows the updated visualization display in 

Mechanics Explorer. 
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Plot the position coordinates of the coupler link end frames. At the MATLAB command line, 

enter: 

figure;  

plot(y_crank.data, z_crank.data, 'color', [60 100 175]/255); 

hold;  

plot(y_rocker.data, z_rocker.data, 'color', [210 120 0]/255);  

xlabel('Y Coordinate (cm)');  

ylabel('Z Coordinate (cm)');  

axis equal; grid on; 

The figure shows the plot that opens. This plot shows that both links complete a full 

revolution. This behavior is characteristic of double-crank linkages. 
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ANALYTICAL SYNTHESIS AND ANALYSIS OF 
MECHANISMS USING MATLAB AND SIMULINK 
 

%**************** 

% 

% 

% Path Generation Program Using Loop Closure Method 

% 

% 

%**************** 

% FILENAME: path_loop_closure.m 

% CREATE MATRICES TO STORE X AND iY COMPONENTS OF POSITION OF PTS. 

A, 

B, 

% AND C AND THETA 3 AND 4 ESTIMATES 

Xa=[]; 

Ya=[]; 

Xb=[]; 

Yb=[]; 

Xc=[]; 

Yc=[]; 

thetabars=[]; 

% DEFINE CONSTANTS (LENGTHS IN INCHES, ANGLES IN RADIANS) 

r1=1.178; % "G" Ground Link Length, AoBo 

r2=0.3463; % "U" Input Link Length, AoA 

r3=1.43; % "Z" Coupler Link Length, AB 

r4=1; % "W" Follower Link Length, BoB 

r5=1.54; % Length AC 

theta1=0; % Angle of Ground Link 

psic=40.6*(pi/180); % Angle BAC 

mu=-1; % Configuration of linkage 

% Grashof (s+l<p+q since r2+r1<r3+r4) and input is the shortest 

% link => Crank Rocker (Cranks can rotate 360 degrees) 

theta2min=0; % Smallest input angle 

theta2max=2*pi; % Largest input angle 

range=theta2max-theta2min; % Range of input motion 

steps=100; % Number of positions that will be 

calculated 

% CALCULATE INITIAL POSITION OF C WITH COMPLEX NUMBERS 

theta2=theta2min; % Initial theta2 

r2v=r2*exp(i*theta2); % Position vector AoA 

r1v=r1*exp(i*theta1); % Position vector AoBo 

r7v=r2v-r1v; % Position vector BoA 

r7=abs(r7v); % Magnitude BoA 

psi=acos((r4^2+r7^2-r3^2)/(2*r4*r7)); % Angle ABoB 

theta4=imag(log(r7v/abs(r7v)))+mu*psi; % Current theta4 
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r4v=r4*exp(i*theta4); % Position vector BoB 

r3v=r1v-r2v+r4v; % Position vector AB 

theta3=imag(log(r3v/abs(r3v))); % Angle of AoA to X axis 

% CALCULATE POSITION OF C AT ALL STEPS 

for q=1:(steps+1) 

Page 12.242.11 

theta2=theta2min+(q-1)*(range)/steps; % Current theta2 

% CALL FUNCTION TO GET ESTIMATES OF THETAS 3 AND 4 

thetabars=thetas(theta1,theta2,theta3,theta4,r1,r2,r3,r4); 

theta3=thetabars(1); % Set current theta3 to Newton-Raphson 

estimate 

theta4=thetabars(2); % Set current theta4 to Newton-Raphson 

estimate 

thth(q)=theta4; 

Xc(q)=r2*cos(theta2)+r5*cos(theta3+psic); % Put current Xc in 

matrix 

Yc(q)=r2*sin(theta2)+r5*sin(theta3+psic); % Put current iYc in 

matrix 

Xb(q)=r1*cos(theta1)+r4*cos(theta4); % Put current Xb in 

matrix 

Yb(q)=r1*sin(theta1)+r4*sin(theta4); % Put current iYb in 

matrix 

Xa(q)=r2*cos(theta2); % Put current Xa in 

matrix 

Ya(q)=r2*sin(theta2); % Put current iYa in 

matrix 

end 

theta4max=max(thth); 

theta4min=min(thth); 

range1=(theta4max-theta4min)*180/pi 

% PLOT THE POSITIONS OF C, B, AND A 

plot(Xc,Yc,Xb,Yb,Xa,Ya); 

