
DATAWAREHOUSING AND DATAMINING LABORATORY

LAB MANUAL

Academic Year : 2019 - 2020

Course Code : AIT102

Regulations : IARE - R16

Semester : VI

Branch : CSE AND IT

Prepared by

Dr. M Madhubala, Professor

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

Dundigal, Hyderabad - 500 043

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal - 500 043, Hyderabad.

INFORMATION TECHNOLOGY

1. PROGRAM OUTCOMES:

B.TECH - PROGRAM OUTCOMES (POS)

PO-1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO-2 Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO-3 Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO-4 Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

PO-5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

PO-6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

PO-7 Environment and sustainability: Understand the impact of the professional engineering

solution sin societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO-8 Apply ethical principles and commit to professional ethics and responsibilities and norms of the

engineering practice (Ethics).

PO-9 Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

PO-10 Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO-11 Project management and finance :Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one‟s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO-12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

2. PROGRAM SPECIFIC OUTCOMES:

PROGRAM SPECIFIC OUTCOMES (PSO's)

PSO-1 Professional Skills: The ability to understand, analyze and develop computer programs in the

areas related to algorithms, system software, multimedia, web design, big data analytics, and

networking for efficient design of computer-based systems of varying complexity.

PSO-2 Problem-Solving Skills: The ability to apply standard practices and strategies in software project

development using open-ended programming environments to deliver a quality product for

business success.

PSO-3 Successful Career and Entrepreneurship: The ability to employ modern computer languages,

environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest

for higher studies.

3. ATTAINMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Week No Experiment Program Outcomes Attained
Program Specific

Outcomes Attained

WEEK-1 Matrix Operations PO 1; PSO 1 PSO2

WEEK-2 Linear Algebra on Matrices PO1; PO 2 PSO 1; PSO 2

WEEK-3 Understanding Data PO 1; PO 2 PSO 1; PSO 2

WEEK-4 Correlation Matrix PO 1; PO 2 PSO 1; PSO 2

WEEK-5
Data Preprocessing – Handling

Missing Values

PO 1; PO 2 PSO 1; PSO 2

WEEK-6
Association Rule Mining-

Apriori

PO 1; PO 2; PO 3; PO 4; PO 5 PSO 1; PSO 2; PSO 3

WEEK-7
Classification – Logistic

Regression

PO 1; PO 2; PO 3; PO 4; PO 5 PSO 2; PSO 3

WEEK-8 Classification - Knn PO 1; PO 2; PO 3; PO 4; PO 5 PSO 2; PSO 3

WEEK-9 Classification - Decision Trees PO1; PO 2; PO 3; PO 4; PO 5 PSO 1; PSO 2; PSO 3

WEEK-10
Classification – Bayesian

Network

PO 1; PO 2; PO 3; PO 4; PO 5 PSO 2; PSO 3

WEEK-11
Classification – Support Vector

Machines (Svm)

PO 1; PO 2; PO 3; PO 4; PO 5 PSO 1; PSO 2; PSO 3

WEEK-12
Classification – Bayesian

Network

PO 1; PO 2; PO 3; PO 4; PO 5 PSO 1; PSO 2; PSO 3

4. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF

PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

5. SYLLABUS:

VI Semester: IT | CSE

Course Code Category Hours / Week Credits Maximum Marks

AIT102 Core
L T P C CIA SEE Total

- - 3 2 30 70 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

LIST OF EXPERIMENTS

WEEK-1 MATRIX OPERATIONS

Introduction to Python libraries for Data Mining : NumPy, SciPy, Pandas, Matplotlib, Scikit-Learn

Write a Python program to do the following operations:

Library: NumPy

a) Create multi-dimensional arrays and find its shape and dimension

b) Create a matrix full of zeros and ones

c) Reshape and flatten data in the array

d) Append data vertically and horizontally

e) Apply indexing and slicing on array

Course

Objectives

Program Outcomes
Program Specific

Outcomes

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

I √ √ √ √ √ √ √

II √ √ √ √ √

III √ √ √ √ √ √ √ √

IV √ √ √ √ √ √ √ √

V √ √ √ √ √ √ √ √

f) Use statistical functions on array - Min, Max, Mean, Median and Standard Deviation

WEEK-2 LINEAR ALGEBRA ON MATRICES

Write a Python program to do the following operations:

Library: NumPy

a) Dot and matrix product of two arrays

b) Compute the Eigen values of a matrix

c) Solve a linear matrix equation such as 3 * x
0
 + x

1
 = 9, x

0
 + 2 * x

1
 = 8

d) Compute the multiplicative inverse of a matrix

e) Compute the rank of a matrix

f) Compute the determinant of an array

WEEK-3 UNDERSTANDING DATA

Write a Python program to do the following operations:

Data set: brain_size.csv

Library: Pandas

a) Loading data from CSV file

b) Compute the basic statistics of given data - shape, no. of columns, mean

c) Splitting a data frame on values of categorical variables

d) Visualize data using Scatter plot

WEEK-4 CORRELATION MATRIX

Write a python program to load the dataset and understand the input data

Dataset : Pima Indians Diabetes Dataset

Library : Scipy

a) Load data, describe the given data and identify missing, outlier data items

b) Find correlation among all attributes

c) Visualize correlation matrix

WEEK -5 DATA PREPROCESSING – HANDLING MISSING VALUES

Write a python program to impute missing values with various techniques on given dataset.

a) Remove rows/ attributes

b) Replace with mean or mode

c) Write a python program to perform transformation of data using Discretization (Binning) and

normalization (MinMaxScaler or MaxAbsScaler) on given dataset.

WEEK -6 ASSOCIATION RULE MINING- APRIORI

Write a python program to find rules that describe associations by using Apriori algorithm between

different products given as 7500 transactions at a French retail store.

Libraries: NumPy, SciPy, Matplotlib, Pandas

Dataset: https://drive.google.com/file/d/1y5DYn0dGoSbC22xowBq2d4po6h1JxcTQ/view?usp=sharing

a) Display top 5 rows of data

b) Find the rules with min_confidence : .2, min_support= 0.0045, min_lift=3, min_length=2

WEEK -7 CLASSIFICATION – LOGISTIC REGRESSION

Classification of Bank Marketing Data

The data is related with direct marketing campaigns of a Portuguese banking institution. The marketing

campaigns were based on phone calls. Often, more than one contact to the same client was required, in

order to access if the product (bank term deposit) would be ('yes') or not ('no') subscribed. The dataset

provides the bank customers‟ information. It includes 41,188 records and 21 fields. The classification

goal is to predict whether the client will subscribe (1/0) to a term deposit (variable y).

