
1

LINUX INTERNALS LABORATORY

LAB MANUAL

Academic Year : 2019- 2020

Course Code : AIT105

Regulations : IARE - R16

Class : III Year II Semester

Branch : IT

Department of Information Technology

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal – 500 043, Hyderabad

2

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

Program Outcomes

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and

an engineering specialization to the solution of complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and

engineering sciences

PO3 Design/development of solutions: Design solutions for complex engineering problems and design system

components or processes that meet the specified needs with appropriate consideration for the public health

and safety, and the cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of experiments, analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering

and IT tools including prediction and modeling to complex engineering activities with an understanding of

the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional

engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the

engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse

teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and give and receive clear instructions.

PO11 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent

and life-long learning in the broadest context of technological change.

PO12 Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one’s own work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

Program Specific Outcomes

PSO1 Professional Skills: The ability to understand, analyze and develop computer programs in the areas

related to algorithms, system software, multimedia, web design, big data analytics, and networking for

efficient analysis and design of computer - based systems of varying complexity.

PSO2 Software Engineering Practices: The ability to apply standard practices and strategies in software

service management using open-ended programming environments with agility to deliver a quality service

for business success.

PSO3 Successful Career and Entrepreneurship: The ability to employ modern computer languages,

environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for

higher studies.

3

INDEX

S. No. List of Experiments Page No.

1
Study and Practice on various commands like man, passwd, tty, script, clear, date, cal, cp,

mv, ln, rm, unlink, mkdir, rmdir, du, df, mount, umount, find, unmask, ulimit, ps, who, w.
6

2
Study and Practice on various commands like cat, tail, head , sort, nl, uniq, grep, egrep,

fgrep, cut, paste, join, tee, pg, comm, cmp, diff, tr, awk, tar, cpio.
11

3

a) Write a Shell Program to print all .txt files and .c files.

b) Write a Shell program to move a set of files to a specified directory.

c) Write a Shell program to display all the users who are currently logged in after a

specified time.

d) Write a Shell Program to wish the user based on the login time.

16

4

a) Write a Shell program to pass a message to a group of members, individual member

and all.

b) Write a Shell program to count the number of words in a file.

c) Write a Shell program to calculate the factorial of a given number.

d) Write a Shell program to generate Fibonacci series.

19

5 a) Simulate cat command b) Simulate cp command 22

6 a) Simulate tail command b) Simulate head command 24

7 a) Simulate mv command b) Simulate nl command 27

8 Write a program to handle the signals like SIGINT, SIGDFL, SIGIGN 29

9
Implement the following IPC forms

a) FIFO b) PIPE
31

10

1. Write a C program (sender.c) to create a message queue with read and write permissions

to write 3 messages to it with different priority numbers.

2. Write a C program (receiver.c) that receives the messages (from the above message

queue as specified and displays them.

34

11 Implement shared memory form of IPC. 37

12

1. Write client and server programs (using c) for interaction between server and client

processes using TCP Elementary functions.

2. Write client and server programs (using c) for interaction between server and client

processes using UDP Elementary functions.

39

4

ATTAINMENT OF PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES

Exp.

No.
Experiment

Program Outcomes

Attained

Program Specific

Outcomes Attained

1

Study and Practice on various commands like man,

passwd, tty, script, clear, date, cal, cp, mv, ln, rm, unlink,

mkdir, rmdir, du, df, mount, umount, find, unmask,

ulimit, ps, who, w.

PO1,PO5 PSO1

2

Study and Practice on various commands like cat, tail,

head , sort, nl, uniq, grep, egrep, fgrep, cut, paste, join,

tee, pg, comm, cmp, diff, tr, awk, tar, cpio.
PO1,PO5 -

3

e) Write a Shell Program to print all .txt files and .c

files.

f) Write a Shell program to move a set of files to a

specified directory.

g) Write a Shell program to display all the users who are

currently logged in after a specified time.

h) Write a Shell Program to wish the user based on the
login time.

PO1,PO5 -

4

e) Write a Shell program to pass a message to a group

of members, individual member and all.

f) Write a Shell program to count the number of words

in a file.

g) Write a Shell program to calculate the factorial of a

given number.

h) Write a Shell program to generate Fibonacci series.