title('Plot of Positions Using Loop Closure and Newton-Raphson'); 

axis([-2,4,-2,4]); 

xlabel('X Coordinates'); 

ylabel('iY Coordinates'); 

legend('Pt. C','Follower- range = 50 degree','Input (Crank)'); 

animate_nbar 

Page 12.242.12 

%**************** 

% 

% 

% 

% Function for Path Generation Program Using Loop Closure Method 

% 2-12-06 

% 

%**************** 

% FILENAME: thetas.m 

% FUNCTION FINDS NEWTON-RAPHSON APPROXIMATION OF THETAS 3 AND 4 
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% BASED ON PREVIOUS ANGLES AND BASED ON LINK MAGNITUDES 

function y=thetas(th1,th2,th3,th4,m1,m2,m3,m4) 

% SET ESTIMATES EQUAL TO LAST THETAS 3 AND 4 

theta3bar=th3; 

theta4bar=th4; 

%INITIALIZE MATRIX TO STORE X AND Y SUMS 

F=[1;1]; 

% LOOP UNTIL MAGNITUDE OF X AND Y SUMS IS VERY SMALL -- NEAR ZERO 

while norm(F)>=1.0e-010 %if eps, program looped forever 

% X COMPONENTS AT CURRENT ESTIMATE (MUST ADD UP TO ZERO) 

f1=m2*cos(th2)+m3*cos(theta3bar)-m4*cos(theta4bar)-m1*cos(th1); 

% Y COMPONENTS AT CURRENT ESTIMATE (MUST ADD UP TO ZERO) 

f2=m2*sin(th2)+m3*sin(theta3bar)-m4*sin(theta4bar)-m1*sin(th1); 

% JACOBIAN DETERMINATE IS CALCULATED 

A=[(-m3*sin(theta3bar)) (m4*sin(theta4bar));(m3*cos(theta3bar)) 

(-m4*cos(theta4bar))]; 

%THE X AND Y AT CURRENT ESTIMATE 

b=[(-(f1));(-(f2))]; 

% MATRIX "DIVISION" -- EQUIVALENT TO A^-1*b, BUT FASTER 

EXECUTION 

x=A\b; 

% NEW ESTIMATE OF THETAS 3 AND 4 

theta3bar=theta3bar+x(1,1); 

theta4bar=theta4bar+x(2,1); 

% NEW SUM OF X AND Y COMPONENTS 

f1=m2*cos(th2)+m3*cos(theta3bar)-m4*cos(theta4bar)-m1*cos(th1); 

f2=m2*sin(th2)+m3*sin(theta3bar)-m4*sin(theta4bar)-m1*sin(th1); 

% PUT X AND Y SUMS IN MATRIX SO NORM CAN BE COMPUTED 

F=[f1;f2]; 

end 

% FINAL ESTIMATES ARE RETURNED AS A VECTOR 

y=[theta3bar theta4bar]; 

end 
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The MATLAB functions with foreground colors, blue, orange and red, seen in the 

SIMULINK model, are MATLAB .m files for finding positions, velocities and accelerations 

of the links respectively. The program also animates the mechanism. A snapshot of such an 

animation is shown below: 

 

Appendix B contains the three MATLAB Functions used in the SIMULINK model. Figure 5 

is the Auto-Scale Graph of the SIMULINK model, which is the plot of the angular position 

of link 4 (s4 ) vs. time. Figure 5 confirms the rocking motion of the follower. It also shows 

that the follower sweeps an angle of 50
o
 in its rocking motion. 
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Figure 5 

 

Conclusion 

 

The project significantly helped students understand the abstract concepts in dynamics. This 

was reflected in the result of the follow up exam. Majority of the students exhibited a very 

thorough understanding of Lagrange’s equations. Students enjoyed the animation part of the 

project and built their models in the shop. The author received positive feedback from the 

students regarding this exercise. 
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ANALYSIS OF KINEMATICS IN FOUR BAR MECHANISM IN MATLAB PROGRAM  
 

 

%% Plot Any Four Bar Linkage 

%% Mohammad Y. Saadeh May, 10, 2010, University of Nevada Las Vegas 

clc;clear;close all 

X =   [150 110 100 90 40 120]; 

% X =   [180 100 185 220 55 0]; 

% X = [r1  r2  r3  r4  Cx  Cy ]; 