Libraries: Pandas, NumPy, Sklearn, Seaborn

Write a python program to

a) Explore data and visualize each attribute

b) Predict the test set results and find the accuracy of the model

c) Visualize the confusion matrix

d) Compute precision, recall, F-measure and support

WEEK-8 CLASSIFICATION - KNN

Dataset: The data set consists of 50 samples from each of three species of Iris: Iris setosa, Iris virginica

and Iris versicolor. Four features were measured from each sample: the length and the width of the sepals

and petals, in centimetres.

Libraries: import numpy as np

Write a python program to

a) Calculate Euclidean Distance. b) Get Nearest Neighbors c) Make Predictions.

WEEK-9 CLASSIFICATION - DECISION TREES

Write a python program

a) to build a decision tree classifier to determine the kind of flower by using given dimensions.

b) training with various split measures(Gini index, Entropy and Information Gain)

c)Compare the accuracy

WEEK -10 CLUSTERING – K-MEANS

Predicting the titanic survive groups:

The sinking of the RMS Titanic is one of the most infamous shipwrecks in history. On April 15, 1912,

during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224

passengers and crew. This sensational tragedy shocked the international community and led to better

safety regulations for ships. One of the reasons that the shipwreck led to such loss of life was that there

were not enough lifeboats for the passengers and crew. Although there was some element of luck

involved in surviving the sinking, some groups of people were more likely to survive than others, such as

women, children, and the upper-class.

Libraries: Pandas, NumPy, Sklearn, Seaborn, Matplotlib

Write a python program

a) to perform preprocessing

b) to perform clustering using k-means algorithm to cluster the records into two i.e. the ones who

survived and the ones who did not.

WEEK -11 CLASSIFICATION – BAYESIAN NETWORK

Predicting Loan Defaulters :

A bank is concerned about the potential for loans not to be repaid. If previous loan default data can be

used to predict which potential customers are liable to have problems repaying loans, these "bad risk"

customers can either be declined a loan or offered alternative products.

Dataset: The stream named bayes_bankloan.str, which references the data file named bankloan.sav.

These files are available from the Demos directory of any IBM® SPSS® Modeler installation and can be

accessed from the IBM SPSS Modeler program group on the Windows Start menu. The

bayes_bankloan.str file is in the streams directory.

a) Build Bayesian network model using existing loan default data

b) Visualize Tree Augmented Naïve Bayes model

a) Predict potential future defaulters, and looks at three different Bayesian network model types (TAN,

Markov, Markov-FS) to establish the better predicting model.

WEEK-12 CLASSIFICATION – SUPPORT VECTOR MACHINES (SVM)

A wide dataset is one with a large number of predictors, such as might be encountered in the field of

bioinformatics (the application of information technology to biochemical and biological data). A medical

researcher has obtained a dataset containing characteristics of a number of human cell samples extracted

from patients who were believed to be at risk of developing cancer. Analysis of the original data showed

that many of the characteristics differed significantly between benign and malignant samples.

Dataset: The stream named svm_cancer.str, available in the Demos folder under the streams subfolder.

The data file is cell_samples.data. The dataset consists of several hundred human cell sample records,

each of which contains the values of a set of cell characteristics.

a) Develop an SVM model that can use the values of these cell characteristics in samples from other

patients to give an early indication of whether their samples might be benign or malignant.

Hint: Refer UCI Machine Learning Repository for data set.

References:

1. https://www.dataquest.io/blog/sci-kit-learn-tutorial/

2. https://www.ibm.com/support/knowledgecenter/en/SS3RA7_sub/modeler_tutorial_ddita/modeler_tuto

rial_ddita-gentopic1.html

3. https://archive.ics.uci.edu/ml/datasets.php

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 24 STUDENTS:

HARDWARE: Intel Desktop Systems: 24 Nos

SOFTWARE: Application Software: Python, IBM SPSS Modeler - CLEMENTINE

6. INDEX

S. No List of Experiments Page No

1 WEEK-1:MATRIX OPERATIONS

2 WEEK-2 : LINEAR ALGEBRA ON MATRICES

3 WEEK-3 :UNDERSTANDING DATA

4 WEEK-4 :CORRELATION MATRIX

5 WEEK-5 :DATA PREPROCESSING – HANDLING MISSING

VALUES

6 WEEK-6 :ASSOCIATION RULE MINING - APRIORI

7 WEEK-7 :CLASSIFICATION – LOGISTIC REGRESSION

8 WEEK-8 :CLASSIFICATION - KNN

9 WEEK-9 :CLASSIFICATION - DECISION TREES

10 WEEK-10 :CLASSIFICATION – BAYESIAN NETWORK

11 WEEK-11:CLASSIFICATION – SUPPORT VECTOR MACHINES

(SVM)

12 WEEK-12 :CLASSIFICATION – BAYESIAN NETWORK

WEEK-1

MATRIC OPERATIONS

OBJECTIVE:

Introduction to Python libraries for Data Mining :NumPy, SciPy, Pandas, Matplotlib, Scikit-Learn

Write a Python program to do the following operations:

Library: NumPy

a) Create multi-dimensional arrays and find its shape and dimension

b) Create a matrix full of zeros and ones

c) Reshape and flatten data in the array

d) Append data vertically and horizontally

e) Apply indexing and slicing on array

f) Use statistical functions on array - Min, Max, Mean, Median and Standard Deviation

RESOURCES:

Python 3.7.0

Install : pip installer, NumPy library

PROCEDURE:

1. Create: Open a new file in Python shell, write a program and save the program with .py extension.

2. Execute: Go to Run -> Run module (F5)

PROGRAM LOGIC:

a) Create multi-dimensional arrays and find its shape and dimension

Import numpy as np

#creation of multi-dimensional array

a=np.array([[1,2,3],[2,3,4],[3,4,5]])

#shape

b=a.shape

print("shape:",a.shape)

#dimension

c=a.ndim

print("dimensions:",a.ndim)

b) Create a matrix full of zeros and ones

#matrix full of zeros

z=np.zeros((2,2))

print("zeros:",z)

#matrix full of ones

o=np.ones((2,2))

print("ones:",o)

c) Reshape and flatten data in the array

#matrix reshape

a=np.array([[1,2,3,4],[2,3,4,5],[3,4,5,6],[4,5,6,7]])

b=a.reshape(4,2,2)

print("reshape:",b)

#matrix flatten

c=a.flatten()

print("flatten:",c)

d) Append data vertically and horizontally

#Appending data vertically

x=np.array([[10,20],[80,90]])

y=np.array([[30,40],[60,70]])

v=np.vstack((x,y))

print("vertically:",v)

#Appending data horizontally

h=np.hstack((x,y))

print("horizontally:",h)

e) Apply indexing and slicing on array

#indexing

a=np.array([[1,2,3,4],[2,3,4,5],[3,4,5,6],[4,5,6,7]])

temp = a[[0, 1, 2, 3], [1, 1, 1, 1]]

print(“indexing”,temp)

#slicing

i=a[:4,::2]

print(“slicing”,i)

f) Use statistical functions on array - Min, Max, Mean, Median and Standard Deviation

#min for finding minimum of an array

a=np.array([[1,3,-1,4],[3,-2,1,4]])

b=a.min()

print(“minimum:”,b)

#max for finding maximum of an array

C=a.max()

Print(“maximum”,c)

#mean

a=np.array([1,2,3,4,5])

d=a.mean()

print(“mean:”,d)

#median

e=np.median(a)

print(“median:”,e)

#standard deviation

f=a.std()

print(“standard deviation”,f)

INPUT/OUTPUT:

a) shape: (3, 3)

 dimensions: 2

 zeros:

 [[0. 0.]