PO1 -

5 a) Simulate cat command b) Simulate cp command PO1 -

6 a) Simulate tail command b) Simulate head command PO1,PO3,PO5 -

7 a) Simulate mv command b) Simulate nl command PO1,PO3,PO5 -

8
Write a program to handle the signals like SIGINT,

SIGDFL, SIGIGN
PO1,PO2,PO5 -

9
Implement the following IPC forms

a) FIFO b) PIPE
PO1,PO2,PO5 -

10

1. Write a C program (sender.c) to create a message

queue with read and write permissions to write 3

messages to it with different priority numbers.

2. Write a C program (receiver.c) that receives the

messages (from the above message queue as specified

and displays them.

PO1,PO2, PO3, PO5 -

11 Implement of shared memory form of IPC. PO1,PO2,PO5 -

12

1. Write client and server programs (using c) for

interaction between server and client processes using

TCP Elementary functions.

2. Write client and server programs (using c) for

interaction between server and client processes using

UDP Elementary functions.

PO1,PO2,PO5 -

5

LINUX INTERNALS LABORATORY

OBJECTIVE:

The Linux Internals laboratory course covers major methods of Inter Process Communication (IPC), which is the

basis of all client / server applications under Linux, Linux Utilities, working with the Bourne again shell (bash),

files, process and signals. There will be extensive programming exercises in shell scripts. It also emphasizes various

concepts in multithreaded programming and socket programming.

OUTCOMES:

Upon the completion of Linux Internals practical course, the student will be able to attain the following:

1 Familiar with the Linux Command-line environment

2 Understand system administration process by providing hands-on experience.

3 Understand Process Management and inter process communications techniques.

6

EXPERIMENT - 1

BASIC COMMANDS I

1.1 OBJECTIVE:

To Study and Practice on various commands like man, passwd, tty, script, clear, date, cal, cp, mv, ln, rm, unlink,

mkdir, rmdir, du, df, mount, umount, find, unmask, ulimit, ps, who, w.

1.2 RESOURCES:

Linux operating system, vi-editor, shell-interpreter

1.3 DESCRIPTION / PROCEDURE

1. Open Linux Operating System Command Line Interface.

2. Execute command with options in shell prompt.

3. Press ctrl +z to exit from process.

Command man (MANUAL)

Syntax /

Synopsis

man [-acdfFhkKtwW] [--path] [-m system] [-pstring] [-C config_file] [-M pathlist]

[-P pager] [-Ssection_list] [section] name

Description man - format and display the on-line manual pages . If you specify section, man only

looks in that section of the manual. name is normally the name of the manual page,

which is typically the name of a command, function, or file

Example $man ./foo.5 or even man /cd/foo/bar.1.gz.

$man grep

Command passwd

Syntax passwd [-r | files | -r nis | -r nisplus] [-a] [-d | -l] [-e] [-f] [-g] [-h] [-n min] [-s] [-w

warn] [-x max] [-D domainname][name]

Description passwd is a text file, that contains a list of the system's accounts, giving for each

account some useful information like user ID, group ID, home directory, shell, etc.

Often, it also contains the encrypted passwords for each account.

Example $passwd

Current Password: XXXX

New Password: YYYYY

Confirm New Password: YYYY

Command tty

Syntax tty – [option]

Description Print the file name of the terminal connected to standard input.

Example $tty

/dev/pts/14

7

Command script

Syntax script [-a] [-f] [-q] [-t] [file]

Description script makes a typescript of everything printed on your terminal. It is useful for

students who need a hardcopy record of an interactive session as proof of an

assignment, as the typescript file can be printed out later

Example $script filename

Command clear

Syntax clear

Description clear clears your screen if this is possible

Example $clear

Command date

Syntax date [OPTION]... [+FORMAT]

Description Display the current time in the given FORMAT, or set the system date.

Example $date “+%m-%d-%Y %B”

02-10-2010 February

Command cal

Syntax cal [-smjy13] [[month] year]

Description cal displays a simple calendar. If arguments are not specified, the current month is

displayed.

Example $cal

Command cp

Syntax cp [OPTION]... --target-directory=DIRECTORY SOURCE...

