
DATA STRUCTURES LABORATORY

LAB MANUAL

Academic Year : 2017 - 2018

Course Code : ACS102

Regulations : IARE - R16

Semester : II Semester

Branch : CSE / IT / ECE / EEE

Prepared by

Ms. B Padmaja

Associate Professor

Department of Computer Science and Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

2 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

Program Outcomes (Common for all branches)

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and

an engineering specialization to the solution of complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and

engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of experiments, analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering

and IT tools including prediction and modeling to complex engineering activities with an understanding

of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional

engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the

engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse

teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one’s own work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (CSE)

PSO1 Professional Skills: The ability to research, understand and implement computer programs in the areas

related to algorithms, system software, multimedia, web design, big data analytics, and networking for

efficient analysis and design of computer-based systems of varying complexity.

PSO2 Problem-Solving Skills: The ability to apply standard practices and strategies in software project

development using open-ended programming environments to deliver a quality product for business

success.

PSO3 Successful Career and Entrepreneurship: The ability to employ modern computer languages,

environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for

higher studies.

3 | P a g e

Program Specific Outcomes (IT)

PSO1 Professional Skills: The ability to understand, analyze and develop computer programs in the areas

related to algorithms, system software, multimedia, web design, big data analytics, and networking for

efficient analysis and design of computer - based systems of varying complexity.

PSO2 Software Engineering Practices: The ability to apply standard practices and strategies in software

service management using open-ended programming environments with agility to deliver a quality

service for business success.

PSO3 Successful Career and Entrepreneurship: The ability to employ modern computer languages,

environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for

higher studies.

Program Specific Outcomes (ECE)

PSO1 Professional Skills: An ability to understand the basic concepts in Electronics & Communication

Engineering and to apply them to various areas, like Electronics, Communications, Signal processing,

VLSI, Embedded systems etc., in the design and implementation of complex systems.

PSO2 Problem-Solving Skills: An ability to solve complex Electronics and communication Engineering

problems, using latest hardware and software tools, along with analytical skills to arrive cost effective

and appropriate solutions.

PSO3 Successful Career and Entrepreneurship: An understanding of social-awareness & environmental-

wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for

real-world applications using optimal resources as an Entrepreneur.

Program Specific Outcomes (EEE)

PSO1 Professional Skills: An ability to understand the basic concepts in Electronics & Communication

Engineering and to apply them to various areas, like Electronics, Communications, Signal processing,

VLSI, Embedded systems etc., in the design and implementation of complex systems.

PSO2 Problem-Solving Skills: An ability to solve complex Electronics and communication Engineering

problems, using latest hardware and software tools, along with analytical skills to arrive cost effective

and appropriate solutions.

PSO3 Successful Career and Entrepreneurship: An understanding of social-awareness & environmental-

wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for

real-world applications using optimal resources as an Entrepreneur.

4 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

ATTAINMENT OF PROGRAM OUTCOMES

& PROGRAM SPECIFIC OUTCOMES
S. No. Experiment Program

Outcomes

Attained

Program Specific Outcomes

Attained

CSE IT ECE EEE

1
SEARCHING TECHNIQUES

PO1, PO2,

PO3

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

2
SORTING TECHNIQUES

PO1, PO2,

PO3

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

3
SORTING TECHNIQUES

PO1, PO2,

PO3

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

4 IMPLEMENTATION OF STACK AND

QUEUE
PO2, PO3

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

5
APPLICATIONS OF STACK PO3, PO4

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

6 IMPLEMENTATION OF SINGLE LINKED

LIST
PO2, PO3

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

7 IMPLEMENTATION OF CIRCULAR

SINGLE LINKED LIST
PO2, PO3

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

8 IMPLEMENTATION OF DOUBLE LINKED

LIST
PO2, PO3

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

9 IMPLEMENTATION OF STACK USING

LINKED LIST
PO3, PO4

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

10 IMPLEMENTATION OF QUEUE USING

LINKED LIST
PO3, PO4

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

11
GRAPH TRAVERSAL TECHNIQUES PO2, PO3

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

12 IMPLEMENTATION OF BINARY SEARCH

TREE
PO2, PO3

PSO1,

PSO2

PSO1,

PSO3

PSO2 PSO2

5 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

CCeerrttiiffiiccaattee

This is to Certify that it is a bonafied record of Practical work done by

Sri/Kum. _____________________________________ bearing the

Roll No. ______________________ of ____________ Class

_______________________________________ Branch in the

____________________________ laboratory during the Academic

year ___________________ under our supervision.

Head of the Department Lecture In-Charge

External Examiner Internal Examiner

6 | P a g e

DATA STRUCTURES LABORATORY

II Semester: CSE / ECE / EEE / IT

Course Code Category Hours / Week Credits Maximum Marks

ACS102 Foundation
L T P C CIA SEE Total

- - 3 2 30 70 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

COURSE OBJECTIVES:

The course should enable the students to:

I. Understand various data representation techniques in the real world.

II. Implement linear and non-linear data structures.

III. Analyze various algorithms based on their time and space complexity.

IV. Develop real-time applications using suitable data structure.

V. Identify suitable data structure to solve various computing problems.

LIST OF EXPERIMENTS

WEEK-1 SEARCHING TECHNIQUES

Write Python programs for implementing the following searching techniques.

a. Linear search

b. Binary search

c. Fibonacci search

WEEK-2 SORTING TECHNIQUES

Write Python programs for implementing the following sorting techniques to arrange a list of integers in

ascending order.

a. Bubble sort

b. Insertion sort

c. Selection sort

WEEK-3 SORTING TECHNIQUES

Write Python programs for implementing the following sorting techniques to arrange a list of integers in

ascending order.

a. Quick sort

b. Merge sort

WEEK-4 IMPLEMENTATION OF STACK AND QUEUE

Write Python programs to

a. Design and implement Stack and its operations using List.

b. Design and implement Queue and its operations using List.

WEEK-5 APPLICATIONS OF STACK

Write Python programs for the following:

a. Uses Stack operations to convert infix expression into postfix expression.

b. Uses Stack operations for evaluating the postfix expression.

7 | P a g e

WEEK-6 IMPLEMENTATION OF SINGLE LINKED LIST

a. Write Python programs for the following operations on Single Linked List.

 (i) Creation (ii) insertion (iii) deletion (iv) traversal

b. To store a polynomial expression in memory using single linked list.

WEEK-7 IMPLEMENTATION OF CIRCULAR SINGLE LINKED LIST

Write Python programs for the following operations on Circular Linked List.

(i) Creation (ii) insertion (iii) deletion (iv) traversal

WEEK-8 IMPLEMENTATION OF DOUBLE LINKED LIST

Write Python programs for the following:

Uses functions to perform the following operations on Double Linked List.

(i) Creation (ii) insertion (iii) deletion (iv) traversal in both ways.

WEEK-9 IMPLEMENTATION OF STACK USING LINKED LIST

Write a Python program to implement Stack using linked list.

WEEK-10 IMPLEMENTATION OF QUEUE USING LINKED LIST

Write a Python program to implement Linear Queue using linked list.

WEEK-11 GRAPH TRAVERSAL TECHNIQUES

Write Python programs to implement the following graph traversal algorithms:

a. Depth first search.

b. Breadth first search.

WEEK-12 IMPLEMENTATION OF BINARY SEARCH TREE

Write a Python program to perform the following:

a. Create a binary search tree.

b. Traverse the above binary search tree recursively in pre-order, post-order and in-order.

c. Count the number of nodes in the binary search tree.

LIST OF REFERENCE BOOKS:

1. Y Daniel Liang, “Introduction to Programming using Python”, Pearson.

2. Benjamin Baka, David Julian, “Python Data Structures and Algorithms”, Packt Publishers,2017.

3. Rance D. Necaise, “Data Structures and Algorithms using Python”, Wiley Student Edition.

4. Martin Jones, “Python for Complete Beginners”, 2015.

5. Zed A. Shaw, “Learn Python the Hard Way: a very simple introduction to the terrifyingly beautiful

world of computers and code”, 3e, Addison-Wesley, 2014.

6. Hemant Jain, “Problem Solving in Data Structures and Algorithms using Python: programming

interview guide”, 2016.

WEB REFERENCES:

1. https://docs.python.org/3/tutorial/datastructures.html

2. http://interactivepython.org/runestone/static/pythonds/index.html

3. http://www.tutorialspoint.com/data_structures_algorithms

4. http://www.geeksforgeeks.org/data-structures/

5. http://www.studytonight.com/data-structures/

6. http://www.coursera.org/specializations/data-structures-algorithms

8 | P a g e

WEEK-1

SEARCHING TECHNIQUES

1.1 OBJECTIVE:

a. Write a Python script to for implementing linear search technique.

b. Write a Python script to for implementing binary search technique.

c. Write a Python script to for implementing Fibonacci search technique.

1.2 RESOURCES:

 Python 3.4.0

1.3 PROGRAM LOGIC:

Linear Search Algorithm

Algorithm linsrch (a[], x)

 { // a[1:n] is an array of n elements

 index := 0; flag := 0;

 while (index < n) do

 {

 if (x = a[index]) then

 { flag := 1; break;

 }

 index ++;

 }

 if(flag =1)

 write(“Data found “);

 else

 write(“data not found”);

}

Example: Given a list of n elements and search a given element x in the list using linear search.

a. Start from the leftmost element of list a[] and one by one compare x with each element of

list a[].

b. If x matches with an element, return the index.

c. If x doesn’t match with any of elements, return -1.