 [0. 0.]]

 ones:

 [[1. 1.]

 [1. 1.]]

b) reshape:

 [[[1 2]

 [3 4]]

 [[2 3]

 [4 5]]

 [[3 4]

 [5 6]]

 [[4 5]

 [6 7]]]

 flatten: [1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7]

c) vertically: [[10 20]

 [80 90]

 [30 40]

 [60 70]]

 horizontally: [[10 20 30 40]

 [80 90 60 70]]

d) indexing [2 3 4 5]

 slicing [[1 3]

 [2 4]

 [3 5]

 [4 6]]

e) minimum: -2

maximum: 4

mean: 3

median: 3

standard deviation: 1.4142135623730951

WEEK-2

LINEAR ALGEBRA ON MATRICES

OBJECTIVE:

Write a Python program to do the following operations:

Library: NumPy

a) Dot and matrix product of two arrays

b) Compute the Eigen values of a matrix

c) Solve a linear matrix equation such as 3 * x
0
 + x

1
 = 9, x

0
 + 2 * x

1
 = 8

d) Compute the multiplicative inverse of a matrix

e) Compute the rank of a matrix

f) Compute the determinant of an array

RESOURCES:

Python 3.7.0

Install : pip installer, NumPy library

PROCEDURE:

1. Create: Open a new file in Python shell, write a program and save the program with .py extension.

2. Execute: Go to Run -> Run module (F5)

PROGRAM LOGIC:

a) Dot and matrix product of two arrays

#dot product of two arrays

Import numpy as np

a=np.array([1,2,3])

b=np.array([2,3,4])

print(“dot product of one dimension is:”, np.dot(a,b))

#matrix elements multiplication

a=np.array([[1,2],[3,4]])

b=np.array([[1,2],[3,4]])

print(“element multiplication of matrix;”, np.multiply(a,b))

#matrix multiplication

print(“matrix multiplication”, np.matmul(a,b))

b) Compute the Eigen values of a matrix

#eigen values of a matrix

Import numpy as np

a=np.array([[1,2],[3,4]])

eigvalues,eigvectors=np.linalg.eig(a)

print("eigen value:",eigvalues,"eigen vector:",eigvectors)

c) Solve a linear matrix equation such as 3 * x
0
 + x

1
 = 9, x

0
 + 2 * x

1
 = 8

#linear matric equation

importnumpy as np

a=np.array([[3,1],[1,2]])

b=np.array([[9],[8]])

a_inv=np.linalg.inv(a)

e=np.matmul(a_inv,b)

print("linear equation:",e)

d) Compute the multiplicative inverse of a matrix

#multiplicative inverse

import numpy as np

a=np.array([[3,1],[1,2]])

a_inv=np.linalg.inv(a)

print("a inverse:",a_inv)

e) Compute the rank of a matrix

#matric rank

a=np.array([[3,1],[1,2]])

b=np.linalg.matrix_rank(a)

print(“rank:”,b)

f) Compute the determinant of an array

a=np.array([[3,1],[1,2]])

b=np.linalg.det(a)

print(“determinant:”,b)

INPUT/OUTPUT:

a)

dot product of one dimension is: 20

element multiplication of matrix;

 [[1 4]

 [9 16]]

matrix multiplication

 [[7 10]

 [15 22]]

b)

eigen value:

[-0.37228132 5.37228132]

eigen vector:

 [[-0.82456484 -0.41597356]

 [0.56576746 -0.90937671]]

c)

linear equation:

 [[3.6 -1.8]

 [-1.6 4.8]]

d)

a inverse:

 [[0.4 -0.2]

 [-0.2 0.6]]

e)

rank: 2

f)

determinant: 5.000000000000001

WEEK-3

UNDERSTANDING DATA

OBJECTIVE:

Write a Python program to do the following operations:

Dataset: brain_size.csv

Library: Pandas, matplotlib

a) Loading data from CSV file

b) Compute the basic statistics of given data - shape, no. of columns, mean

c) Splitting a data frame on values of categorical variables

d) Visualize data using Scatter plot

RESOURCES:

a) Python 3.7.0

b) Install: pip installer, Pandas library

PROCEDURE:

1. Create: Open a new file in Python shell, write a program and save the program with .py extension.

2. Execute: Go to Run -> Run module (F5)

PROGRAM LOGIC:

a) Loading data from CSV file

#loading file csv

import pandas as pd

pd.read_csv("P:/python/newfile.csv")

b) Compute the basic statistics of given data - shape, no. of columns, mean

 #shape

a=pd.read_csv("C:/Users/admin/Documents/diabetes.csv")

print('shape :',a.shape)

#no of columns

cols=len(a.axes[1])

print('no of columns:',cols)

#mean of data

m=a["Age"].mean()

print('mean of Age:',m)

c) Splitting a data frame on values of categorical variables

 #adding data

 a['address']=["hyderabad,ts","Warangal,ts","Adilabad,ts","medak,ts"]

#splitting dataframe

a_split=a['address'].str.split(',',1)

a['district']=a_split.str.get(0)

a['state']=a_split.str.get(1)

del(a['address'])

d) Visualize data using Scatter plot

 #visualize data using scatter plot

 importmatplotlib as plt

 a.plot.scatter(x='marks',y='rollno',c='Blue')

INPUT/OUTPUT:

a)

student rollno marks

0 a1 121 98

1 a2 122 82

2 a3 123 92

3 a4 124 78

b)

shape: (4, 3)

no of colums: 3

mean: 87.5

c)

before:

student rollno marks address

0 a1 121 98 hyderabad,ts

1 a2 122 82 Warangal,ts

2 a3 123 92 Adilabad,ts

3 a4 124 78 medak,ts

After:

student rollno marks district state

0 a1 121 98 hyderabadts

1 a2 122 82 Warangal ts

2 a3 123 92 Adilabadts

3 a4 124 78 medakts

d)

WEEK-4

CORRELATION MATRIX

OBJECTIVE:

Write a python program to load the dataset and understand the input data

Dataset: Pima Indians Diabetes Dataset

https://www.kaggle.com/uciml/pima-indians-diabetes-database#diabetes.csv

Library: Scipy

a) Load data, describe the given data and identify missing, outlier data items

b) Find correlation among all attributes

c) Visualize correlation matrix

RESOURCES:

a) Python 3.7.0

b) Install: pip installer, pandas, SciPy library

PROCEDURE:

1. Create: Open a new file in Python shell, write a program and save the program with .py extension.

2. Execute: Go to Run -> Run module (F5)

PROGRAM LOGIC:

a) Load data

import pandas as pd

importnumpy as np

importmatplotlib as plt

%matplotlib inline

#Reading the dataset in a dataframe using Pandas

df = pd.read_csv("C:/Users/admin/Documents/diabetes.csv")

#describe the given data

print(df. describe())

#Display first 10 rows of data

print(df.head(10))

#Missing values

In Pandas missing data is represented by two values:

None: None is a Python singleton object that is often used for missing data in Python code.