Description Copy SOURCE to DEST, or multiple SOURCE(s) to DIRECTORY.

Example $cp file1 file2

Command mv

Syntax mv [OPTION]... --target-directory=DIRECTORY SOURCE...

Description Rename SOURCE to DEST, or move SOURCE(s) to DIRECTORY.

Example $mv file4 file5

Command $ln

Syntax ln [OPTION]... --target-directory=DIRECTORY TARGET...

Description Create a link to the specified TARGET with optional LINK_NAME. If LINK_NAME

is omitted, a link with the same basename as the TARGET is created in the current

directory. When using the second form with more than one TARGET, the last

argument must be a directory; create links in DIRECTORY to each TARGET

Example ln -s file5 file6

8

Command rm

Syntax rm [OPTION]... FILE...

Description This manual page documents the GNU version of rm. rm removes each specified file.

By default, it does not remove directories

Example $rm file5

Command unlink

Syntax unlink *PATH

Description unlink deletes a name from the filesystem. If that name was the last link to a file and

no processes have the file open the file is deleted and the space it was using is made

available for reuse.

Example $unlink /file2

Command mkdir

Syntax mkdir [OPTION] DIRECTORY...

Description Create the DIRECTORY(ies), if they do not already exist.

Example $mkdir salary

Command Rmdir

Syntax rmdir [OPTION]... DIRECTORY...

Description Remove the DIRECTORY(ies), if they are empty.

Example $rmdir salary

Command du

Syntax du [OPTION]... [FILE]...

Description Summarize disk usage of each FILE, recursively for directories.

Example $du /tmp

4 /tmp/vmware-root

8 /tmp/pulse-xc7xdoM9vB2K

.

.

8 /tmp/orbit-vivek

4 /tmp/.esd-1000

31644 /tmp

Command df

Syntax df [OPTION]... [FILE]...

Description This manual page documents the GNU version of df. df displays the amount of disk

space available on the filesystem containing each file name argument. If no file name

is given, the space available on all currently mounted filesystems is shown. (In 1 KB)

Example
$df -h

Filesystem Size Used Avail Capacity Mounted on

/dev/wd0a 938M 43.0M 848M 5% /

/dev/wd0e 817M 2.0K 776M 0% /home

/dev/wd0d 2.9G 573M 2.2G 20% /usr

9

Command mount

Syntax mount [-fnrsvw] [-t vfstype] [-o options] device dir

Description All files accessible in a Unix system are arranged in one big tree, the file hierarchy,

rooted at /. These files can be spread out over several devices. The mount command

serves to attach the file system found on some device to the big file tree.

Example $mount /dev/fd0 /mnt/floppy

Command umount

Syntax umount [-dflnrv] dir | device [...]

Description The umount command detaches the file system(s) mentioned from the file hierarchy.

A file system is specified by giving the directory where it has been mounted.

Example $umount /dev/fd0 /mnt/floppy

Command find

Syntax find [path...] [expression]

Description This manual page documents the GNU version of find. find searches the directory tree

rooted at each given file name by evaluating the given expression from left to right,

according to the rules of precedence (see section OPERATORS), until the outcome is

known (the left hand side is false for and operations, true for or), at which

point find moves on to the next file name.

Example $find . -name "*.java"

./OnlineStockTrading.java

./StockTrading.java

Command umask

Syntax umask value (octal)

Description he umask is used by open(2) to set initial file permissions on a newly-created file.

Specifically, permissions in the umask are turned off from the mode argument

to open(2)

Example $umask

The common umask default value of 022 results in new files being created with

permissions 0666 & ~022 = 0644 = rw-r--r-- in the usual case where the mode is

specified as 0666

Command ulimit

Syntax ulimit <new Size of file…>

Description It limits the resourses on file

Example ulimit 1024

Command ps

Syntax ps [options]

Description ps gives a snapshot of the current processes. If you want a repetitive update of this

status, use top. This man page documents the /proc-based version of ps, or tries to.

Example $ps –ef

UID PID PPID C STIME TTY TIME CMD

hope 29197 18961 0 Sep27 ? 00:00:06 sshd: hope@pts/87

10

Command who

Syntax who [OPTION]... [FILE | ARG1 ARG2]

Description show who is logged on

Example $who

Command w

Syntax w - [-husfV] [user]

Description w displays information about the users currently on the machine, and their processes.