% r1: Crank (make sure its always the smallest, also r3+r4>=r1+r2) 

% r2: Coupler 

% r3: Lever (Rocker) 

% r4: Frame 

% Cu: x coordinate for coupler point wrt crank-coupler point 

% Cv: y coordinate for coupler point wrt crank-coupler point 

cycles = 2;% number of crank rotations 

INCREMENTS = 100;% divide a rotation into this number 

%% check the geometry 

P = X(1:4); 

check = P; 

[L locL] = max(check); 

check(locL) = []; 

[S locS] = min(check); 

check(locS) = []; 

R = check; 

flag = 0; 

if S==X(4) & sum(check)>(L+S) 

    TITLE = 'This is a Double-Crank Mechanism'; 

elseif (S==X(1)|S==X(3)) & sum(check)>(L+S) 

    TITLE = 'This is a Rocker-Crank Mechanism'; 

elseif S==X(2) & sum(check)>(L+S) 

    TITLE = 'This is a Double-Rocker Mechanism'; 

    flag  = 1; 

elseif sum(check)==(L+S) 

    TITLE = 'This is a Change Point Mechanism'; 

elseif sum(check)<(L+S) 

    flag  = 1; 

    TITLE = 'This is a Double-Rocker Mechanism'; 

end 

%% 

TH1 = linspace(0,2*pi,INCREMENTS);% Input angle theta1 

dig = 10;% divide links into this number 

R1 = X(1); r1 = linspace(0,R1,dig); 

R2 = X(2); r2 = linspace(0,R2,dig); 

R3 = X(3); r3 = linspace(0,R3,dig); 

R4 = X(4); r4 = linspace(0,R4,dig); 

Cu = X(5); cu = linspace(0,Cu,dig); 

Cv = X(6); cv = linspace(0,Cv,dig); 

%% check valid region 

D = sqrt(R1^2 + R4^2 - 2*R1*R4*cos(TH1));% diagonal distance between 

%                           crank-coupler point and rocker-frame point 

TH5 = acos((R3^2+D.^2-R2^2)./(2*R3*D));% angle between rocker and diagonal 

%                                        link (d) 

IMAG = imag(TH5); 

[VALUES LOCATION] = find(IMAG==0); 

%% 

IMAG = imag(TH5); 

LOCATION = IMAG==0; 

LOCATION1 = find(IMAG==0); 

LOC = LOCATION; 

n = length(LOCATION); 

n1 = length(LOCATION1); 
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Check = 0; 

direction = 1; 

for i=1:n-1 

    if LOC(i+1)~=LOC(i) 

        if Check==0 

            direction = LOC(i); 

        end 

        Check = Check+1; 

    end 

end 

%% 

Rotate = 0; 

if isempty(LOCATION1) 

    error('This is not a valid linkage'); 

elseif direction==0 & Check==2 

    LOC1 = find(LOCATION==1); 

    th1 = [TH1(LOC1) TH1(fliplr(LOC1))]; 

elseif n1==n 

    th1 = TH1; 

elseif direction==1 & Check==2 

    Rotate = 1; 

    loc1 = LOC(1:end-1); 

    loc2 = LOC(2:end); 

    [Value deadpoint] = find((loc2-loc1)~=0); 

    deadp = deadpoint + [0 1]; 

    LOC2 = [deadp(2):n 1:deadp(1)]; 

    th1 = [TH1(LOC2) TH1(fliplr(LOC2))]; 

elseif Check==4 

    Rotate = 1; 

    loc1 = LOC(1:end-1); 

    loc2 = LOC(2:end); 

    [Value deadpoint] = find((loc2-loc1)~=0); 

    deadp1 = deadpoint(1:2) + [1 0]; 

    deadp2 = deadpoint(3:4) + [1 0]; 

    fprintf('This mechanism has two disconnected upper and lower regions\n'); 

    DIREC = 1; 