NaN :NaN (an acronym for Not a Number), is a special floating-point value recognized by all systems

 isnull()

 notnull()

 dropna()

 fillna()

 replace()

 interpolate()

identify missing items

print(df.isnull())

#outlier data items

Methods

Z-score method

Modified Z-score method

IQR method

#Z-score function defined in scipy library to detect the outliers

importnumpy as np

defoutliers_z_score(ys):

threshold = 3

mean_y = np.mean(ys)

stdev_y = np.std(ys)

z_scores = [(y - mean_y) / stdev_y for y in ys]

returnnp.where(np.abs(z_scores) > threshold)

b) Find correlation among all attributes

importing pandas as pd

import pandas as pd

Making data frame from the csv file

df = pd.read_csv("nba.csv")

Printing the first 10 rows of the data frame for visualization

df[:10]

To find the correlation among columns

using pearson method

df.corr(method ='pearson')

using „kendall‟ method.

df.corr(method ='kendall')

c) Visualize correlation matrix

INPUT/OUTPUT:

import pandas as pd

df = pd.read_csv("C:/Users/admin/Documents/diabetes.csv")

print(df. describe())

print(df.head(10))

WEEK -5

DATA PREPROCESSING – HANDLING MISSING VALUES

OBJECTIVE:

Write a python program to impute missing values with various techniques on given dataset.

a) Remove rows/ attributes

b) Replace with mean or mode

c) Write a python program to perform transformation of data using Discretization (Binning) and

normalization (MinMaxScaler or MaxAbsScaler) on given dataset.

https://www.kaggle.com/uciml/pima-indians-diabetes-database#diabetes.csv

Library: Scipy

RESOURCES:

a) Python 3.7.0

b) Install: pip installer, pandas, SciPy library

PROCEDURE:

1. Create: Open a new file in Python shell, write a program and save the program with .py extension.

2. Execute: Go to Run -> Run module (F5)

PROGRAM LOGIC:

filling missing value using fillna()

df.fillna(0)

filling a missing value with previous value

df.fillna(method ='pad')

#Filling null value with the next ones

df.fillna(method ='bfill')

filling a null values using fillna()

data["Gender"].fillna("No Gender", inplace = True)

will replace Nan value in dataframe with value -99

data.replace(to_replace = np.nan, value = -99)

Remove rows/ attributes

using dropna() function to remove rows having one Nan

df.dropna()

using dropna() function to remove rows with all Nan

df.dropna(how = 'all')

using dropna() function to remove column having one Nan

df.dropna(axis = 1)

Replace with mean or mode

mean_y = np.mean(ys)

Perform transformation of data using Discretization (Binning)

Binning can also be used as a discretization technique. Discretization refers to the process of converting or

partitioning continuous attributes, features or variables to discretized or nominal attributes/ features/ variables/

intervals.

For example, attribute values can be discretized by applying equal-width or equal-frequency binning, and then

replacing each bin value by the bin mean or median, as in smoothing by bin means or smoothing by bin

medians, respectively. Then the continuous values can be converted to a nominal or discretized value which is

same as the value of their corresponding bin.

There are basically two types of binning approaches –

Equal width (or distance) binning : The simplest binning approach is to partition the range of the variable into k

equal-width intervals. The interval width is simply the range [A, B] of the variable divided by k, w = (B-A) / k

Thus, i
th
 interval range will be [A + (i-1)w, A + iw] where i = 1, 2, 3…..k

Skewed data cannot be handled well by this method.

Equal depth (or frequency) binning : In equal-frequency binning we divide the range [A, B] of the variable into

intervals that contain (approximately) equal number of points; equal frequency may not be possible due to repeated

values.

There are three approaches to perform smoothing –

Smoothing by bin means : In smoothing by bin means, each value in a bin is replaced by the mean value of the bin.

Smoothing by bin median : In this method each bin value is replaced by its bin median value.

Smoothing by bin boundary : In smoothing by bin boundaries, the minimum and maximum values in a given bin are

identified as the bin boundaries. Each bin value is then replaced by the closest boundary value.

Example:

Sorted data for price(in dollar) : 2, 6, 7, 9, 13, 20, 21, 25, 30

import numpy as np

import math

from sklearn.datasets import load_iris

from sklearn import datasets, linear_model, metrics

load iris data set

dataset = load_iris()

a = dataset.data

b = np.zeros(150)

take 1st column among 4 column of data set

for i in range (150):

 b[i]=a[i,1]

b=np.sort(b) #sort the array

create bins

bin1=np.zeros((30,5))

bin2=np.zeros((30,5))

bin3=np.zeros((30,5))

Bin mean

for i in range (0,150,5):

 k=int(i/5)

 mean=(b[i] + b[i+1] + b[i+2] + b[i+3] + b[i+4])/5

 for j in range(5):

 bin1[k,j]=mean

print("Bin Mean: \n",bin1)

Bin boundaries

for i in range (0,150,5):

 k=int(i/5)

 for j in range (5):

 if (b[i+j]-b[i]) < (b[i+4]-b[i+j]):

 bin2[k,j]=b[i]

 else:

 bin2[k,j]=b[i+4]

print("Bin Boundaries: \n",bin2)

Bin median

for i in range (0,150,5):

 k=int(i/5)

 for j in range (5):

 bin3[k,j]=b[i+2]

print("Bin Median: \n",bin3)

OUTPUT:

Bin Mean: Bin Boundaries: Bin Median:

[[2.18 2.18 2.18 2.18 2.18]

[2.34 2.34 2.34 2.34 2.34]

[2.48 2.48 2.48 2.48 2.48]

[2.52 2.52 2.52 2.52 2.52]

[2.62 2.62 2.62 2.62 2.62]

[[2. 2.3 2.3 2.3 2.3]

[2.3 2.3 2.3 2.4 2.4]

[2.4 2.5 2.5 2.5 2.5]

[2.5 2.5 2.5 2.5 2.6]

[2.6 2.6 2.6 2.6 2.7]

[[2.2 2.2 2.2 2.2 2.2]