The header shows, in this order, the current time, how long the system has been

running, how many users are currently logged on, and the system load averages for

the past 1, 5, and 15 minutes.

Example $w

1.4 PRE LAB QUESTION

 1. What is Open source software?

 2. Write a command that will display all .txt files, including its individual permission.

1.5 LAB ASSIGNMENT

1. Write a command to display number of users logged in Linux operating system.

2. Write a command to create directory shprogs and /shprogs/weekprogs subdirectory.

1.6 POST LAB QUESTIONS

1. What are the kinds of permissions under Linux?

2. What are redirection operators?

11

EXPERIMENT - 2

BASIC COMMANDS-II

2.1 OBJECTIVE:

To Study and Practice on various commands like cat, tail, head , sort, nl, uniq, grep, egrep, fgrep, cut, paste, join, tee,

pg, comm, cmp, diff, tr, awk, tar, cpio.

2.2 RESOURCES:

Linux operating system, vi-editor, shell-interpreter

2.3 DESCRIPTION / PROCEDURE

1. Open Linux Operating System Command Line Interface.

2. Execute command with options in shell prompt.

3. Press ctrl +z to exit from process.

Command cat

Syntax cat [OPTION] [FILE]...

Description Concatenate FILE(s), or standard input, to standard output.

Example $cat file4

Qwe

Asdf

Zxc

Command tail

Syntax tail [OPTION]... [FILE]...

Description Print the last 10 lines of each FILE to standard output. With more than one FILE,

precede each with a header giving the file name. With no FILE, or when FILE is -,

read standard input.

Example $tail file3

Zxc

Zxcv

Xcvb....

zxcv

Command head

Syntax head [OPTION]... [FILE]...

Description Print the first 10 lines of each FILE to standard output. With more than one FILE,

precede each with a header giving the file name. With no FILE, or when FILE is -,

read standard input.

Example $head file3

Asd

Asd

Awer....

Aqwe

Command nl

Syntax nl – [option] file…

Description nl copies each specified file to the standard output, with line numbers added to the

lines. The line number is reset to 1 at the top of each logical page. nl treats all of the

12

input files as a single document and does not reset line numbers or logical pages

between files.

Example $nl file3

1 Asd

2 Asd

..

..

10 aqwe

Command uniq

Syntax uniq –[version] [-option] infile outfile

Description uniq prints the unique lines in a sorted file, retaining only one of a run of matching

lines. Optionally, it can show only lines that appear exactly once, or lines that appear

more than once. uniq requires sorted input since it compares only consecutive lines.

Example $uniq file7

Asd

Zxc

Qwe

Command grep

Syntax grep [options] PATTERN [FILE...]

Description grep searches the named input FILEs (or standard input if no files are named, or the file

name- is given) for lines containing a match to the given PATTERN. By

default, grep prints the matching lines.

Example $grep UNIX example.txt

UNIX operating system

UNIX and Linux operating system

Command egrep

Syntax Egrep (grep –E) - grep [options] PATTERN [FILE...]

Description -E, --extended-regexp

Interpret PATTERN as an extended regular expression

Example
$ egrep 'Marketing|DBA' employee.txt

400 Nisha Manager Marketing $9,500

500 Randy DBA Technology $6,000

Command fgrep

Syntax grep –f [options] PATTERN [FILE...]

Description Obtain patterns from FILE, one per line. The empty file contains zero patterns, and

therefore matches nothing.

Example $fgrep –f file3 file4

Command cut

Syntax cut [OPTION]... [FILE]...

13

Description Print selected parts of lines from each FILE to standard output.

Example $cut -c4 file.txt

x

u

l

Command paste

Syntax paste [-delimiters=delim-list] [file...]

Description paste prints lines consisting of sequentially corresponding lines of each specified file. In

the output the original lines are separated by TABs. The output line is terminated with a

newline.

Example $paste –d “ “ file3 file4

Qwer tyui

Asdd fgh

Zxcv bnm n

Command join

Syntax join [OPTION]... FILE1 FILE2

Description For each pair of input lines with identical join fields, write a line to standard output. The

default join field is the first, delimited by whitespace. When FILE1 or FILE2 (not both)

is -, read standard input.