Consider a list with 10 elements and search for 9.

 a = [56, 3, 249, 518, 7, 26, 94, 651, 23, 9]

9 | P a g e

Index → 0 1 2 3 4 5 6 7 8 9

Iteration 1 56 3 249 518 7 26 94 651 23 9

Iteration 2 56 3 249 518 7 26 94 651 23 9

Iteration 3 56 3 249 518 7 26 94 651 23 9

Iteration 4 56 3 249 518 7 26 94 651 23 9

Iteration 5 56 3 249 518 7 26 94 651 23 9

Iteration 6 56 3 249 518 7 26 94 651 23 9

Iteration 7 56 3 249 518 7 26 94 651 23 9

Iteration 8 56 3 249 518 7 26 94 651 23 9

Iteration 9 56 3 249 518 7 26 94 651 23 9

Iteration 10 56 3 249 518 7 26 94 651 23 9

Binary Search Algorithm

Algorithm binsrch (a[], n, x)

 { // a[1:n] is an array of n elements

 low = 1;

 high = n;

 while (low < high) do

 {

 mid = (low + high)/2 ;

 if (x < a[mid]) then

 high = mid – 1;

 else if (x > a[mid]) then

 low = mid + 1;

 else

 return mid;

 }

 return 0;

}

Example: Given a sorted list of a[] of n elements, search a given element x in list.

a. Search a sorted list by repeatedly dividing the search interval in half. Begin with an interval

covering the whole list.

b. If the search key is less than the item in the middle item, then narrow the interval to the

lower half. Otherwise narrow it to the upper half.

c. Repeat the procedure until the value is found or the interval is empty.

Consider a sorted list a[] with 9 elements and the search key is 31.

0 1 2 3 4 5 6 7 8

11 23 31 33 65 68 71 89 100

Let the search key = 31.

First low = 0, high = 8, mid = (low + high) = 4

a[mid] = 65 is the centre element, but 65 > 31.

So now high = mid - 1= 4 - 1 = 3, low = 0, mid = (0 + 3) / 2 = 1

10 | P a g e

a[mid] = a[1] = 23, but 23 < 31.

Again low = mid +1 = 1 +1 =2, high = 3, mid = (2 + 3) /2 = 2

a[mid] = a[2] = 31 which is the search key, so the search is successful.

Fibonacci Search Algorithm

Algorithm fib_Search (arr, x, n)

 { // arr[1:n] is an array of n elements

 M2 := 0 ;

 M1 := 1 ;

 M := M2 +M1 ;

 while (fibM < n) do

 {

 M2 := M1;

 M1: =M;

 M := M2 + M1;

 }

 Offset: = -1;

 while (fibM > 1) do

 {

 i := min(offset+M2, n-1);

 if (arr[i] < x) then

 {

 M := M1;

 M1 := M2;

 M2: = M -M1;

 offset = i

 }

 else if (arr[i] > x) then

 {

 M:= M2;

 M1: = M1 -M2;

 M2 := M - M1;

 }

 else

 return i;

 }

 if(M1 and arr[offset+1] = x) then

 return offset+1;

 return -1;

}

Example: Fibonacci Search is a comparison-based technique that uses Fibonacci numbers to search

an element in a sorted array.

Fibonacci Numbers are recursively defined as F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1.

11 | P a g e

First few Fibonacci Numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Let a[0..n-1] be the input list and element to be searched be x.

1. Find the smallest Fibonacci Number greater than or equal n. Let this number be M (m’th

Fibonacci Number). Let the two Fibonacci numbers preceding it be M1 [(m-1)’th Fibonacci

Number] and M2 [(m-2)’th Fibonacci Number].

1. While the array has elements to be inspected: Compare x with the last element of the range

covered by M2

2. If x matches, return index.

3. Else If x is less than the element, move the three Fibonacci variables two Fibonacci down,

indicating elimination of approximately rear two-third of the remaining array.

4. Else x is greater than the element, move the three Fibonacci variables one Fibonacci down.

Reset offset to index. Together these indicate elimination of approximately front one-third of

the remaining array.

2. Since there might be a single element remaining for comparison, check if M1 is 1. If Yes,

compare x with that remaining element. If match, return index.

Consider a list a[] with 11 elements and the search element is 85.

n = 11

Index 0 1 2 3 4 5 6 7 8 9 10

a[i] 10 22 35 40 45 50 80 82 85 90 100

Smallest Fibonacci number greater than or equal to 11 is 13.

M2 = 5, M1 = 8, M = M1 + M2 = 13

Initialize offset = 0

Check the element at index i = min(offset + M2, n)

M2 M1 M Offset I = min(offset + M2, n) A[i] Consequence

5 8 13 0 5 45 Move one down, reset offset

3 5 8 5 8 82 Move one down, reset offset

2 3 5 8 10 90 Move two down

1 1 2 8 9 85 Return i

1.4 PROCEDURE:

1. Create: Open a new file in Python shell, write a program and save the program with .py

extension.

2. Execute: Go to Run -> Run module (F5)

1.5 SOURCE CODE:

Implementation of Linear Search

def l_search(a,x,l,n):

 if l<n:

 if a[l]==x:

 print("The element found at",l+1,"position")

 else:

12 | P a g e

 l_search(a,x,l+1,n)

 else:

 print("Element not found")

print("Enter list:")

a=[int(b) for b in input().split()]

x=eval(input("Enter the search element:"))

n=len(a)

l_search(a,x,0,n)

 Output:

Implementation of Binary Search

def b_search(a,x,l,n):

 if l<=n:

 mid=(l+n)//2

 if a[mid]==x:

 print("The element found at",mid+1,"position")

 else:

 if a[mid]>x:

 b_search(a,x,l,mid-1)

 else:

 b_search(a,x,mid+1,n)

 else:

 print("Element not found")

print("Enter list:")

13 | P a g e

a=[int(b) for b in input().split()]

list.sort(a)

print("the sorted list is",a)

x=eval(input("Enter the search element:"))

n=len(a)

b_search(a,x,0,n)

 Output:

Implementation of Fibonacci Search

def f_search(a,x,n):

 f0=0

 f1=1

 f2=f0+f1

 while f2<n:

 f0=f1

 f1=f2

 f2=f0+f1

 offset=-1

 while f2>1:

 i = min(offset+f2, n-1)

 if (a[i]<x):

 f2=f1

 f1=f0

 f0=f2-f1

 offset = i

 elif (a[i]>x):

 f2=f0

14 | P a g e

 f1=f1-f2

 f0=f2-f1

 else :

 return i

 if(f1 and a[offset+1]==x):

 return offset+1

 return -1

print("Enter list:")

a=[int(b) for b in input().split()]

list.sort(a)

print("the sorted list is",a)

x=eval(input("Enter the search element:"))

n=len(a)

pos=f_search(a,x,n)

if pos>=0:

 print("The element found at",pos+1,"position")

else:

 print("Element not found")

Output:

1.6 PRE LAB VIVA QUESTIONS:

1. Define searching?

2. Define a list?

3. List out different types of searching techniques?

4. Differentiate between list and dictionary?

5.

15 | P a g e

1.7 LAB ASSIGNMENT:

1. A person has registered for voter id , he received a voter number and he need to check whether
it exist in the voter or not. Use a binary searching in a recursive way to find whether the voter
number exist in the list or not.

2. Use linear search technique to search for a key value in a given list of characters and print the
message found or not.

 1.8 POST LAB VIVA QUESTIONS:

1. Find the time complexity of linear search?
2. Find the time complexity of binary search?
3. Find the time complexity of Fibonacci search?

16 | P a g e

WEEK - 2

SORTING TECHNIQUES

2.1 OBJECTIVE:

a. Write Python script for implementing Bubble sort techniques to arrange a list of integers in

 ascending order.

b. Write Python script for implementing insertion sort techniques to arrange a list of integers in

ascending order.

c. Write Python script for implementing selection sort techniques to arrange a list of integers in

 ascending order.

2.2 RESOURCES:

Python 3.4.0

2.3 PROGRAM LOGIC:

Bubble Sort Algorithm

Algorithm bubblesort (x[], n)

 { // x[1:n] is an array of n elements

 for i := 0 to n do

 { for j := 0 to n–i-1 d0

 { if (x[j] > x[j+1])

 {

 temp = x[j];

 x[j] = x[j+1];

 x[j+1] = temp;

 }

 } }

}

Example: Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the

adjacent elements if they are not in order.

First Pass

5 1 4 2 8 Compare the first two elements, and swaps since 5 > 1

1 5 4 2 8 Compare 5 and 4 and swap since 5 > 4

1 4 5 2 8 Compare 5 and 2 and swap since 5 > 2

1 4 2 5 8 Compare 5 and 8 and since 5 < 8, no swap.

Second Pass

1 4 2 5 8 Compare the first two elements, and as 1 < 4, no

swap.

1 4 2 5 8 Compare 4 and 2, swap since 4 > 2

1 2 4 5 8 Compare 4 and 5, no swap.

1 2 4 5 8 Compare 5 and 8 and no swap.

Third Pass

1 2 4 5 8 Compare the first two elements and no swap.

1 2 4 5 8 Compare 2 and 4, no swap.