[2.3 2.3 2.3 2.3 2.3]

[2.5 2.5 2.5 2.5 2.5]

[2.5 2.5 2.5 2.5 2.5]

[2.6 2.6 2.6 2.6 2.6]

[2.7 2.7 2.7 2.7 2.7]

[2.74 2.74 2.74 2.74 2.74]

[2.8 2.8 2.8 2.8 2.8]

[2.8 2.8 2.8 2.8 2.8]

[2.86 2.86 2.86 2.86 2.86]

[2.9 2.9 2.9 2.9 2.9]

[2.96 2.96 2.96 2.96 2.96]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3.04 3.04 3.04 3.04 3.04]

[3.1 3.1 3.1 3.1 3.1]

[3.12 3.12 3.12 3.12 3.12]

[3.2 3.2 3.2 3.2 3.2]

[3.2 3.2 3.2 3.2 3.2]

[3.26 3.26 3.26 3.26 3.26]

[3.34 3.34 3.34 3.34 3.34]

[3.4 3.4 3.4 3.4 3.4]

[3.4 3.4 3.4 3.4 3.4]

[3.5 3.5 3.5 3.5 3.5]

[3.58 3.58 3.58 3.58 3.58]

[3.74 3.74 3.74 3.74 3.74]

[3.82 3.82 3.82 3.82 3.82]

[4.12 4.12 4.12 4.12 4.12]]

[2.7 2.7 2.7 2.7 2.7]

[2.7 2.7 2.7 2.8 2.8]

[2.8 2.8 2.8 2.8 2.8]

[2.8 2.8 2.8 2.8 2.8]

[2.8 2.8 2.9 2.9 2.9]

[2.9 2.9 2.9 2.9 2.9]

[2.9 2.9 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3.1 3.1]

[3.1 3.1 3.1 3.1 3.1]

[3.1 3.1 3.1 3.1 3.2]

[3.2 3.2 3.2 3.2 3.2]

[3.2 3.2 3.2 3.2 3.2]

[3.2 3.2 3.3 3.3 3.3]

[3.3 3.3 3.3 3.4 3.4]

[3.4 3.4 3.4 3.4 3.4]

[3.4 3.4 3.4 3.4 3.4]

[3.5 3.5 3.5 3.5 3.5]

[3.5 3.6 3.6 3.6 3.6]

[3.7 3.7 3.7 3.8 3.8]

[3.8 3.8 3.8 3.8 3.9]

[3.9 3.9 3.9 4.4 4.4]]

[2.7 2.7 2.7 2.7 2.7]

[2.7 2.7 2.7 2.7 2.7]

[2.8 2.8 2.8 2.8 2.8]

[2.8 2.8 2.8 2.8 2.8]

[2.9 2.9 2.9 2.9 2.9]

[2.9 2.9 2.9 2.9 2.9]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3. 3. 3. 3. 3.]

[3.1 3.1 3.1 3.1 3.1]

[3.1 3.1 3.1 3.1 3.1]

[3.2 3.2 3.2 3.2 3.2]

[3.2 3.2 3.2 3.2 3.2]

[3.3 3.3 3.3 3.3 3.3]

[3.3 3.3 3.3 3.3 3.3]

[3.4 3.4 3.4 3.4 3.4]

[3.4 3.4 3.4 3.4 3.4]

[3.5 3.5 3.5 3.5 3.5]

[3.6 3.6 3.6 3.6 3.6]

[3.7 3.7 3.7 3.7 3.7]

[3.8 3.8 3.8 3.8 3.8]

[4.1 4.1 4.1 4.1 4.1]]

Perform transformation of data using normalization (MinMaxScaler or MaxAbsScaler) on given dataset.

In preprocessing, standardization of data is one of the transformation task. Standardization is scaling features to lie

between a given minimum and maximum value, often between zero and one, or so that the maximum absolute value

of each feature is scaled to unit size. This can be achieved using MinMaxScaler or MaxAbsScaler, respectively.

The motivation to use this scaling include robustness to very small standard deviations of features and preserving zero

entries in sparse data.

Example to scale a toy data matrix to the [0, 1] range:

from sklearn.preprocessing import MinMaxScaler

data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

scaler = MinMaxScaler()

print(scaler.fit(data))

MinMaxScaler()

print("data:\n",scaler.data_max_)

print("Transformed data:\n",scaler.transform(data))

OUTPUT

MinMaxScaler(copy=True, feature_range=(0, 1))

data:

 [1. 18.]

Transformed data:

 [[0. 0.]

 [0.25 0.25]

 [0.5 0.5]

 [1. 1.]]

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html#sklearn.preprocessing.MaxAbsScaler

WEEK - 6

ASSOCIATION RULE MINING – APRIORI

Write a python program to find rules that describe associations by using Apriori algorithm between

different products given as 7500 transactions at a French retail store.

a) Display top 5 rows of data

b) Find the rules with min_confidence : .2, min_support= 0.0045, min_lift=3, min_length=2

Libraries: NumPy, SciPy, Matplotlib, Pandas

Dataset: https://drive.google.com/file/d/1y5DYn0dGoSbC22xowBq2d4po6h1JxcTQ/view?usp=sharing

RESOURCES:

c) Python 3.7.0

d) Install: pip installer, pandas, SciPy library

PROCEDURE:

1. Create: Open a new file in Python shell, write a program and save the program with .py extension.

2. Execute: Go to Run -> Run module (F5)

PROGRAM LOGIC:

Install Anaconda

Open spyder IDE:

Spyder is an Integrated Development Environment (IDE) for scientific computing, written in and for the

Python programming language. It comes with an Editor to write code, a Console to evaluate it and view the

results at any time, a Variable Explorer to examine the variables defined during evaluation, and several

other facilities

Steps in Apriori:

1. Set a minimum value for support and confidence. This means that we are only interested in finding rules

for the items that have certain default existence (e.g. support) and have a minimum value for co-occurrence

with other items (e.g. confidence).