Example $join 1.txt 2.txt

1 abc abc

3 pqr lmn

Command tee

Syntax tee [OPTION]... [FILE]...

Description Copy standard input to each FILE, and also to standard output.

Example $ls|tee file7

Command pg

Syntax pg -[option] file list

Description It makes the format to the given files

Example $pg file7 file9

$pg myfile

Command comm

Syntax comm [OPTION]... LEFT_FILE RIGHT_FILE

Description Compare sorted files LEFT_FILE and RIGHT_FILE line by line.

-1 suppress lines unique to left file (Col 1)

-2 suppress lines unique to right file(Col 2)

-3 suppress lines that appear in both files(col 3)

Example
$ comm name_list.txt name_list_new.txt

 Bram Moolenaar

 Dennis Ritchie

Ken Thompson

Linus Torvalds

 Richard Stallman

14

Command cmp

Syntax cmp [-l | -s] file1 file2 [skip1 [skip2]]

Description The cmp utility compares two files of any type and writes the results to the standard

output. By default, cmp is silent if the files are the same; if they differ, the byte and line

number at which the first difference occurred is reported. (In bytes)

Example
$cmp file10 file11

$_

Command diff

Syntax diff [options] from-file to-file

Description In the simplest case, diff compares the contents of the two files from-file and to-file. A

file name of - stands for text read from the standard input. As a special case, diff - -

 compares a copy of standard input to itself.

Example $diff file8 file9

 2a3,4

 > Jean JRS@pollux.ucs.co

 > Jim jim@frolix8

Command tr

Syntax tr [OPTION]... SET1 [SET2]

Description Translate, squeeze, and/or delete characters from standard input, writing to standard

output.

Example $tr –s “ ” < file3

Command awk

Syntax awk 'pattern {action}' input-file > output-file

Description it allows the user to manipulate files that are structured as columns of data and strings.

Example $awk '{ if($9 == "t4") print $0;}' input_file

 -rw-r--r-- 1 pcenter pcenter 43 Dec 8 21:39 t4

Command tar

Syntax tar –[options] [archive file] [files..]

15

Description This manual page documents the GNU version of tar , an archiving program designed to

store and extract files from an archive file known as a tarfile. A tarfile may be made on a

tape drive, however, it is also common to write a tarfile to a normal file. The first argument

to tar must be one of the options: Acdrtux, followed by any optional functions. The final

arguments to tar are the names of the files or directories which should be archived. The use

of a directory name always implies that the subdirectories below should be included in the

archive.

Example $tar -cvf archive.tar dir/

Command cpio

Syntax cpio - < name-list [> archive]

Description This manual page documents the GNU version of cpio. cpio copies files into or out of a

cpio or tar archive, which is a file that contains other files plus information about them,

such as their file name, owner, timestamps, and access permissions. The archive can be

another file on the disk, a magnetic tape, or a pipe.

Example
$ ls | cpio -ov > /tmp/object.cpio

$cpio -idv < /tmp/object.cpio

2.4 PRE LAB QUESTION

 1. What is grep command?

 2. What is CLI?

2.5 LAB ASSIGNMENT

1. Write a sed command to check the length of a line from a text file.

2. Write a command to display files in given directory.

2.6 POST LAB QUESTIONS

1. How many shell scripts come with Linux operating system?

2. What are the three modes of operation of vi editor? Explain in brief.

16

EXPERIMENT - 3

 SHELL PROGRAMMING - I

 3.1 OBJECTIVE:

a) To write a shell script to print all .txt files and .c files

b) To write a shell script to move a set of files to a specified directory.

c) To write a shell script to display all the users who are currently logged in after a specified time.

d) To write a shell script to wish the user based on the login time.

3.2 RESOURCES:
Linux operating system, vi-editor, shell-interpreter

3.3 PROGRAM LOGIC:

Read a list of files from current directory and display output as for requirement.