    DIREC = input('Select [1] for upper, [2] for lower    Default = [1]  '); 

    if DIREC == 1 

        LOC3 = [deadp1(1):deadp1(2)]; 

    else 

        LOC3 = [deadp2(1):deadp2(2)]; 

    end 

    th1 = [TH1(LOC3) TH1(fliplr(LOC3))]; 

end 

d = sqrt(R1^2 + R4^2 - 2*R1*R4*cos(th1)); 

th5 = acos((R3^2+d.^2-R2^2)./(2*R3*d));% angle between rocker and 

%% 

if Rotate == 1 

    d = sqrt(R1^2 + R4^2 - 2*R1*R4*cos(th1)); 

    th5 = acos((R3^2+d.^2-R2^2)./(2*R3*d));% angle between rocker and diagonal link (d) 

    th5 = [th5(1:end/2) -th5(end/2+1:end)]; 

end 

Ax = R1*cos(th1);% x coordinate for the crank-coupler point 

Ay = R1*sin(th1);% y coordinate for the crank-coupler point 

a = R4 - R1*cos(th1);% horizontal distance between rocker-frame point and 

%                      projection of crank-coupler point 

b = Ay;% vertical projection of crank-coupler point 

th6 = atan2(b,a);% angle between frame and diagonal link (d) 

th4 = pi - th5 - th6;% angle the rocker makes with horizon 

Bx = R3*cos(th4) + R4;% horizontal distance between frame-crank point and 

%                       projection of coupler-rocker point 

By = R3*sin(th4);% vertical projection of coupler-rocker point 
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th2 = atan2((By-Ay),(Bx-Ax));% angle the coupler makes with the horizon 

Cx = Ax + Cu*cos(th2) - Cv*sin(th2);% horizontal projection of coupler 

%                                     point wrt coupler 

Cy = Ay + Cu*sin(th2) + Cv*cos(th2);% vertical projection of coupler 

%                                     point wrt coupler 

% calculate display (figure) limits 

xmin = 1.2*min([min(Cx) -R1 -R3]); 

xmax = 1.2*max([max(Cx) R4+max([R3 max(R3*cos(th4))])]); 

ymin = 1.2*min([min(Cy) -R1 -R3]); 

ymax = 1.2*max([max(Cy) max([R1 R3 R3+Cv])]); 

%% 

increments = length(th1); 

for i=1:increments 

    link1x(i,:) = r1*cos(th1(i)); 

    link1y(i,:) = r1*sin(th1(i)); 

    link2x(i,:) = linspace(Ax(i),Bx(i),dig); 

    link2y(i,:) = linspace(Ay(i),By(i),dig); 

    link3x(i,:) = R4 + r3*cos(th4(i)); 

    link3y(i,:) = r3*sin(th4(i)); 

    Couplx1(i,:) = linspace(Ax(i),Cx(i),dig); 

    Couply1(i,:) = linspace(Ay(i),Cy(i),dig); 

    Couplx2(i,:) = linspace(Cx(i),Bx(i),dig); 

    Couply2(i,:) = linspace(Cy(i),By(i),dig); 

end 

for k=1:cycles 

    for i = 1:increments 

        plot(link1x(i,:),link1y(i,:),'b',link2x(i,:),link2y(i,:),'r',... 

            link3x(i,:),link3y(i,:),'k',Couplx1(i,:),Couply1(i,:),'r',... 

            Couplx2(i,:),Couply2(i,:),'r') 

        hold on 

        plot([link2x(i,:) ;Couplx1(i,:)],[link2y(i,:); Couply1(i,:)],'g','linewidth',2) 

        plot([link2x(i,:) ;Couplx2(i,:)],[link2y(i,:); Couply2(i,:)],'g','linewidth',2) 

        plot(0,0,'sk',R4,0,'sk','MarkerSize',12) 

        plot(0,0,'ok',R4,0,'ok') 

        plot(Couplx1(i,end),Couply1(i,end),'ok','MarkerSize',6,... 

            'MarkerFaceColor','g') 

                axis([xmin xmax ymin ymax]) 

        if Rotate == 1 & i<=increments/2 

            plot(Couplx1(1:i,end),Couply1(1:i,end),'--g','linewidth',2) 

        elseif Rotate == 1 

            plot(Couplx1(1:increments/2,end),Couply1(1:increments/2,end),'--g','linewidth',2) 

            plot(Couplx1(increments/2:i,end),Couply1(increments/2:i,end),'--r','linewidth',2) 

        else 

            plot(Couplx1(1:i,end),Couply1(1:i,end),'--g','linewidth',2) 

        end 

        clc 

        title(['\bf',TITLE]) 

        fprintf('Th1 = %5.2f, th5 = %5.2f, D = %7.2f\n',th1(i),th5(i),d(i)) 

        YY = input('Hit Enter    '); 

        hold off 

    end 

end 

if Rotate==1 

    hold on 

    plot(Couplx1([1 end/2],end),Couply1([1 end/2],end),'hr','MarkerSize',10) 

end 
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WEEK-7 

MATLAB PROGRAM FOR EULERS EQUATION OF MOTION 

 

Using the Euler method solve the following differential equation. At x = 0, y = 5. 

y' + x/y = 0 

Calculate the Numerical solution using step sizes of .5; .1; and .01 

From my text book I have coded Euler's method 

function [t,y] = eulode(dydt, tspan, y0, h) 

%eulode: Euler ODE solver 

%   [t,y] = eulode(dydt, tspan, y0, h, p1, p2,...) 