1 2 4 5 8 Compare 4 and 5, no swap.

1 2 4 5 8 Compare 5 and 8, no swap.

17 | P a g e

Fourth Pass

1 2 4 5 8 Compare the first two elements and no swap.

1 2 4 5 8 Compare 2 and 4, no swap.

1 2 4 5 8 Compare 4 and 5, no swap.

1 2 4 5 8 Compare 5 and 8, no swap.

Insertion Sort Algorithm

Algorithm insertionsort (a, n)

{//sort the array a[1:n] in ascending order

 for j:=2 to n do

 {

 item:=a[j];

 i=j-1;

 while((i>1) and (item< a[i])) do

 {

 a[i+1]:=a[i];

 i:=i-1;

 }

 a[i+1]:=item;

 }

}

Example: This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained which is

always sorted. An element which is to be inserted in this sorted sub-list, has to find its appropriate place and

then it has to be inserted. Consider an unsorted list with 8 elements.

14 33 27 10 35 19 42 44 Compares the first two elements 14 and 33 and

these element are already in ascending order. Now

14 is in sorted sub-list.

14 33 27 10 35 19 42 44 Compare 33 with 27 and 33 is not in correct

position. So swap 33 with 27.

14 27 33 10 35 19 42 44 Now we have 14 and 27 in the sorted sub-list.

14 27 33 10 35 19 42 44 Next compare 33 with 10.

10 14 27 33 35 19 42 44 Compare 27 with 10 and 14 with 10. Insert 10 in

the proper place.

10 14 27 33 35 19 42 44 Compare 33 and 35, no swap.

10 14 27 33 35 19 42 44 Compare 35 with 19

10 14 27 33 35 19 42 44 Compare 33 with 19, 27 with 19,

10 14 19 27 33 35 42 44 Compare 35 with 42, no swap.

10 14 19 27 33 35 42 44 Compare 42 with 44, no swap.

Selection Sort Algorithm

Algorithm selectionSort (low, high)

 { //a[low : high] is an array of size n

 i=0, j=0, temp=0, ;

 for i: =low to high do

 {

 minindex = i;

 for j: =i+1 to high do

 {

 if(a[j] < a[minindex]) then

18 | P a g e

 minindex := j; }

 temp := a[i];

 a[i] := a[minindex];

 a[minindex] := temp;

 }

 }

Example: The selection sort algorithm sorts an array by repeatedly finding the minimum element

(considering ascending order) from unsorted part and putting it at the beginning. In every iteration of

selection sort, the minimum element from the unsorted sub-array is picked and moved to the sorted sub-

array.

Consider a list a = [64, 25, 12, 22, 11]

Index 0 1 2 3 4 Remarks

List 64 25 12 22 11 Find the minimum element in a[0 .. 4] and place it

at beginning.

Iteration 1 11 25 12 22 64 Find the minimum element in a[1 .. 4] and place it

at beginning of a[1 .. 4]

Iteration 2 11 12 25 22 64 Find the minimum element in a[2 .. 4] and place it

at beginning of a[2 .. 4]

Iteration 3 11 12 22 25 64 Find the minimum element in a[3 .. 4] and place it

at beginning of a[3 .. 4]

Iteration 4 11 12 22 25 64 Finally the list is sorted.

2.4 PROCEDURE:

1. Create: open Python shell write a program after that save the program with .py extension.

2. Execute: F5

2.5 SOURCE CODE:

Program for implementing Bubble Sort

def b_sort(a):

 n = len(a)

 for i in range(n):

 for j in range(0, n-i-1):

 if a[j] > a[j+1] :

 a[j], a[j+1] = a[j+1], a[j]

print("Enter elements into list:")

a=[int(x) for x in input().split()]

b_sort(a)

print("The sorted list is ",a)

19 | P a g e

Output:

Program for implementing Insertion Sort

def i_sort(a):

 for i in range(1,len(a)):

 temp=a[i]

 pos=i

 while pos>0 and a[pos-1]>temp:

 a[pos]=a[pos-1]

 pos-=1

 a[pos]=temp

print("Enter elements into list:")

a=[int(x) for x in input().split()]

i_sort(a)

print("The sorted list is",a)

20 | P a g e

 Output:

Program for implementing Selection Sort

def s_sort(a):

 for i in range(len(a)):

 least=i

 for k in range(i+1,len(a)):

 if a[k]<a[least]:

 least=k

 swap(a,least,i)

def swap(a,least,i):

 temp=a[least]

 a[least]=a[i]

 a[i]=temp

print("Enter elements into list:")

a=[int(x) for x in input().split()]

s_sort(a)

print("The sorted list is",a)

21 | P a g e

Output:

2.6 PRE LAB VIVA QUESTIONS:

1. Define Sorting?

2. Differentiate between internal sorting and external sorting?

3. Explain the basic idea of Bubble Sort?

4. Explain the concept and application of Insertion Sort?

2.7 LAB ASSIGNMENT:

1. Formulate a program that implement Bubble sort, to sort a given list of integers in descending

order.

2. Compose a program that implement Insertion sort, to sort a given list of integers in descending

order.

3. Write a program that implement Selection sort, to sort a given list of integers in ascending

order.

4. Formulate a program to sort N names using selection sort.

5. Write a program to sort N employee records based on their salary using insertion sort.

6. A class contains 50 students who acquired marks in 10 subjects write a program to display top

10 students roll numbers and marks in sorted order by using bubble sorting technique.

2.8 POST LAB VIVA QUESTIONS:

1. Write the time complexity of Bubble Sort?

2. Write the time complexity of Insertion Sort?

3. Write the other name of Bubble Sort?

4. Write the time complexity of Selection Sort?

5. Write the procedure used to sort the elements using Selection Sort?

22 | P a g e

WEEK- 3

SORTING TECHNIQUES

 3.1 OBJECTIVE:

1. Write Python programs for implementing Quick sort technique to arrange a list of integers in

ascending order.

2. Write Python programs for implementing merge sort technique to arrange a list of integers in

ascending order.

3.2 RESOURCES:

 Python 3.4.0

3.3 PROGRAM LOGIC:

 Algorithm for Quick Sort

 Algorithm QuickSort (p, q)

 // sorts the elements a[p],…….,a[q] which resides in the global array a[1 : n] into ascending order.

 // a[n+1] is considered to be defined and must be >= all the elements in a[1 : n].

 {

 if (p<q) then // if there are more than one element

 {

 //divide p into two sub-problems

 j := partition(a, p, q+1);

 // j is the position of the partitioning element.

 //solve the sub-problems.

 QuickSort (p, j-1);

 QuickSort (j+1, q);

 }

 }

 Algorithm Partition(a, m, p)

 // within a[m], a[m+1], ………, a[p-1] the elements are rearranged in such a manner that if initially

 // t = a[m], then after completion a[q] = t for some q between m and p-1, a[k] <= t for m<=k<=q,

 // and a[k]>=t for q<k<p. q is returned, set a[p] = ∞

 {

 v := a[m]; i:=m; j:=p;

 repeat

 {

 repeat

 i:= i+1;

 until (a[i] >=v);

 repeat

 j:=j-1

 until (a[j]<=v);

 if(i<j) then interchange(a, i, j);

 }until(i>=j);

 a[m]:= a[j]; a[j]=v; return j;

 }

23 | P a g e

 Algorithm Interchange(a, i, j)

 //exchange a[i] and a[j]

 {

 p:=a[i];

 a[i]:=a[j];

 a[j]:=p;

 }

Example: Quick sort is a divide and conquer algorithm. Quick sort first divides a large list into two smaller

sub-lists: the low elements and the high elements. Quick sort can then recursively sort the sub-lists.

The steps are:

1. Pick an element, called a pivot, from the list.

2. Reorder the list so that all elements with values less than the pivot come before the pivot, while all

elements with values greater than the pivot come after it. After this partitioning, the pivot is in its final

position. This is called the partition operation.

3. Recursively apply the above steps to the sub-list of elements with smaller values and separately the sub

list of elements with greater values.

Step-by-step example:

0 1 2 3 4 5 6 7 8 9 10 11 12 Remarks

38 08 16 06 79 57 24 56 02 58 04 70 45

Pivot Up Down Swap up

and down

38 08 16 06 04 57 24 56 02 58 79 70 45

Pivot Up Down Swap up

and down

38 08 16 06 04 02 24 56 57 58 79 70 45

Pivot Down Up Swap Pivot

and down

24 08 16 06 04 02 38 56 57 58 79 70 45

Pivot Down Up Swap Pivot

and down

02 08 16 06 04 24 38

Pivot

Down

Up Swap Pivot

and down

02 08 16 06 04 24 38

 Pivot Up Down Swap up

and down

02 08 04 06 16 24 38

 Pivot Down Up Swap Pivot

and down

02 06 04 08 16 24 38

 Pivot Down Up Swap Pivot

and down

02 04 06 08 16 24 38 Left sub-list

is sorted

Repeat the similar procedure for right sub-list also

24 | P a g e

Algorithm for Merge sort

 Algorithm MergeSort (low, high)

 //a[low : high] is a global array to be sorted.

 //Small(P) id true if there is only one element to sort.

 {

 If(low < high) then // if there are more than one element

 {

 //Divide P into sub-problems

 //Find where to split the set.

 Mid := (low + high) / 2;

 //Solve the sub-problems.