 3.4 DESCRIPTION / PROCEDURE

1. Open Linux Operating System Command Line Interface.

2. Open vi editor and type shell script.

3. Save file and exit from vi editor.

4. Execute shell script

5. Press ctrl +z to exit from process.

1. To write a shell script to print all .txt files and .c files

 script: vi list.sh

 echo list all text and c files to output stream

echo ls *.txt *.c

Input :
$sh list.sh

Output:
list all text and c files to output stream

fact.c, file.c, emp.txt

2. To write a shell script to move a set of files to a specified directory.

 script: vi mov.sh

echo "enter source filename"

read sname

echo "enter directory name"

read dname

if [-f $sname -a -d $dname]

then

mv $sname $dname

else

echo "file or directory doesnt exists"

17

fi

Input :
$sh mov.sh

enter source filename

f1

enter directory name

orc

Output:
Output: file is moved to destination directory.

3. To write a Shell program to display all the users who are currently logged in after a specified time.

script: vi mov.sh

echo "enter time to list specified users who login after specified time"

read time1

for i in `who|tr -s " " "|"|cut -d "|" -f1`

do

t=`who|tr -s " " "|"|cut -d "|" -f4|cut -c1,2`

for s in $t

do

if [$time1 -ge $s]

then

echo $i

fi

done

done

Input :
$sh users.sh

enter time to list specified users who login after specified time

12

Output:
Iare10273

4. Write a Shell Program to wish the user based on the login time.

 script: vi mov.sh

echo "displaying message based on login time"

hours=`who am i|tr -s " " "|"|cut -d "|" -f4|cut -c1,2`

 if [$hours -le 12]

 then

 echo "Good Morning"

 else

 if [$hours -le 16]

 then

 echo "Good Afternoon"

 elif [$hours -le 20]

 then

 echo "Good Evening"

 else

 echo "Good Night"

 fi

 fi

18

Input :
$sh wish.sh

Output:
displaying message based on login time

Good Afternoon

3.5 PRE LAB QUESTION

 1. Define shell script? What is the difference between shell and kernel.

2. Name few file handling commands present in unix.

3.6 LAB ASSIGNMENT

1. Write a shell script to count number of words present in a file without using commands.

2. Write a menu driven shell script to execute a command as 1.for `ls`, 2 for grep and 3 for cat.

3.7 POST LAB QUESTIONS

1. What is the purpose of case statement?

2. What the difference between break and exit statement?

19

EXPERIMENT - 4

 SHELL PROGRAMMING - II

 4.1 OBJECTIVE:

a) Write a Shell program to pass a message to a group of members, individual member and all.

b) Write a Shell program to count the number of words in a file.

c) Write a Shell program to calculate the factorial of a given number.

d) Write a Shell program to generate Fibonacci series.

4.2 RESOURCES:
Linux operating system, vi-editor, shell-interpreter

4.3 PROGRAM LOGIC:

Read a list of files from current directory and display output as for requirement.

 4.4 DESCRIPTION / PROCEDURE

1. Open Linux Operating System Command Line Interface.

2. Open vi editor and type shell script.

3. Save file and exit from vi editor.

4. Execute shell script

5. Press ctrl +z to exit from process.

1. To write a Shell program to pass a message to a group of members, individual member and all.

 script: vi message.sh

echo “Enter the choice to send the message 1- Group,2-Individual,3-All,4.invalid”

read choice

echo “enter the message”

read msg

case $choice in

 1)write $* $msg ;;

 2)echo “enter the username”

 read username

 write $username $msg;;

 3)wall $msg ;;

 *)echo “Invalid Entry”

esac

20

Input :
$sh list.sh

Output: based on choice.

2. To Write a Shell program to count the number of words in a file.

 script: vi wc1.sh

echo "displaying number of words of given file"

echo "enter source filename"

read sname

if [-f $sname]

then

wc -l $sname

else

echo "file doesnt exists"

fi

Input :
$sh wc1.sh

enter source filename

f1

Output:
displaying number of words of given file.