2. Extract all the subsets having higher value of support than minimum threshold.

3. Select all the rules from the subsets with confidence value higher than minimum threshold.

4. Order the rules by descending order of Lift.

Example:

from apyori import apriori

transactions = [

 ['beer', 'nuts'],

 ['beer', 'cheese'],

]

#CASE1:

results = list(apriori(transactions))

association_results = list(results)

print(results[0])

#CASE2: min support=.5,minconfidence=.8

results = list(apriori(transactions,min_support=0.5, min_confidence=0.8))

association_results = list(results)

print(len(results))

print(association_results)

OUTPUT:

5

RelationRecord(items=frozenset({'beer'}), support=1.0,

ordered_statistics=[OrderedStatistic(items_base=frozenset(), items_add=frozenset({'beer'}),

confidence=1.0, lift=1.0)])

Case 2:

3

[RelationRecord(items=frozenset({'beer'}), support=1.0,

ordered_statistics=[OrderedStatistic(items_base=frozenset(), items_add=frozenset({'beer'}),

confidence=1.0, lift=1.0)]),

RelationRecord(items=frozenset({'cheese', 'beer'}), support=0.5,

ordered_statistics=[OrderedStatistic(items_base=frozenset({'cheese'}), items_add=frozenset({'beer'}),

confidence=1.0, lift=1.0)]),

RelationRecord(items=frozenset({'nuts', 'beer'}), support=0.5,

ordered_statistics=[OrderedStatistic(items_base=frozenset({'nuts'}), items_add=frozenset({'beer'}),

confidence=1.0, lift=1.0)])]

Three major measures to validate Association Rules:

• Support

• Confidence

• Lift

Suppose a record of 1 thousand customer transactions. Consider two items e.g. burgers and ketchup. Out of

one thousand transactions, 100 contain ketchup while 150 contain a burger. Out of 150 transactions where a

burger is purchased, 50 transactions contain ketchup as well. Using this data, Find the support, confidence,

and lift.

Support:

Support(B) = (Transactions containing (B))/(Total Transactions)

For instance if out of 1000 transactions, 100 transactions contain Ketchup then the support for item Ketchup

can be calculated as:

Support(Ketchup) = (Transactions containingKetchup)/(Total Transactions)

Support(Ketchup) = 100/1000 = 10%

Confidence

Confidence refers to the likelihood that an item B is also bought if item A is bought. It can be calculated by

finding the number of transactions where A and B are bought together, divided by total number of

transactions where A is bought.

Confidence(A→B) = (Transactions containing both (A and B))/(Transactions containing A)

A total of 50 transactions where Burger and Ketchup were bought together. While in 150 transactions,

burgers are bought. Then we can find likelihood of buying ketchup when a burger is bought can be

represented as confidence of Burger -> Ketchup and can be mathematically written as:

Confidence (Burger→Ketchup) = (Transactions containing both (Burger and Ketchup))/(Transactions

containing A)

Confidence(Burger→Ketchup) = 50/150 = 33.3%

Lift

Lift (A -> B) refers to the increase in the ratio of sale of B when A is sold. Lift(A –> B) can be calculated by

dividing Confidence(A -> B) divided by Support(B). Mathematically it can be represented as:

Lift (A→B) = (Confidence (A→B))/(Support (B))

In Burger and Ketchup problem, the Lift (Burger -> Ketchup) can be calculated as:

Lift (Burger → Ketchup) = (Confidence (Burger → Ketchup))/(Support (Ketchup))

Lift(Burger → Ketchup) = 33.3/10 = 3.33

a) Display top 5 rows of data

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from apyori import apriori

store_data = pd.read_csv("D:/datasets/store_data.csv")

print(store_data.head())

print('Structure of store data\n',str(store_data))

OUTPUT:

shrimp almonds avocado vegetables mix green grapes \

0 burgers meatballs eggs NaN NaN

1 chutney NaN NaN NaN NaN

2 turkey avocado NaN NaN NaN

3 mineral water milk energy bar whole wheat rice green tea

4 low fat yogurt NaN NaN NaN NaN

 whole weat flour yams cottage cheese energy drink tomato juice \

0 NaN NaN NaN NaN NaN

1 NaN NaN NaN NaN NaN

2 NaN NaN NaN NaN NaN

3 NaN NaN NaN NaN NaN

4 NaN NaN NaN NaN NaN

 low fat yogurt green tea honey salad mineral water salmon antioxydant juice \

0 NaN NaN NaN NaN NaN NaN NaN

1 NaN NaN NaN NaN NaN NaN NaN

2 NaN NaN NaN NaN NaN NaN NaN

3 NaN NaN NaN NaN NaN NaN NaN

4 NaN NaN NaN NaN NaN NaN NaN

 frozen smoothie spinach olive oil

0 NaN NaN NaN

1 NaN NaN NaN

2 NaN NaN NaN

3 NaN NaN NaN

4 NaN NaN NaN

Structure of store data

 shrimp almonds avocado vegetables mix \

0 burgers meatballs eggs NaN

1 chutney NaN NaN NaN

2 turkey avocado NaN NaN

3 mineral water milk energy bar whole wheat rice

4 low fat yogurt NaN NaN NaN

...

7495 butter light mayo fresh bread NaN

7496 burgers frozen vegetables eggs french fries

7497 chicken NaN NaN NaN

7498 escalope green tea NaN NaN

7499 eggs frozen smoothie yogurt cake low fat yogurt

 green grapes whole weat flour yams cottage cheese energy drink \

0 NaN NaN NaN NaN NaN

1 NaN NaN NaN NaN NaN

2 NaN NaN NaN NaN NaN

3 green tea NaN NaN NaN NaN

4 NaN NaN NaN NaN NaN

...

7495 NaN NaN NaN NaN NaN

7496 magazines green tea NaN NaN NaN

7497 NaN NaN NaN NaN NaN

7498 NaN NaN NaN NaN NaN

7499 NaN NaN NaN NaN NaN

 tomato juice low fat yogurt green tea honey salad mineral water salmon \

0 NaN NaN NaN NaN NaN NaN NaN

1 NaN NaN NaN NaN NaN NaN NaN

2 NaN NaN NaN NaN NaN NaN NaN

3 NaN NaN NaN NaN NaN NaN NaN

4 NaN NaN NaN NaN NaN NaN NaN

...

7495 NaN NaN NaN NaN NaN NaN NaN

7496 NaN NaN NaN NaN NaN NaN NaN

7497 NaN NaN NaN NaN NaN NaN NaN

7498 NaN NaN NaN NaN NaN NaN NaN

7499 NaN NaN NaN NaN NaN NaN NaN

 antioxydant juice frozen smoothie spinach olive oil

0 NaN NaN NaN NaN

1 NaN NaN NaN NaN

2 NaN NaN NaN NaN

3 NaN NaN NaN NaN

4 NaN NaN NaN NaN

...

7495 NaN NaN NaN NaN

7496 NaN NaN NaN NaN

7497 NaN NaN NaN NaN

7498 NaN NaN NaN NaN

7499 NaN NaN NaN NaN

[7500 rows x 20 columns]

c) Find the rules with min_confidence : .2, min_support= 0.0045, min_lift=3, min_length=2

Let's suppose that we want rules for only those items that are purchased at least 5 times a day, or 7 x 5 = 35 times in

one week, since our dataset is for a one-week time period.

The support for those items can be calculated as 35/7500 = 0.0045.

The minimum confidence for the rules is 20% or 0.2.

 Similarly, the value for lift as 3 and finally min_length is 2 since at least two products should exist in every rule.