 MergeSort (low, mid);

 MergeSort (mid+1, high);

 //Combine the solutions

 Merge(low, mid, high);

 }

 }

 Algorithm Merge(low, mid, high)

 // a[low: high] is a global array containing two sorted subsets in a[low: mid] and in a[mid+1: high].

 //The goal is to merge these two sets into a single set residing in a[low: high]. b[] is an auxiliary

//global array.

 {

 h:=low; i:=low; j:=mid+1;

 while ((h<=mid) and (j<=high)) do

 {

 if(a[h] <= a[j]) then

 {

 b[i]:=a[h];

 h:=h+1;

 }

 else

 {

 b[i]:=a[j];

 j:=j+1;

 }

 i:=i+1;

 }

 if (h>mid) then

 for k:=j to high do

 {

 b[i]:= a[k]; i:= i+1;

 }

 else

 for k:=h to mid do

 {

 b[i]:= a[k]; i:= i+1;

 }

 for k:= low to high do a[k] = b[k]

 }

25 | P a g e

 Example: This is a divide and conquer algorithm. Merge sort works as follows :

1. Divide the input which we have to sort into two parts in the middle. Call it the left part and right

part.

2. Sort each of them separately by using the same function recursively.

3. Then merge the two sorted parts.

3.4 PROCEDURE:

1. Create: open Python shell write a program after that save the program with .py extension.

2. Execute: F5

3.5 SOURCE CODE:

 Program for implementation of Quick Sort

def q_sort(a,low,high):

 if low<high:

 pivotpos=partition(a,low,high)

 q_sort(a,low,pivotpos-1)

 q_sort(a,pivotpos+1,high)

def partition(a,low,high):

 pivotvalue=a[low]

 up=low+1

26 | P a g e

 down=high

 done=False

 while not done:

 while up<=down and a[up]<=pivotvalue:

 up+=1

 while down>=up and a[down]>=pivotvalue:

 down-=1

 if down<up:

 done=True

 else:

 temp=a[up]

 a[up]=a[down]

 a[down]=temp

 temp=a[low]

 a[low]=a[down]

 a[down]=temp

 return down

print("Enter elements into list:")

a=[int(x) for x in input().split()]

high=len(a)

q_sort(a,0,high-1)

print("The sorted list is",a)

Output:

27 | P a g e

 Program for implementing Merge Sort

def m_sort(a):

 for i in range(len(a)):

 if i>1:

 mid=len(a)//2

 l_half=a[:mid]

 r_half=a[mid:]

 m_sort(l_half)

 m_sort(r_half)

 i=j=k=0

 while i<len(l_half) and j<len(r_half):

 if l_half[i]<r_half[j]:

 a[k]=l_half[i]

 i+=1

 else:

 a[k]=r_half[j]

 j+=1

 k+=1

 while i<len(l_half):

 a[k]=l_half[i]

 i+=1

 k+=1

 while j<len(r_half):

 a[k]=r_half[j]

 j+=1

 k+=1

print("Enter elements into list:")

a=[int(x) for x in input().split()]

m_sort(a)

print("The sorted list is",a)

28 | P a g e

Output:

3.7 PRE-LAB VIVA QUESTIONS:

1. Write the advantage of merge sort ?

2. Write the advantage of quick sort?

3. Differentiate between merging and sorting?

4. How merge sort works?

3.8 LAB ASSIGNMENT:

1. Apply the quick sort on the following elements 21, 11, 5, 78, 49, 54, 72, 88.

2. Apply the merge sort on the following elements 21, 11, 5, 78, 49, 54,72, 88, 56, 28,10.

3.9 POST-LAB VIVA QUESTIONS:

1. Write the time complexity of Merge Sort?

2. Which sorting technique is an in-place sort that requires only O(n log n) operations regardless

of the order of the input?

3. List the application of merge sort?

29 | P a g e

WEEK- 4

IMPLEMENTATION OF STACK AND QUEUE

4.1 OBJECTIVE:

a. Write a Python program to implement Stack and its operations using list.

b. Write a Python program to implement Queue and its operations using list.

4.2 RESOURCES:

 Python 3.4.0

1.3 PROGRAM LOGIC:

Procedure for Stack using List

1. STACK: Stack is a linear data structure which works under the principle of last in first out.

Basic operations: push, pop, display.

2. PUSH: if (top==MAX), display Stack overflow. Otherwise reading the data and making stack

[top] =data and incrementing the top value by doing top++.

3. Pop: if (top==0), display Stack underflow. Otherwise printing the element at the top of the

stack and decrementing the top value by doing the top.

4. DISPLAY: If (top==0), display Stack is empty. Otherwise printing the elements in the stack

from stack [0] to stack [top].

Procedure for Queue using List

1. QUEUE: Queue is a linear data structure which works under the principle of first in first out.

Basic operations: Insertion, deletion, display.

2. Inserion: if (rear==MAX), display Queue is full. Else reading data and inserting at queue [rear],

and doing rear++.

3. Deletion: if (front==rear), display Queue is empty .Else printing element at queue [front] and

doing front++.

4. Display: if (front==rear) ,display No elements in the queue .Else printing the elements from

queue[front] to queue[rear].

Example: Consider a stack with 5 elements capacity. When an element is added to a stack, the

operation is performed by Push().

When an element is taken off from the stack, the operation is performed by Pop().

30 | P a g e

1.4 PROCEDURE:

1. Create: open Python shell write a program after that save the program with .py extension.

2. Execute: F5

4.5 SOURCE CODE:

Program for implementing Stack using list

top=0

mymax=eval(input("Enter Maximum size of stack:"))

def createStack():

 stack=[]

 return stack

def isEmpty(stack):

 return len(stack)==0

def Push(stack,item):

 stack.append(item)

 print("Pushed to stack",item)

def Pop(stack):

 if isEmpty(stack):

 return "stack underflow"

 return stack.pop()

stack=createStack()

while True:

 print("1.Push")

 print("2.Pop")

 print("3.Display")

 print("4.Quit")

 ch=int(input("Enter your choice:"))

 if ch==1:

 if top<mymax:

 item=input("Enter any elements:")

 Push(stack,item)

 top+=1

 else:

31 | P a g e

 print("Stack overflow")

 elif ch==2:

 print(Pop(stack))

 elif ch==3:

 print(stack)

 else:

 print("Exit")

 break

Output:

32 | P a g e

 Program for implementing Linear Queue using list

front=0

rear=0

mymax=eval(input("Enter maximum size of queue:"))

def createQueue():

 queue=[]

 return queue

def isEmpty(queue):

 return len(queue)==0

def enqueue(queue,item):

 queue.append(item)

 print("Enqueued to queue",item)

def dequeue(queue):

 if isEmpty(queue):

 return "Queue is empty"

 item=queue[0]

 del queue[0]

 return item

queue=createQueue()

while True:

 print("1.Enqueue")

 print("2.Dequeue")

 print("3.Display")

 print("4.Quit")

33 | P a g e

 ch=int(input("Enter your choice:"))

 if ch==1:

 if rear<mymax:

 item=input("Enter any elements:")

 enqueue(queue,item)

 rear+=1

 else:

 print("Queue is full")

 elif ch==2:

 print(dequeue(queue))

 elif ch==3:

 print(queue)

 else:

 print("Exit")

 break

Output:

34 | P a g e

4.7 PRE LAB VIVA QUESTIONS:

1. Define a stack?

2. Stack data structure uses which principle?

3. Stack belongs to which type of data structure?

4. What do you mean by stack underflow?

5. What do you mean by stack overflow?

6. List out the basic operations of a stack?

7. How to implement stack?

8. Define a queue?

9. List out the basic operations of a queue?

10. Define a circular queue?

11. Which principle is followed in queue?

12. List out the applications of queue?

4.8 LAB ASSIGNMENT

1. Write a program to implement stack and its operations using arrays.

2. Formulate a program to reverse a list of numbers using stack.

3. Write a program to find the factorial of a number using stack.

4. Develop a program to check a given expression is balanced or not using stack

5. Compose a program to implement Queue operations using arrays.

6. Formulate a program to implement circular queue operations using arrays.

7. Write a program to implement a priority queue?

4.9 POST LAB VIVA QUESTIONS:

1. Write the time complexity of PUSH operation?

2. Write the time complexity of POP operation?

3. List out the applications of stack?

35 | P a g e

4. How to remove an element from stack?

5. How to insert an element into a stack?

6. Write the time complexity to insert an element into a queue?

7. Write the time complexity to delete an element from a queue?

8. List out the advantage of circular queue over linear queue?

9. Define a priority queue?

10. Define DEQUE?

36 | P a g e

WEEK-5

APPLICATIONS OF STACK

5.1 OBJECTIVE:

a. Write a Python program to convert infix expression into postfix expression using stack.

b. Write a Python program to evaluate the postfix expression using stack.

5.2 RESOURCES:

Python 3.4.0

5.3 PROGRAM LOGIC:

Procedure to convert Infix Expression into Postfix Expression

1. Read an infix expression and scan the symbols from left to right.

2. If the symbol is an operand, then write down in the postfix string.

3. If the symbol is a left parenthesis, then push it onto stack.

4. If the symbol is a right parenthesis, then pop the operators from until it find a left parenthesis or

the stack is empty.