23 f1

3. To Write a Shell program to calculate the factorial of a given number.

script: vi fact.sh

i=2

res=1

echo "enter number to find factorial"

read num

if [$num -ge 2]

then

while [$i -le $num]

do

res=`expr $res * $i`

i=`expr $i + 1`

done

fi

echo factorial of given number is $res

Input :
$sh fact1.sh

enter number to find factorial

5

Output:
factorial of given number is 120

4. To write a Shell program to generate Fibonacci series.

 script: vi fib.sh

echo -n "Enter How many numbers:"

21

read num

num1=0

num2=1

echo -n "Fibonacci series: "

echo -n "$num1"

echo -n " $num2 "

count=2

while [$count -lt $num]

do

num3=`expr $num1 + $num2`

echo -n " $num3 "

num1=$num2

num2=$num3

count=`expr $count + 1`

done

Input :
$sh fib.sh

Output:
 Enter How many numbers:

5

Fibonacci series 0 1 1 2 3

4.5 PRE LAB QUESTION

1. What are positional parameter and name any two.

2. Write down the syntax of `if` statement.

4.6 LAB ASSIGNMENT

1. Read two string str1 and str2 and check

i) Compare two strings

ii) Palindrome or not

4.7 POST LAB QUESTIONS

 1. What is the purpose of the variable $? What are the various output it has?

22

EXPERIMENT - 5

SIMULATING COMMANDS I

 5.1 OBJECTIVE:

a) Simulate cat command

b) Simulate cp command

5.2 RESOURCES:
Linux operating system, vi-editor, C compiler

5.3 PROGRAM LOGIC:

Read a list of arguments and implement commands using system calls.

 5.4 DESCRIPTION / PROCEDURE

1. Open Linux Operating System Command Line Interface.

2. Open vi editor and type program.

3. Save file and exit from vi editor.

4. Execute c program.

5. Press ctrl +z to exit from process.

1. To write a program to simulate cat command.

 script: vi cat1.c

#include<fcntl.h>

#include<sys/stat.h> #define BUFSIZE 1

int main(int argc, char **argv)

{

int fd1; int n; char buf;

fd1=open(argv[1],O_RDONLY); printf("Displaying content of file\n");

while((n=read(fd1,&buf,1))>0)

{

printf("%c",buf); /* or

write(1,&buf,1); */

}

return (0);

}
Input :

$ cc prog11a.c unit1
 Output:

Displays content of file

2. To Write a program to simulate cp command

 script: vi cp1.c

#include<stdio.h>

#include<unistd.h>

#include<sys/types.h>

#include<string.h>

23

void main()

{

char src[10], dest[10], buff; int fd,fd1;

printf("enter the source file name \n"); scanf("%s\n",src); fd=open("src",O_RDONLY); printf("enter the destination

file name\n" scanf("%s\n",dest);

fd1=open("dest",O_WRONLY|O_CREAT|O_TRUNC|S_IRUSR|S_IWUSR); while(read(fd,&buff,1));

wirte(fd1,&buff,1);

printf("The copy of a file is successed"); close(fd);

close(fd1); }

Input :
cc prog10.c

./a.out

entr the source file name: file1

enter the destination file name: file2

Output:
The copy of a file is successes

5.5 PRE LAB QUESTION

1. What is the difference between $* and $@.

2. How to read a variable ,assign ,and access it

5.6 LAB ASSIGNMENT

1. Read a file name from command line and check it‟s a file or not.
2. Read a file name from command line and check if it read and write permission or not.

5.7 POST LAB QUESTIONS

 1. Explain how to check file is existing or not, it has read, write and execution permissions or not.

24

EXPERIMENT - 6

 SIMULATING COMMANDS II

 6.1 OBJECTIVE:

a) Simulate tail command

b) Simulate head command

6.2 RESOURCES:
Linux operating system, vi-editor, C compiler

6.3 PROGRAM LOGIC:

Read a list of arguments and implement commands using system calls.