%   `   uses EULER'S method to INTEGRATE an ODE 

%       (uses the slope at the beginning of the stepsize to graph the 

%       function.) 

%Input: 

%   dydt    = name of hte M-file that evaluates the ODE 

%   tspan   = [ti,tf] where ti and tf = initial and final values of 

%               independent variables 

%   y0      = initial value of dependent variable 

%   h       = step size 

%   p1,p2   = additional parameter used by dydt 

%Output: 

%   t = vector of independent variable 

%   y = vector of solution for dependent variable 

if nargin<4, error('at least 4 input arguments required'), end 

ti = tspan(1); tf = tspan(2); 

if ~ (tf>ti), error('upper limit must be greater than lower limit'), end 

t = (ti:h:tf)';  

n = length(t); 

%if necessary, add an additional value of t  

%so that range goes from t=ti to tf 

if t(n)<tf 

    t(n+1) = tf; 

    n = n+1; 

    t(n)=tf; 

end 

y = y0*ones(n,1); %preallocate y to improve efficiency 

for i = 1:n-1 %implement Euler's Method 

    y(i+1) = y(i) + dydt(t(i),y(i))*(t(i+1)-t(i)); 

end 

plot(t,y) 

I have made another m-file to run Eulode, what I am confused with is where do I input my 

different step sizes and where do I input x=0 and y=5. However since the analytical solution 

yields: 

simplify(dsolve('Dy=-x/y','y(0)=5','x')) 

    ans = 

    (-x^2+25)^(1/2) 



40 

 

and when x=0 the value is 5 so I have coded my Euler's Method like the following and the final 

values are close to 5 so I think it is correct can someone just verify. 

dydx=@(x,y) -(x/y); 

[x1,y1]=eulode(dydx, [0 1],5,.5); 

[x2,y2]=eulode(dydx,[0 1],5,.1); 

[x3,y3]=eulode(dydx,[0 1],5,.01); 

disp([x1,y1]) 

disp([x2,y2]) 

disp([x3,y3]) 
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WEEK-8 

MATLAB PROGRAM FOR CURVE FITTING 

Polynomial curve fitting 

collapse all in page 

Syntax 

p = polyfit(x,y,n) 

[p,S] = polyfit(x,y,n) 

[p,S,mu] = polyfit(x,y,n) 

Description 

p = polyfit(x,y,n) returns the coefficients for a polynomial p(x) of degree n that is a best fit (in a least-

squares sense) for the data in y. The coefficients in p are in descending powers, and the length 

of p is n+1 

p(x)=p1x
n+p2x

n−1+...+pnx+pn+1. 

[p,S] = polyfit(x,y,n) also returns a structure S that can be used as an input to polyval to obtain error 
estimates. 

 [p,S,mu] = polyfit(x,y,n) also returns mu, which is a two-element vector with centering and scaling 

values. mu(1) is mean(x), and mu(2) is std(x). Using these values, polyfit centers x at zero and scales it to 
have unit standard deviation, 

ˆx=
x−

‾x
σ

x . 

This centering and scaling transformation improves the numerical properties of both the polynomial 

and the fitting algorithm. 