5. If the symbol is an operator, then check it's priority with the top most operator in the stack.

6. If the incoming operator is having high priority then the top most operator in the stack, then

push the new operator onto stack, otherwise pop the existing operator and push the new

operator.

7. Display the content of the postfix string.

Example: Convert the following expression A + B * C - D / E * H into its equivalent postfix

expression.

Symbol Postfix String Stack Remarks

A A Place A in the postfix string

+ A + Push + onto stack

B A B + Place B in the postfix string

* A B + * Push * onto stack

C A B C + * Place C in the postfix string

- A B C * + - Pop * and + from stack and push -.

D A B C * + D - Place D in the postfix string

/ A B C * + D - / Push / onto stack

E A B C * + D E - / Place E in the postfix string

* A B C * + D E / - * Push * onto stack

H A B C * + D E / H - * Place H in the postfix string

End of

string

A B C * + D E / H * - The input is now empty, pop the output symbols from

the stack until it is empty.

Procedure to evaluate a Postfix Expression

1. Read a postfix expression and scan the symbols from left to right.

2. If the symbol is an operand, then push it onto the stack.

3. If the symbol is an operator, the pop the top most two symbols and apply the operator.

4. Then push the result again in to stack.

5. Display the final result which is in stack.

37 | P a g e

3.4 PROCEDURE:

1. Create: open Python shell write a program after that save the program with .py extension.

2. Execute: F5

5.5 SOURCE CODE:

Program to convert Infix Expression Into Postfix Expression

class Stack:

 def __init__(self):

 self.items = []

 def isEmpty(self):

 return self.items == []

 def push(self, item):

 self.items.append(item)

 def pop(self):

 return self.items.pop()

38 | P a g e

 def peek(self):

 return self.items[len(self.items)-1]

 def size(self):

 return len(self.items)

def infix_postfix(infixexp):

 prec={}

 prec["^"]=4

 prec["*"]=3

 prec["/"]=3

 prec["+"]=2

 prec["-"]=2

 prec["("]=1

 opStack=Stack()

 postfixList=[]

 tokenList=infixexp.split()

 for token in tokenList:

 if token in "ABCDEFGHIJKLMNOPQRSTUVWXYZ" or \

 token in "abcdefghijklmnopqrstuvwxyz" or token in "0123456789":

 postfixList.append(token)

 elif token == '(':

 opStack.push(token)

 elif token == ')':

 topToken = opStack.pop()

 while topToken != '(':

 postfixList.append(topToken)

 topToken=opStack.pop()

 else:

 while (not opStack.isEmpty()) and \

 (prec[opStack.peek()]>=prec[token]):

 postfixList.append(opStack.pop())

 opStack.push(token)

 while not opStack.isEmpty():

 postfixList.append(opStack.pop())

 return " ".join(postfixList)

a=infix_postfix('A + B * C - D / E * H')

print("The postfix expression of infix expression A + B * C - D / E * H is \n",a)

39 | P a g e

Output:

Program for evaluating the postfix expression

class Stack:

 def __init__(self):

 self.items = []

 def isEmpty(self):

 return self.items == []

 def push(self, item):

 self.items.append(item)

 def pop(self):

 return self.items.pop()

 def peek(self):

 return self.items[len(self.items)-1]

 def size(self):

 return len(self.items)

def postfix_eval(s):

 s=s.split()

 n=len(s)

 stack =[]

 for i in range(n):

 if s[i].isdigit():

 #append function is equivalent to push

 stack.append(int(s[i]))

 elif s[i]=="+":

 a=stack.pop()

 b=stack.pop()

 stack.append(int(a)+int(b))

40 | P a g e

 elif s[i]=="*":

 a=stack.pop()

 b=stack.pop()

 stack.append(int(a)*int(b))

 elif s[i]=="/":

 a=stack.pop()

 b=stack.pop()

 stack.append(int(b)/int(a))

 elif s[i]=="-":

 a=stack.pop()

 b=stack.pop()

 stack.append(int(b)-int(a))

 return stack.pop()

def doMath(op,op1,op2):

 if op == "^":

 return op1 ^ op2

 elif op == "*":

 return op1 * op2

 elif op == "/":

 return op1 / op2

 elif op == "//":

 return op1 // op2

 elif op == "+":

 return op1 + op2

 else:

 return op1 - op2

s=input("enter string:")

val=postfix_eval(s)

print("The value of postfix expression",s,"is",val)

Output:

41 | P a g e

5.7 PRE-LAB VIVA QUESTIONS:

1. What is an expression?

2. Which operator is having highest priority?

3. Give an example for prefix expression?

4. Give an example for postfix expression?

5.8 LAB ASSIGNMENT:

1. Formulate a program to convert infix expression into postfix expression.

2. Write a program to evaluate any postfix expression.

3. Compose a program to convert infix expression into prefix expression.

4. Write a program to convert prefix expression into postfix expression.

5. Write a program to evaluate any prefix expression.

5.9 POST-LAB VIVA QUESTIONS:

1. What is the output of the following expression: 2 3 4 5 + * -

2. What is the advantage of postfix expression?

3. What is the maximum difference between number of operators and operands?

4. Which expression doesn’t require parenthesis?

5. What is the output of the following expression: + * - 2 3 4 5

42 | P a g e

WEEK-6

IMPLEMENTATION OF SINGLE LINKED LIST

6.1 OBJECTIVE:

a. Write Python program to perform the following operations on single linked list.

 (i) Creation (ii) insertion (iii) deletion (iv) traversal

6.2 RESOURCES:

Python 3.4.0

6.3 PROGRAM LOGIC:

Procedure for Single linked list

1. A singly linked list's node is divided into two parts. The first part holds or points to information

about the node, and second part holds the address of next node. A singly linked list travels one

way.

2. The beginning of the linked list is stored in a "start" pointer which points to the first node. The

first node contains a pointer to the second node. The second node contains a pointer to the third

node, ... and so on.

3. The last node in the list has its next field set to NULL to mark the end of the list.

4. The basic operations in a single linked list are: Creation, Insertion, Deletion, Traversing.

6.4 PROCEDURE:

1. Create: open Python GUI, write a program after that save the program with .py extension.

2. Execute: F5

6.5 SOURCE CODE:

class Node:

 def __init__(self,data):

 print("Node created",data)

 self.data=data

 self.next=None

43 | P a g e

class S_L_List:

 def __init__(self):

 self.head=None

 self.ctr=0

 def insert_beginning(self,data):

 node=Node(data)

 if self.head==None:

 self.head=node

 else:

 node.next=self.head

 self.head=node

 self.ctr+=1

 print("Node inserted",data)

 return

 def insert_middle(self,pos,data):

 if pos==0:

 self.insert_beginning(data)

 elif pos==self.ctr+1:

 self.insert_end(data)

 else:

 node=Node(data)

 temp=self.head

 i=0

 while (i<pos-1):

 temp=temp.next

 i+=1

 node.next=temp.next

 temp.next=node

 self.ctr+=1

 print("Node inserted",data)

 return

 def insert_end(self,data):

 node=Node(data)

 node.next=None

 if self.head==None:

 self.head=node

 return

 temp=self.head

 while (temp.next is not None):

 temp=temp.next

 temp.next=node

 self.ctr+=1

 print("Node inserted",data)

 return

 def delete_beginning(self):

 if self.head==None:

 print("No nodes exist")

 elif self.ctr==1:

 print("Node deleted",self.head.data)

 self.head=None

 self.ctr-=1

 else:

44 | P a g e

 print("Node deleted",self.head.data)

 self.head=self.head.next

 self.ctr-=1

 return

 def delete_middle(self,pos):

 if self.head==None:

 print("No nodes exist")

 elif pos==0:

 self.delete_beginning()

 elif pos==self.ctr:

 self.delete_end()

 else:

 temp=self.head

 prev=temp

 i=0

 while (i<pos):

 prev=temp

 temp=temp.next

 i+=1

 prev.next=temp.next

 print("Node deleted",temp.data)

 temp.next=None

 self.ctr-=1

 return

 def delete_end(self):

 if self.ctr==0:

 print("No Nodes present")

 elif self.ctr==1:

 self.ctr=0

 print("Node deleted",self.head.data)

 self.head=None

 else:

 temp=self.head

 prev=self.head

 while (temp.next is not None):

 prev=temp

 temp=temp.next

 print("Node deleted",temp.data)

 prev.data=None

 self.ctr-=1

 return

 def traverse_forward(self):

 if self.head==None:

 print("No nodes exist")

 print("traversal forward")

 temp=self.head

 while (temp is not None):

 print(temp.data)

 temp=temp.next

def menu():

 print("1. Insert at beginning")

45 | P a g e

 print("2. Insert at middle")

 print("3. Insert at end")

 print("4. Delete at beginning")

 print("5. Delete at middle")

 print("6. Delete at end")

 print("7. Traversal forward")

 print("8. Count number of nodes")

 print("9. Exit")

 ch=eval(input("Enter choice:"))

 return ch

print("*******SINGLE LINKED LIST***********")

l=S_L_List()

while True:

 ch=menu()

 if ch==1:

 data=eval(input("Enter data:"))

 l.insert_beginning(data)

 elif ch==2:

 data=eval(input("Enter data:"))

 pos=eval(input("Enter the position:"))

 l.insert_middle(pos,data)

 elif ch==3:

 data=eval(input("Enter data:"))

 l.insert_end(data)

 elif ch==4:

 l.delete_beginning()

 elif ch==5:

 pos=eval(input("Enter position:"))

 l.delete_middle(pos)

 elif ch==6:

 l.delete_end()

 elif ch==7:

 l.traverse_forward()

 elif ch==8:

 print("Number of nodes",l.ctr)

 else:

 print("Exit")

 break

46 | P a g e

6.6 INPUT / OUTPUT:

47 | P a g e

48 | P a g e

6.7 PRE-LAB VIVA QUESTIONS:

1. What is linked list?

2. What type of memory allocation is used in linked list?

3. How many self referential pointers are used in single linked list?

4. What is double linked list?

5. Which node contains NULL pointer in a single linked list?

6. How many nodes you can have in a single linked list?

7. What are the components of a polynomial expression?

6.7 LAB ASSIGNMENT:

1. Formulate a program to create a singly linked list and perform insertion, deletion and traversing

 operations on a singly linked list.