#Converting data frame to list

records = []

for i in range(0, 7500):

 records.append([str(store_data.values[i,j]) for j in range(0, 20)])

#Generating association rules using apriori()

#association_rules = apriori(records, min_support=0.0045, min_confidence=0.2, min_lift=3, min_length=2)

association_rules = apriori(records, min_support=0.0045, min_confidence=0.2, min_lift=3, min_length=5)

association_results = list(association_rules)

print(len(association_results))

print(association_results[0])

for item in association_rules:

 # first index of the inner list

 # Contains base item and add item

 pair = item[0]

 items = [x for x in pair]

 print("Rule: " + items[0] + " -> " + items[1])

 #second index of the inner list

 print("Support: " + str(item[1]))

 #third index of the list located at 0th

 #of the third index of the inner list

 print("Confidence: " + str(item[2][0][2]))

 print("Lift: " + str(item[2][0][3]))

 print("=====================================")

OUTPUT:

#association_rules = apriori(records, min_support=0.0045, min_confidence=0.2, min_lift=3, min_length=2)

RelationRecord(items=frozenset({'light cream', 'chicken'}), support=0.004533333333333334,

ordered_statistics=[OrderedStatistic(items_base=frozenset({'light cream'}), items_add=frozenset({'chicken'}),

confidence=0.2905982905982906, lift=4.843304843304844)])

#association_rules = apriori(records, min_support=0.0045, min_confidence=0.2, min_lift=3, min_length=5)

No of Rules: 48

RelationRecord(items=frozenset({'chicken', 'light cream'}), support=0.004533333333333334,

ordered_statistics=[OrderedStatistic(items_base=frozenset({'light cream'}), items_add=frozenset({'chicken'}),

confidence=0.2905982905982906, lift=4.843304843304844)])

Rule: light cream -> chicken Support: 0.004532728969470737 Confidence: 0.29059829059829057 Lift:

4.84395061728395

 Rule: mushroom cream sauce -> escalope Support: 0.005732568990801126 Confidence: 0.3006993006993007 Lift:

3.790832696715049

 Rule: escalope -> pasta Support: 0.005865884548726837 Confidence: 0.3728813559322034 Lift:

4.700811850163794

 Rule: ground beef -> herb & pepper Support: 0.015997866951073192 Confidence: 0.3234501347708895 Lift:

3.2919938411349285

WEEK - 7

CLASSIFICATION – LOGISTIC REGRESSION

Classification of Bank Marketing Data

The data is related with direct marketing campaigns of a Portuguese banking institution. The marketing

campaigns were based on phone calls. Often, more than one contact to the same client was required, in order to

access if the product (bank term deposit) would be ('yes') or not ('no') subscribed. The dataset provides the

bank customers’ information. It includes 41,188 records and 21 fields. The classification goal is to predict

whether the client will subscribe (1/0) to a term deposit (variable y).

Write a python program to

a) Explore data and visualize each attribute

b) Predict the test set results and find the accuracy of the model

c) Visualize the confusion matrix

d) Compute precision, recall, F-measure and support

RESOURCES:

e) Python 3.7.0

f) Install: pip installer, pandas, SciPy, NumPy, Sklearn, Seaborn library

PROCEDURE:

1. Create: Open a new file in Python shell, write a program and save the program with .py extension.

2. Execute: Go to Run -> Run module (F5)

PROGRAM LOGIC:

a) Explore data and visualize each attribute

import pandas as pd

import numpy as np

import pandas as pd

import numpy as np

import seaborn as sns

from pandas.plotting import scatter_matrix

from sklearn.linear_model import LogisticRegression

#Reading dataset

bank=pd.read_csv("D:/datasets/bank-additional-full.csv", index_col=0)

 # index_col will remove the index column from the csv file

Assign outcome as 0 if income <=50K and as 1 if income >50K

bank['y'] = [0 if x == 'no' else 1 for x in bank['y']]

Assign X as a DataFrame of features from bank dataset and y as a Series of the outcome variable

axis : {0 or „index‟, 1 or „columns‟}, default 0

Whether to drop labels from the index (0 or „index‟) or columns (1 or „columns‟).

X = bank.drop('y', 1) # 1 represents column, dropping y column for doing classification

y = bank.y

X.describe()

d
u
ra

ti
o

n

ca
m

p
ai

g
n

p
d
ay

s

p
re

v
io

u
s

em
p
.v

ar
.r

at
e

co
n
s.

p
ri

ce
.i

d
x

co
n
s.

co
n

f.
id

x

eu
ri

b
o

r3
m

n
r.

em
p

lo
y

ed

jo
b
_
ad

m
in

.

..
.

m
o
n
th

_
o

ct

m
o
n
th

_
se

p

d
ay

_
o

f_
w

ee
k

_
fr

i
d
ay

_
o

f_
w

ee
k

_
m

o
n

d
ay

_
o

f_
w

ee
k

_
th

u

d
ay

_
o

f_
w

ee
k

_
tu

e
d
ay

_
o

f_
w

ee
k

_
w

ed

p
o
u
tc

o
m

e_
fa

il

u
re

p
o
u
tc

o
m

e_
n

o

n
ex

is
te

n
t

p
o
u
tc

o
m

e_
su

c

ce
ss

co
u
n
t

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

..
.

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

4
1
1
8
8

m
ea

n

2
5

8
.2

8

5
0

1

2
.5

6
7

5

9
3

9
6

2
.4

7

5
4

5

0
.1

7
2

9

6
3

0
.0

8
1

8

8
6

9
3

.5
7

5

6
6

4

- 4
0

.5
0

2

6

3
.6

2
1

2

9
1

5
1

6
7

.0

3
5

9

0
.2

5
3

0

3
5

..
.

0
.0

1
7

4

3
2

0
.0

1
3

8

3
9

0
.1

9
0

0

3
1

0
.2

0
6

7

1
1

0
.2

0
9

3

5
7

0
.1

9
6

4

1
6

0
.1

9
7

4

8
5

0
.1

0
3

2

3
4

0
.8

6
3

4

3
1

st
d

2
5

9
.2

7
9

2
4

9

2
.7

7
0

0
1

4

1
8

6
.9

1
0

9
1

0
.4

9
4

9
0

1

1
.5

7
0

9
6

0
.5

7
8

8
4

4
.6

2
8

1
9

8

1
.7

3
4

4
4

7

7
2

.2
5

1
5

2
8

0
.4

3
4

7
5

6

..
.

0
.1

3
0

8
7

7

0
.1

1
6

8
2

4

0
.3

9
2

3
3

0
.4

0
4

9
5

1

0
.4

0
6

8
5

5

0
.3

9
7

2
9

2

0
.3

9
8

1
0

6

0
.3

0
4

2
6

8

0
.3

4
3

3
9

6

m
in

0

1

0

0

-3
.4

9
2

.2
0

1

-5
0

.8

0
.6

3
4

4
9

6
3

.

6

0

..
.