Examples 

collapse all 

Fit Polynomial to Trigonometric Function 

Try This Example 

View MATLAB Command 

Generate 10 points equally spaced along a sine curve in the interval [0,4*pi]. 

x = linspace(0,4*pi,10); 

y = sin(x); 

Use polyfit to fit a 7th-degree polynomial to the points. 

p = polyfit(x,y,7); 

Evaluate the polynomial on a finer grid and plot the results. 

x1 = linspace(0,4*pi); 

y1 = polyval(p,x1); 

figure 

plot(x,y,'o') 

hold on 

plot(x1,y1) 

javascript:void(0);
https://in.mathworks.com/help/matlab/ref/polyfit.html#d117e1096837
https://in.mathworks.com/help/matlab/ref/polyfit.html#d117e1096887
https://in.mathworks.com/help/matlab/ref/polyfit.html#d117e1096917
https://in.mathworks.com/help/matlab/ref/polyfit.html#bue6sxq-1-p
https://in.mathworks.com/help/matlab/ref/polyfit.html#bue6sxq-1-x
https://in.mathworks.com/help/matlab/ref/polyfit.html#bue6sxq-1-y
https://in.mathworks.com/help/matlab/ref/polyfit.html#bue6sxq-1-n
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matlab:openExample('matlab/FitPolynomialToTrigonometricFunctionExample')
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hold off 

 

Fit Polynomial to Set of Points 

Try This Example 

View MATLAB Command 

Create a vector of 5 equally spaced points in the interval [0,1], and evaluate y(x)=(1+x)−1 at those 

points. 

x = linspace(0,1,5); 

y = 1./(1+x); 

Fit a polynomial of degree 4 to the 5 points. In general, for n points, you can fit a polynomial of 

degree n-1 to exactly pass through the points. 

p = polyfit(x,y,4); 

Evaluate the original function and the polynomial fit on a finer grid of points between 0 and 2. 

x1 = linspace(0,2); 

y1 = 1./(1+x1); 

f1 = polyval(p,x1); 

Plot the function values and the polynomial fit in the wider interval [0,2], with the points used to 

obtain the polynomial fit highlighted as circles. The polynomial fit is good in the 

original [0,1] interval, but quickly diverges from the fitted function outside of that interval. 

figure 

plot(x,y,'o') 

hold on 

plot(x1,y1) 

plot(x1,f1,'r--') 

matlab:openExample('matlab/FitPolynomialToSetOfPointsExample')
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legend('y','y1','f1') 

 

Fit Polynomial to Error Function 

Try This Example 

View MATLAB Command 

First generate a vector of x points, equally spaced in the interval [0,2.5], and then evaluate erf(x) at 

those points. 

x = (0:0.1:2.5)'; 

y = erf(x); 

Determine the coefficients of the approximating polynomial of degree 6. 

p = polyfit(x,y,6) 

p = 1×7 

 

    0.0084   -0.0983    0.4217   -0.7435    0.1471    1.1064    0.0004 

 

To see how good the fit is, evaluate the polynomial at the data points and generate a table showing the 

data, fit, and error. 

f = polyval(p,x); 

T = table(x,y,f,y-f,'VariableNames',{'X','Y','Fit','FitError'}) 

T=26×4 table 

     X        Y          Fit         FitError   

    ___    _______    __________    ___________ 

 

      0          0    0.00044117    -0.00044117 

    0.1    0.11246       0.11185     0.00060836 

matlab:openExample('matlab/FitPolynomialToErrorFunctionExample')
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    0.2     0.2227       0.22231     0.00039189 

    0.3    0.32863       0.32872    -9.7429e-05 

    0.4    0.42839        0.4288    -0.00040661 

    0.5     0.5205       0.52093    -0.00042568 

    0.6    0.60386       0.60408    -0.00022824 

    0.7     0.6778       0.67775     4.6383e-05 

    0.8     0.7421       0.74183     0.00026992 

    0.9    0.79691       0.79654     0.00036515 

      1     0.8427       0.84238      0.0003164 

    1.1    0.88021       0.88005     0.00015948 

    1.2    0.91031       0.91035    -3.9919e-05 

    1.3    0.93401       0.93422      -0.000211 

    1.4    0.95229       0.95258    -0.00029933 

    1.5    0.96611       0.96639    -0.00028097 

      ⋮ 
 

In this interval, the interpolated values and the actual values agree fairly closely. Create a plot to show 

how outside this interval, the extrapolated values quickly diverge from the actual data. 

x1 = (0:0.1:5)'; 

y1 = erf(x1); 

f1 = polyval(p,x1); 

figure 

plot(x,y,'o') 

hold on 

plot(x1,y1,'-') 

plot(x1,f1,'r--') 

axis([0  5  0  2]) 

hold off 
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Use Centering and Scaling to Improve Numerical Properties 

Try This Example 

 

View MATLAB Command 

Create a table of population data for the years 1750 - 2000 and plot the data points. 