2. Write a program to merge two linked list?

3. Compose a program to print odd nodes of a linked list?

4. Write a program to divide the linked list into two parts into odd and even list?

5. Formulate a program to convert a single linked to circular linked list?

6. Compose a program to store and add two polynomial expressions in memory using linked list.

6.8 POST-LAB VIVAQUESTIONS:

1. What is the time complexity to insert a node at the beginning of linked list?

2. What is the time complexity to traverse a linked list?

3. How many modifications are required to delete a node at the beginning?

4. How many modifications are required to insert a node in the middle of the linked list?

5. What are the types of linked list?

6. What are the applications of a linked list?

49 | P a g e

WEEK-7

IMPLEMENTATION OF CIRCULAR SINGLE LINKED LIST

7.1 OBJECTIVE:

a. Write a python program to implement circular linked list

i)Creation (ii)insertion (iii)deletion (iv)traversal

7.2 RESOURCES:

Python 3.4.0

7.3 PROGRAM LOGIC:

1. In Circular single linked list the link field of the last node points back to the address of the first

node.

2. A circular linked list has no beginning and no end. It is necessary to establish a special pointer

called start pointer always pointing to the first node of the list.

3. The basic operations in a circular single linked list is: creation, insertion, deletion and

traversing.

7.4 PROCEDURE:

1. Create: open Python GUI, write a program after that save the program with .py extension.

2. Execute: F5

7.5 SOURCE CODE:

class Node:

 def __init__(self,data):

 self.next=None

 self.data=data

 print("Node created",data)

class CLList:

 def __init__(self):

 self.head=None

 self.ctr=0

 def insert_beg(self,data):

 node=Node(data)

 if self.head==None:

 self.head=node

 node.next=self.head

50 | P a g e

 else:

 temp=self.head

 while temp.next is not self.head:

 temp=temp.next

 temp.next=node

 node.next=self.head

 self.head=node

 print("Node inserted",data)

 self.ctr+=1

 return

 def insert_end(self,data):

 node=Node(data)

 if self.head==None:

 self.head=node

 node.next=self.head

 else:

 temp=self.head

 while temp.next is not self.head:

 temp=temp.next

 temp.next=node

 node.next=self.head

 self.ctr+=1

 print("Node inserted",data)

 return

 def insert_inter(self,pos,data):

 node=Node(data)

 if pos<1 or pos>self.ctr:

 print("invalid position")

 else:

 temp=self.head

 i=1

 while i<pos:

 temp=temp.next

 i+=1

 node.next=temp.next

 temp.next=node

 self.ctr+=1

 print("Node Insered",data)

 return

 def delete_beg(self):

 if self.head==None:

 print("No Nodes exist")

 elif self.ctr==1:

 print("Node deleted",self.head.data)

 self.head=None

 self.ctr-=1

 else:

 print("Node deleted",self.head.data)

 temp=self.head

 while temp.next is not self.head:

 temp=temp.next

 self.head=self.head.next

51 | P a g e

 temp.next=self.head

 self.ctr-=1

 return

 def delete_end(self):

 if self.head==None:

 print("No Nodes exist")

 elif self.ctr==1:

 print("Node deleted",self.head.data)

 self.head=None

 self.ctr-=1

 else:

 temp=self.head

 prev=temp

 while temp.next is not self.head:

 prev=temp

 temp=temp.next

 print("Node deleted",temp.data)

 prev.next=temp.next

 self.ctr-=1

 return

 def delete_inter(self,pos):

 if self.head==None:

 print("No nodes exist")

 elif pos<1 or pos>self.ctr:

 print("Invalid position")

 elif self.ctr==1:

 print("Node deleted",self.head.data)

 self.head=None

 self.ctr-=1

 else:

 temp=self.head

 prev=temp

 i=0

 while i<pos:

 prev=temp

 temp=temp.next

 i+=1

 prev.next=temp.next

 print("Node deleted",temp.data)

 self.ctr-=1

 return

 def traverse(self):

 temp=self.head

 i=0

 while i<self.ctr:

 print(temp.data)

 temp=temp.next

 i+=1

 return

def Menu():

 print("1.Insert at beginning")

52 | P a g e

 print("2.Insert at middle")

 print("3.Insert at end")

 print("4.Delete at beginning")

 print("5.Delete at middle")

 print("6.Delete at end")

 print("7.Traverse Forward")

 print("8.Number of nodes")

 print("9.Exit")

 ch=int(input("Enter choice:"))

 return ch

c=CLList()

print("****************Circular Linked List**************")

while True:

 ch=Menu()

 if ch==1:

 data=input("Enter data:")

 c.insert_beg(data)

 elif ch==2:

 data=input("Enter data:")

 pos=int(input("Enter position:"))

 c.insert_inter(pos,data)

 elif ch==3:

 data=input("Enter data:")

 c.insert_end(data)

 elif ch==4:

 c.delete_beg()

 elif ch==5:

 pos=int(input("Enter position:"))

 c.delete_inter(pos)

 elif ch==6:

 c.delete_end()

 elif ch==7:

 c.traverse()

 elif ch==8:

 print("Number of Nodes",c.ctr)

 else:

 print("Exit")

 break

53 | P a g e

 Output:

54 | P a g e

55 | P a g e

7.6 PRE-LAB VIVA QUESTIONS:

1 What is circular linked list?

2 What type of memory allocation is used in linked circular list?

3 How many self referential pointers are used in circular single linked list?

4 What is double linked list?

5 Which node contains NULL pointer in a circular single linked list?

6 How many nodes you can have in a circular single linked list?

56 | P a g e

7.7 LAB ASSIGNMENT:

1. Formulate a program to create a circular singly linked list and perform insertion, deletion and

traversing operations on a singly linked list.

2. Write a program to merge two linked list?

3. Compose a program to print odd nodes of a circular linked list?

4. Write a program to divide the circular linked list into two parts into odd and even list?

5. Formulate a program to convert a single linked to circular linked list?

7.8 POST-LAB VIVA QUESTIONS:

1. What is the time complexity to insert a node at the beginning of circular linked list?

2. What is the time complexity to traverse a circular linked list?

3. How many modifications are required to delete a node at the beginning?

4. How many modifications are required to insert a node in the middle of the circular linked list?

5. What are the types of linked list?

6. What are the applications of a circular linked list?

57 | P a g e

WEEK-8

IMPLEMENTATION OF DOUBLE LINKED LIST

8.1 OBJECTIVE:

a. Create a doubly linked list of integers.

b. Delete a given integer from the above doubly linked list.

c. Display the contents of the above list after deletion

8.2 RESOURCES:

 Python 3.4.0

8.3 PROGRAM LOGIC:

1. In a doubly-linked list each node of the list contain two references (or links) – one to the

previous node and other to the next node. The previous link of the first node and the next link

of the last node points to NULL.

2. A double linked list is a two-way list in which all nodes will have two links. This helps in

accessing both successor node and predecessor node from the given node position. It provides

bi-directional traversing.

3. Each node contains three fields: Left link, Data and Right link.

4. The left link points to the predecessor node and the right link points to the successor node. The

data field stores the required data.

5. The basic operations in a double linked list are: creation, insertion, deletion and traversing.

6. The beginning of the double linked list is stored in a "start" pointer which points to the first

node. The first node’s left link and last node’s right link is set to NULL.