0

0

0

0

0

0

0

0

0

2
5

%

1
0

2

1

9
9

9

0

-1
.8

9
3

.0
7

5

-4
2

.7

1
.3

4
4

5
0

9
9

.

1

0

..
.

0

0

0

0

0

0

0

0

1

5
0

%

1
8

0

2

9
9

9

0

1
.1

9
3

.7
4

9

-4
1

.8

4
.8

5
7

5
1

9
1

0

..
.

0

0

0

0

0

0

0

0

1

7
5

%

3
1

9

3

9
9

9

0

1
.4

9
3

.9
9

4

-3
6

.4

4
.9

6
1

5
2

2
8

.

1

1

..
.

0

0

0

0

0

0

0

0

1

m
ax

4
9

1
8

5
6

9
9

9

7

1
.4

9
4

.7
6

7

-2
6

.9

5
.0

4
5

5
2

2
8

.1

1

..
.

1

1

1

1

1

1

1

1

1

y.describe()

count 41188.0

mean 1.0

std 0.0

min 1.0

25% 1.0

50% 1.0

75% 1.0

max 1.0

Name: y, dtype: float64

X.head()

a
g

e

jo
b

m
a

ri
ta

l

ed
u

ca
ti

o
n

d
ef

a
u

lt

h
o

u
si

n
g

lo
a

n

co
n

ta
ct

m
o

n
th

d
a

y
_

o
f_

w

ee
k

d
u

ra
ti

o
n

ca
m

p
a

ig
n

p
d

a
y

s

p
re

v
io

u
s

p
o

u
tc

o
m

e

em
p

.v
a

r.
r

a
te

co
n

s.
p

ri
ce

.i
d

x

co
n

s.
co

n
f.

id
x

eu
ri

b
o

r3

m

n
r.

em
p

lo
y

ed

y

5
6

h
o

u
se

m
ai

d

m
ar

ri
ed

b
as

ic
.4

y

n
o

n
o

n
o

te
le

p
h

o
n

e

m
ay

m
o

n

2
6

1

1

9
9

9

0

n
o

n
ex

is
te

n

t 1
.1

9
3

.9
9
4

-3
6

.4

4
.8

5
7

5
1

9
1

.0

n
o

5
7

se
rv

ic
es

m
ar

ri
ed

h
ig

h
.s

ch
o
o

l u
n

k
n

o
w

n

n
o

n
o

te
le

p
h

o
n

e

m
ay

m
o

n

1
4

9

1

9
9

9

0

n
o

n
ex

is
te

n

t 1
.1

9
3

.9
9
4

-3
6

.4

4
.8

5
7

5
1

9
1

.0

n
o

3
7

se
rv

ic
es

m
ar

ri
ed

h
ig

h
.s

ch
o
o

l n
o

y
es

n
o

te
le

p
h

o
n

e

m
ay

m
o

n

2
2

6

1

9
9

9

0

n
o

n
ex

is
te

n

t 1
.1

9
3

.9
9
4

-3
6

.4

4
.8

5
7

5
1

9
1

.0

n
o

4
0

ad
m

in
.

m
ar

ri
ed

b
as

ic
.6

y

n
o

n
o

n
o

te
le

p
h

o
n

e

m
ay

m
o

n

1
5

1

1

9
9

9

0

n
o

n
ex

is
te

n

t 1
.1

9
3

.9
9
4

-3
6

.4

4
.8

5
7

5
1

9
1

.0

n
o

5
6

se
rv

ic
es

m
ar

ri
ed

h
ig

h
.s

ch
o
o

l n
o

n
o

y
es

te
le

p
h

y.head()

age

56 0

57 0

37 0

40 0

56 0

Name: y, dtype: int64

#Count of unique values(y/n)

bank['y'].value_counts()

OUTPUT:

4640 people opened term deposit account and 36548 have not opened the term deposit account

0 36548

1 4640

Name: y, dtype: int64

Decide which categorical variables you want to use in model

for col_name in X.columns:

 if X[col_name].dtypes == 'object':# in pandas it is object

 unique_cat = len(X[col_name].unique())

 print("Feature '{col_name}' has {unique_cat} unique categories".format(col_name=col_name,

unique_cat=unique_cat))

 print(X[col_name].value_counts())

 print()

OUTPUT:

Feature 'job' has 12 unique categories

admin. 10422

blue-collar 9254

technician 6743

services 3969

management 2924

retired 1720

entrepreneur 1456

self-employed 1421

housemaid 1060

unemployed 1014

student 875

unknown 330

Name: job, dtype: int64

Feature 'marital' has 4 unique categories

married 24928

single 11568

divorced 4612

unknown 80

Name: marital, dtype: int64

Feature 'education' has 8 unique categories

university.degree 12168

high.school 9515

basic.9y 6045

professional.course 5243

basic.4y 4176

basic.6y 2292

unknown 1731

illiterate 18

Name: education, dtype: int64

Feature 'default' has 3 unique categories

no 32588

unknown 8597

yes 3

Name: default, dtype: int64

Feature 'housing' has 3 unique categories

yes 21576

no 18622

unknown 990

Name: housing, dtype: int64

Feature 'loan' has 3 unique categories

no 33950

yes 6248

unknown 990

Name: loan, dtype: int64

Feature 'contact' has 2 unique categories

cellular 26144

telephone 15044

Name: contact, dtype: int64

Feature 'month' has 10 unique categories

may 13769

jul 7174

aug 6178

jun 5318

nov 4101

apr 2632

oct 718

sep 570

mar 546

dec 182

Name: month, dtype: int64

Feature 'day_of_week' has 5 unique categories

thu 8623

mon 8514

wed 8134

tue 8090

fri 7827

Name: day_of_week, dtype: int64

Feature 'poutcome' has 3 unique categories

nonexistent 35563

failure 4252

success 1373

Name: poutcome, dtype: int64

Visualizations

#visualization of Predictor variable (y)

print(y.value_counts().plot.bar())

b) Predict the test set results and find the accuracy of the model

#Create an Logistic classifier and train it on 70% of the data set.

clf = LogisticRegression()

clf

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, l1_ratio=None, max_iter=100,

 multi_class='warn', n_jobs=None, penalty='l2',

 random_state=None, solver='warn', tol=0.0001, verbose=0,

 warm_start=False)

clf.fit(X, y)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, l1_ratio=None, max_iter=100,

 multi_class='warn', n_jobs=None, penalty='l2',

 random_state=None, solver='warn', tol=0.0001, verbose=0,

 warm_start=False)

c) Visualize the confusion matrix

from sklearn.metrics import confusion_matrix

confusion_matrix = confusion_matrix(y_test, y_pred)

print(confusion_matrix)

d) Compute precision, recall, F-measure and support

from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))

**** https://towardsdatascience.com/building-a-logistic-regression-in-python-step-by-step-becd4d56c9c8