year = (1750:25:2000)'; 

pop = 1e6*[791 856 978 1050 1262 1544 1650 2532 6122 8170 11560]'; 

T = table(year, pop) 

T=11×2 table 

    year       pop    

    ____    _________ 

 

    1750     7.91e+08 

    1775     8.56e+08 

    1800     9.78e+08 

    1825     1.05e+09 

    1850    1.262e+09 

    1875    1.544e+09 

    1900     1.65e+09 

    1925    2.532e+09 

    1950    6.122e+09 

    1975     8.17e+09 

    2000    1.156e+10 

 

plot(year,pop,'o') 

 

matlab:openExample('matlab/UseCenteringAndScalingToImproveNumericalPropertiesExample')
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Use polyfit with three outputs to fit a 5th-degree polynomial using centering and scaling, which 

improves the numerical properties of the problem. polyfit centers the data in year at 0 and scales it to 

have a standard deviation of 1, which avoids an ill-conditioned Vandermonde matrix in the fit 

calculation. 

[p,~,mu] = polyfit(T.year, T.pop, 5); 

Use polyval with four inputs to evaluate p with the scaled years, (year-mu(1))/mu(2). Plot the results 

against the original years. 

f = polyval(p,year,[],mu); 

hold on 

plot(year,f) 

hold off 

 

Simple Linear Regression 

Try This Example 

View MATLAB Command 

Fit a simple linear regression model to a set of discrete 2-D data points. 

Create a few vectors of sample data points (x,y). Fit a first degree polynomial to the data. 

x = 1:50;  

y = -0.3*x + 2*randn(1,50);  

p = polyfit(x,y,1);  

Evaluate the fitted polynomial p at the points in x. Plot the resulting linear regression model with the 

data. 

f = polyval(p,x);  

matlab:openExample('matlab/SimpleLinearRegressionExample')
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plot(x,y,'o',x,f,'-')  

legend('data','linear fit')  

 

Linear Regression With Error Estimate 

Try This Example 

View MATLAB Command 

Fit a linear model to a set of data points and plot the results, including an estimate of a 95% prediction 

interval. 

Create a few vectors of sample data points (x,y). Use polyfit to fit a first degree polynomial to the data. 

Specify two outputs to return the coefficients for the linear fit as well as the error estimation structure. 

x = 1:100;  

y = -0.3*x + 2*randn(1,100);  

[p,S] = polyfit(x,y,1);  

Evaluate the first-degree polynomial fit in p at the points in x. Specify the error estimation structure as 

the third input so that polyval calculates an estimate of the standard error. The standard error estimate 

is returned in delta. 

[y_fit,delta] = polyval(p,x,S); 

Plot the original data, linear fit, and 95% prediction interval y±2Δ. 

plot(x,y,'bo') 

hold on 

plot(x,y_fit,'r-') 

plot(x,y_fit+2*delta,'m--',x,y_fit-2*delta,'m--') 

title('Linear Fit of Data with 95% Prediction Interval') 

legend('Data','Linear Fit','95% Prediction Interval') 

matlab:openExample('matlab/LinearRegressionWithErrorEstimateExample')
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WEEK-9 

DYNAMICS AND VIBRATION ANALYSIS 

SOFTWARE REQUIRED 

1. MATLAB R2013a.  

2. Windows 7/XP SP2. 

 

PROCEDURE 

1. Open MATLAB 
2. Open new M-file 

3. Type the program 

4. Save in current directory 

5. Compile and Run the program 

6. For the output see command window\ Figure window 

 

PROGRAM 

A 5 kg block is attached to a cable cable and to a spring as shown in Fig. 

 

 

 

 

 

 

 

 

 

 

 

The constant of the spring is k = 3 kN/m and the tension in the cable is 30 N. 

When the cable is cut, 

 

(a) derive an expression for the velocity of the block as a function of its displacement x, (b) determine 
the maximum displacement xm and the maximum speed vm, (c) plot the speed of the block as a 
function of for 0 x xm. 

(b) Solution: Free-body diagram of the block before and after the cable is cut is shown in Fig. 

For the static case we have entire forces are in equilibrium. 

T + R – W = 0 with T =30  N,  W  =  mg  =  50  N 

from which R = 20 N 
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WEEK-10 

MATLAB PROGRAM TO PLOT THE RESULTANT ACCELERATION AND THE 

VARIATION OF ACCELERATION 
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