8.4 PROCEDURE:

1. Create: open Python GUI,write a program after that save the program with .py extension.

2. Execute: F5

8.5 SOURCE CODE:

class Node:

 def __init__(self,data):

 self.data=data

 self.next=self.prev=None

58 | P a g e

class DLinkedList:

 def __init__(self):

 self.head=None

 self.ctr=0

 def insert_beg(self,data):

 node=Node(data)

 if self.head==None:

 self.head=node

 else:

 node.next=self.head

 self.head.prev=node

 self.head=node

 self.ctr +=1

 print("Nodes inserted",data)

 return

 def insert_end(self,data):

 node=Node(data)

 if self.head==None:

 self.head=node

 else:

 temp=self.head

 while(temp.next is not None):

 temp=temp.next

 temp.next=node

 node.prev=temp

 self.ctr +=1

 print("Node inserted",data)

 return

 def delete_beg(self):

 if self.head==None:

 print("No node exist")

 else:

 print("Node deleted",self.head.data)

 self.head=self.head.next

 self.head.prev=None

 self.ctr -=1

 return

 def delete_end(self):

 if self.head==None:

 print("No nodes exist")

 elif self.ctr==1:

 self.ctr=0

 print ("Node deleted",self.head.data)

 self.head=None

 else:

 temp=self.head

 while temp.next is not None:

 temp=temp.next

 print("Node deleted",temp.data)

 temp=temp.prev

 temp.next=None

 self.ctr -=1

59 | P a g e

 return

 def insert_pos(self,pos,data):

 if pos==0:

 self.insert_beg(data)

 elif pos==self.ctr:

 self.insert_end(data)

 else:

 node=Node(data)

 temp=self.head

 i=1

 while i<pos-1:

 temp=temp.next

 i +=1

 node.next=temp.next

 temp.next.prev=node

 temp.next=node

 node.prev=temp

 self.ctr +=1

 print("Node inserted",data)

 return

 def delete_pos(self,pos):

 if self.head==None:

 print("Node is empty")

 else:

 if pos==0:

 self.delete_beg()

 elif pos==self.ctr:

 self.delete_end()

 else:

 temp=self.head

 i=0

 while i<pos:

 temp=temp.next

 i+=1

 print("node deleted",temp.data)

 temp.prev.next=temp.next

 temp.next.prev=temp.prev

 temp.next=None

 temp.preve=None

 self.ctr -=1

 return

 def traverse_f(self):

 if self.head==None:

 print("No nodes exist")

 temp=self.head

 i=0

 while i<self.ctr:

 print(temp.data)

 temp=temp.next

 i+=1

 return

 def traverse_r(self):

60 | P a g e

 if self.head==None:

 print("No nodes exist")

 temp=self.head

 while temp.next is not None:

 temp=temp.next

 while temp is not None:

 print(temp.data)

 temp=temp.prev

def menu():

 print("1.Insert at beginning")

 print("2.Insert at position")

 print("3.Insert at end")

 print("4.Delete at beginning")

 print("5.Delete at position")

 print("6.Delete at end")

 print("7.Count no of nodes")

 print("8.Traverse forward")

 print("9.Traverse reverse")

 print("10.Quit")

 ch=eval(input("Enter choice:"))

 return ch

print("******************Double linked list**************")

d=DLinkedList()

while True :

 ch=menu()

 if ch==1:

 data=eval(input("Enter data:"))

 d.insert_beg(data)

 elif ch==2:

 data=eval(input("Enter data:"))

 pos=int(input("Enter position:"))

 d.insert_pos(pos,data)

 elif ch==3:

 data=eval(input("Enter data:"))

 d.insert_end(data)

 elif ch==4:

 d.delete_beg()

 elif ch==5:

 pos=int(input("Enter position:"))

 d.delete_pos(pos)

 elif ch==6:

 d.delete_end()

 elif ch==7:

 print("Number of nodes",d.ctr)

 elif ch==8:

 d.traverse_f()

 elif ch==9:

 d.traverse_r()

 else:

 print("Exit")

 break

61 | P a g e

Output:

62 | P a g e

63 | P a g e

64 | P a g e

8.6 PRE-LAB VIVA QUESTIONS:

1. What is double linked list

2. How to represent a node in double linked list

3. Differentiate between single and double linked list

8.7 LAB ASSIGNMENT:

1. Write a program to insert a node at first , last and at specified position of double linked list?

2. Write a program to eliminate duplicates from double linked list?

3. Write a program to delete a node from first, last and at specified position of double linked list?

8.8 POST-LAB VIVA QUESTIONS:

1. How to represent double linked list?

2. How will you traverse double linked list?

3. List the advantages of double linked list over single list?

65 | P a g e

WEEK-9

IMPLEMENTATION OF STACK USING LINKED LIST

9.1 OBJECTIVE:

 Write a Python script to implement stack using linked list.

9.2 RESOURCES:

 Python 3.4.0

9.3 PROGRAM LOGIC:

1. STACK: Stack is a linear data structure which works under the principle of last in first out.

Basic operations: push, pop, display.

2. PUSH: if (newnode==NULL), display Stack overflow. if(start == NULL) then start = newnode.

Otherwise use loop and copy address of new node in to old node by creating link.

3. Pop: if (top == NULL), display Stack underflow. Otherwise printing the element at the top of

the stack and decrementing the top value by doing the top.

4. DISPLAY: if (top == NULL), display Stack is empty. Otherwise printing the elements in the

stack from top.

9.4 PROCEDURE:

1. Create: open Python GUI write a program after that save the program with .py extension.

2. Execute: F5

9.5 SOURCE CODE:

class Node:

 def __init__(self,data):

 self.data=data

 self.next=None

class Stack:

 def __init__(self):

 self.head=None

 self.ctr=0

66 | P a g e

 self.top=None

 def Push(self,data):

 node=Node(data)

 if self.head==None:

 self.head=node

 self.top=node

 else:

 self.top.next=node

 self.top=node

 print("Node pushed to stack",data)

 self.ctr+=1

 return

 def Pop(self):

 if self.head==None:

 print("Stack Underflow")

 elif self.head==self.top:

 print("Deleted from Stack",self.head.data)

 self.head=self.top=None

 self.ctr-=1

 else:

 print("Deleted from Stack",self.top.data)

 temp=self.head

 while temp.next is not self.top:

 temp=temp.next

 temp.next=None

 self.top=temp

 self.ctr-=1

 return

 def Traverse(self):

 if self.head==None:

 print("No Nodes exist")

 return

 temp=self.head

 while temp is not None:

 print(temp.data)

 temp=temp.next

def Menu():

 print("1.Push\n2.Pop\n3.Traverse\n4.Number of nodes\n5.Exit")

 ch=int(input("Enter choice:"))

 return ch

s=Stack()

print("**************Stack*****************")

while True:

67 | P a g e

 ch=Menu()

 if ch==1:

 data=input("Enter data:")

 s.Push(data)

 elif ch==2:

 s.Pop()

 elif ch==3:

 s.Traverse()

 elif ch==4:

 print("Number of nodes",s.ctr)

 else:

 print('Quit')

 break

Output:

68 | P a g e

9.7 PRE-LAB VIVA QUESTIONS:

1. What do you mean by stack overflow?

2. What are the basic operations of a stack?

3. How to implement stack?

9.8 LAB ASSIGNMENT:

1. Formulate a program to reverse a list of numbers using stack.

2. Write a program to find the factorial of a number using stack.

3. Develop a program to check a given expression is balanced or not using stack

69 | P a g e

9.9 POST-LAB VIVA QUESTIONS:

1. How to remove an element from stack?

2. How to insert an element using a stack?

3. Is it possible to store any number of data elements in stack?

4. What are the demerits of stack?

70 | P a g e

WEEK-10

IMPLEMENTATION OF QUEUE USING LINKED LIST

10.1 OBJECTIVE:

a. Write a Python program to implement queue using linked list

10.2 RESOURCES:

Python 3.4.0

10.3 PROGRAM LOGIC:

1. QUEUE: Queue is a linear data structure which works under the principle of first in first out.

Basic operations: Insertion, deletion, display.

2. Inserion: if newnode ==NULL, display Queue is full. Else reading data and inserting at queue

rear.

3. Deletion: if (front==NULL), display Queue is empty .Else printing element at queue front

4. Display: if (front==NULL) ,display No elements in the queue .Else printing the elements from

front to rear.

10.4 PROCEDURE:

1. Create: open Python GUI write a program after that save the program with .py extension.

2. Execute: F5

10.5 SOURCE CODE:

class Node:

 def __init__(self,data):

 self.data=data

 self.next=None

class Queue:

 def __init__(self):

 self.front=None

 self.ctr=0

 self.rear=None

 def Enqueue(self,data):

 node=Node(data)

 if self.front==None:

 self.front=node

 self.rear=node

 else:

 self.rear.next=node

 self.rear=node

71 | P a g e

 print("Node enqueued to queue",data)

 self.ctr+=1

 return

 def Dequeue(self):

 if self.front==None:

 print("No Nodes exist")

 else:

 print("Dequeued from queue",self.front.data)

 self.front=self.front.next

 self.ctr-=1

 return

 def Traverse(self):

 if self.front==None:

 print("No Nodes exist")

 return

 temp=self.front

 while temp is not None:

 print(temp.data)

 temp=temp.next

def Menu():

 print("1.Enqueue\n2.Dequeue\n3.Traverse\n4.Number of nodes\n5.Exit")

 ch=int(input("Enter choice:"))

 return ch

print("*******************Queue*************")

s=Queue()

while True:

 ch=Menu()

 if ch==1:

 data=input("Enter data:")

 s.Enqueue(data)

 elif ch==2:

 s.Dequeue()

 elif ch==3:

 s.Traverse()

 elif ch==4:

 print("Number of nodes",s.ctr)

 else:

 print('Quit')

 break

72 | P a g e

10.6 INPUT/OUTPUT:-

73 | P a g e

10.7 PRE-LAB VIVA QUESTIONS:

1. Which principle is followed in queue?

2. What are the applications of queue?

10.8 LAB ASSIGNMENT:

1. Write a program to implement Queue operations using linked list.

2. Formulate a program to implement circular queue operations using arrays.

3. Write a program to implement a priority queue?

10.9 POST-LAB VIVA QUESTIONS:

1. What is the advantage of circular queue over linear queue?

2. Where priority queues are used?

3. What is DEQUE?

74 | P a g e

 WEEK-11

GRAPH TRAVERSAL TECHNIQUES

11.1 OBJECTIVE:

a. To write a Python program to implement depth first search.

b. To write a Python program to implement breadth first search.

11.2 RESOURCES:

 Python GUI

11.3 PROGRAM LOGIC:

1. Take the graph as input and find the adjacency list

2. Start at a random vertex and visit all nodes using depth first search (DFS) and then breadth first

search (BFS).

3. Use stack for DFS and queue for BFS.

11.4 PROCEDURE:

1. Create: open Python shell write a program after that save the program with .py extension.

2. Execute: F5

11.5 SOURCE CODE:

Depth First Search Program

import defaultdict

class Graph:

 # Constructor

 def __init__(self):

 self.graph = defaultdict(list)

 def addEdge(self,u,v):

 self.graph[u].append(v)

 def DFSUtil(self,v,visited):

 visited[v]= True

 print (v),

 for i in self.graph[v]:

 if visited[i] == False:

 self.DFSUtil(i, visited)

 def DFS(self,v):

 visited = [False]*(len(self.graph))

 self.DFSUtil(v,visited)

75 | P a g e

g = Graph()

g.addEdge(0, 1)

g.addEdge(0, 2)

g.addEdge(1, 2)

g.addEdge(2, 0)

g.addEdge(2, 3)

g.addEdge(3, 3)

print ("Following is DFS from (starting from vertex 2)")

g.DFS(2)

Breadth First Search Program

import defaultdict

class Graph:

 def __init__(self):

 self.graph = defaultdict(list)

 def addEdge(self,u,v):

 self.graph[u].append(v)

 def BFS(self, s):

 visited = [False]*(len(self.graph))

 queue = []

 queue.append(s)

 visited[s] = True

 while queue:

 s = queue.pop(0)

 print (s)

 for i in self.graph[s]:

 if visited[i] == False:

 queue.append(i)

 visited[i] = True

g = Graph()

g.addEdge(0, 1)

g.addEdge(0, 2)

g.addEdge(1, 2)

g.addEdge(2, 0)

g.addEdge(2, 3)

g.addEdge(3, 3)

76 | P a g e

print ("Following is Breadth First Traversal (starting from vertex 2)")

g.BFS(2)

11.7 PRE-LAB VIVA QUESTIONS:

1. What is graph?

2. List various way of representations of graph?

3. How many graph traversal algorithms are there?

11.8 LAB ASSIGNMENT:

1. Find DFS traversal of the following graph

2. Deduce the time complexity of DFS algorithm

11.9 POST-LAB VIVA QUESTIONS:

1. Applications of graph traversals?

2. Define minimum spanning tree?

3. What is the time complexity of DFS?

77 | P a g e

WEEK-12

IMPLEMENTATION OF BINARY SEARCH TREE

12.1 OBJECTIVE:

 To write a Python program to implement binary search tree creation, traversal and count node.

12.2 RESOURCES:

Python 3.4.0

12.3 PROGRAM LOGIC:

1. The left sub tree of a node contains smaller nodes than a root node.

2. The right sub tree of a node contains greater nodes than a root node.

3. Both the left and right sub trees must also be binary search trees.

4. There are three types of tree traversals: Preorder, Postorder, and Inorder.

Pre-order traversal

Algorithm:
1. Visit the root (we will print it when we visit to show the order of visiting)

2. Traverse the left subtree in pre-order

3. Traverse the right subtree in pre-order

In-order traversal
Visit the root node in between the left and right node (in)

Algorithm:
1. Traverse the left subtree in in-order

2. Visit the root (we will print it when we visit to show the order of visiting)

3. Traverse the right subtree in in-order

Post-order traversal
Visit the root node after (post) visiting the left and right subtree.

Algorithm:
1. Traverse the left subtree in in-order

2. Traverse the right subtree in in-order

3. Visit the root (we will print it when we visit to show the order of visiting)

Maximum depth or Height of a tree

Algorithm:
 maxDepth()

1. If tree is empty then return 0

2. Else

 (a) Get the max depth of left subtree recursively i.e.,

 call maxDepth(tree->left-subtree)

 (a) Get the max depth of right subtree recursively i.e.,

 call maxDepth(tree->right-subtree)

 (c) Get the max of max depths of left and right

78 | P a g e

 subtrees and add 1 to it for the current node.

 max_depth = max(max dept of left subtree,

 max depth of right subtree)

 + 1

 (d) Return max_depth

Count number of leaf nodes in a binary tree

A node is a leaf node if both left and right child nodes of it are NULL.

Algorithm

getLeafCount(node)

1) If node is NULL then return 0.

2) Else If left and right child nodes are NULL return 1.

3) Else recursively calculate leaf count of the tree using below formula.

 Leaf count of a tree=Leaf count of left sub tree + leaf count of right sub tree

12.4 PROCEDURE:

1. Create: open python shell write a program after that save the program with .py extension.

2. Execute: F5

12.5 SOURCE CODE:

class Node:

 def __init__(self,info): #constructor of class

 self.info = info #information for node

 self.left = None #left leef

 self.right = None #right leef

 self.level = None #level none defined

 def __str__(self):

 return str(self.info) #return as string

class searchtree:

 def __init__(self): #constructor of class

 self.root = None

 def create(self,val): #create binary search tree nodes

 if self.root == None:

 self.root = Node(val)

 else:

 current = self.root

 while 1:

 if val < current.info:

 if current.left:

 current = current.left

 else:

 current.left = Node(val)

 break;

 elif val > current.info:

 if current.right:

 current = current.right

 else:

79 | P a g e

 current.right = Node(val)

 break;

 else:

 break

 def bft(self): #Breadth-First Traversal

 self.root.level = 0

 queue = [self.root]

 out = []

 current_level = self.root.level

 while len(queue) > 0:

 current_node = queue.pop(0)

 if current_node.level > current_level:

 current_level += 1

 out.append("\n")

 out.append(str(current_node.info) + " ")

 if current_node.left:

 current_node.left.level = current_level + 1

 queue.append(current_node.left)

 if current_node.right:

 current_node.right.level = current_level + 1

 queue.append(current_node.right)

 result= "".join(out)

 print (result)

 def inorder(self,node):

 if node is not None:

 self.inorder(node.left)

 print (node.info)

 self.inorder(node.right)

 def preorder(self,node):

 if node is not None:

 print (node.info)

 self.preorder(node.left)

 self.preorder(node.right)

 def postorder(self,node):

 if node is not None:

 self.postorder(node.left)

 self.postorder(node.right)

 print (node.info)

tree = searchtree()

arr = [8,3,1,6,4,7,10,14,13]

for i in arr:

 tree.create(i)

print ('Breadth-First Traversal')

tree.bft()

print ('Inorder Traversal')

tree.inorder(tree.root)

print ('Preorder Traversal')

tree.preorder(tree.root)

print ('Postorder Traversal')

tree.postorder(tree.root)

80 | P a g e

Output:

Breadth-First Traversal

8

3 10

1 6 14

4 7 13

Inorder Traversal

1

3

4

6

7

8

10

13

14

Preorder Traversal

8

3

1

6

4

7

10

14

13

Postorder Traversal

1

4

7

6

3

13

14

10

8

Count the number of nodes in the binary search tree.

class BinaryTree:

 def __init__(self, data):

 self.data = data

 self.left = None

 self.right = None

 def insert_left(self, new_data):

 if self.left == None:

 self.left = BinaryTree(new_data)

 else:

 t = BinaryTree(new_data)

 t.left = self.left

81 | P a g e

 self.left = t

 def insert_right(self, new_data):

 if self.right == None:

 self.right = BinaryTree(new_data)

 else:

 t = BinaryTree(new_data)

 t.right = self.right

 self.right = t

 def get_left(self):

 return self.left

 def get_right(self):

 return self.right

 def set_data(self, data):

 self.data = data

 def get_data(self):

 return self.data

def size(my_tree):

 if not my_tree:

 return 0

 return 1 + size(my_tree.get_left()) + size(my_tree.get_right())

a = BinaryTree(1)

a.insert_left(2)

a.insert_right(3)

print(size(a))

Output:

No of nodes: 3

12.7 PRE-LAB VIVA QUESTIONS:

1. Define tree traversal and mention types of traversal?

2. Define a tree?

3. Define height of a tree?

4. Define depth of a tree?

5. Define degree of a node?

6. Define Degree of a tree?

7. Define Terminal node or leaf node?

8. Define Non-terminal node?

9. Define Sibling?

10. Define Binary Tree?

11. Write the properties of Binary Tree?

12. Find the minimum and maximum height of a binary tree?

12.8 LAB ASSIGNMENT:

1. Formulate a program to create a Binary Tree of integers?

2. Write a recursive program, for traversing a binary tree in preorder, inorder and postorder?

3. Compose a non-recursive program, for traversing a binary tree in preorder, inorder and

postorder?

4. Write a program to check balance property of a tree?

82 | P a g e

12.9 POST-LAB VIVA QUESTIONS:

1. Write the balance factor of a Binary Tree?

2. What are the data structures used for Binary Trees?

3. Define a Complete Binary Tree?

4. List out the applications of Binary Tree?

5. Write the two approaches for Binary Tree Traversal?

6. Write the various operation performed in the binary search tree?

7. Write the three approaches for inserting data into general trees?

8. Define pre-order traversal.

9. Define post-order traversal.

10. Define in-order traversal.