 6.4 DESCRIPTION / PROCEDURE

6. Open Linux Operating System Command Line Interface.

7. Open vi editor and type program.

8. Save file and exit from vi editor.

9. Execute c program.

10. Press ctrl +z to exit from process.

1. To write a program to simulate tail command.

 script: vi tail1.c

#include<stdio.h>

#include<conio.h>

#include<string.h>

main()

{

 FILE *fp;

 char str[80];

 int n,i=0;

 printf("enter the number of lines need to print");

 scanf("%d",&n);

 fp=fopen("head.c","r");

 while(!feof(fp))

 { fgets(str,80,fp);

 i++;

 }

rewind(fp);

n=i-n;

i=0;

while(!feof(fp))

 { fgets(str,80,fp);

 i++;

25

 if(i>n)

 printf("%s",str);

 }

 getch();}
Input :

cc tail1.c
Displaying content of file
5

 Output:
Displays content of file last 5 lines

2. To Write a program to simulate head command

 script: vi head1.c

#include<stdio.h>
#include<string.h>
main()
{
 FILE *fp;
 char str[80];
 int n,i=0;
 printf("enter the number of lines need to print");
 scanf("%d",&n);
 fp=fopen("fact1.sh","r");
 while(!feof(fp))
 {
 fgets(str,80,fp);
 i++;
 printf("%d %s",str);

 if(i==n)
 break;
 }
 }
Input :
cc head1.c

./a.out

enter the number of lines need to print

5

Output:
Displays first 5 lines to output stream

6.5 PRE LAB QUESTION

1. What is meant by file descriptor and user file descriptor starts from which number

26

6.6 LAB ASSIGNMENT

1. Write a c-program to count number lines in a file.

6.7 POST LAB QUESTIONS

 1. What are the file descriptors values of keyword, monitor, error.

 2. What is the use of lseek() function

27

EXPERIMENT - 7

SIMULATING COMMANDS III

 7.1 OBJECTIVE:

a) Simulate mv command

b) Simulate nl command

7.2 RESOURCES:
Linux operating system, vi-editor, C compiler

7.3 PROGRAM LOGIC:

Read a list of arguments and implement commands using system calls.

 7.4 DESCRIPTION / PROCEDURE

11. Open Linux Operating System Command Line Interface.

12. Open vi editor and type program.

13. Save file and exit from vi editor.

14. Execute c program.

15. Press ctrl +z to exit from process.

1. To write a program to simulate mv command.

 script: vi mv1.c

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

main()

{

int fd,n;

char c;

fd1=open(“abc.c”,O_RDONLY,0644);

fd2=open(“xyz.c”,O_WRONLY,0644);

while((n=read(fd1,&c,1))>0)

write(fd2,&c,n);

unlink(“abc.c”)

}
Input :

cc mv1.c

 Output:
Success if source file exists

2. To Write a program to simulate nl command

 script: vi nl1.c

#include<stdio.h>

28

#include<string.h>
main()
{
 FILE *fp;
 char str[80];
 int i=0;
fp=fopen("fact1.sh","r");
 while(!feof(fp))
 {
 fgets(str,80,fp);
 i++;
 printf("%d %s",i,str);
 }
 }
Input :
cc nl1.c

./a.out

enter the number of lines need to print

5

Output:
Displays first 5 lines to output stream with line number

7.5 PRE LAB QUESTION

1. What is the difference between open() and fopen()?

7.6 LAB ASSIGNMENT

1. Write a c-program to count number words in a file.

7.7 POST LAB QUESTIONS

 1. What is the difference between read(), write() and scanf, printf respectively

29

EXPERIMENT - 8

SIGNAL HANDLING

 8.1 OBJECTIVE:

Write a program to handle the signals like SIGINT, SIGDFL, SIGIGN

8.2 RESOURCES:
Linux operating system, vi-editor, C compiler

8.3 PROGRAM LOGIC:

Read a list of arguments and handle signals using system calls.

 8.4 DESCRIPTION / PROCEDURE

16. Open Linux Operating System Command Line Interface.

17. Open vi editor and type program.

18. Save file and exit from vi editor.

19. Execute c program.

20. Press ctrl +z to exit from process.

1. To write a program to simulate mv command.

Program:

a) #include <signal.h>

#include <stdio.h>

#include <unistd.h>

 int x = 1;

 void intr(int sig) {

 printf("dividing by zero!\n");

 x = 0;

 }

void fpe(int sig) {

 printf("FPE! I got a signal: %d\n",sig);

 psignal(sig, "psignal");

 x = 1;

}

 int main(void) {

 (void) signal(SIGINT, intr);

 (void) signal(SIGFPE, fpe);

 while(1)

 {

 printf("Hello World: %d\n",1/x);

 sleep(1);

 }

}

30

b)

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

void intr(int sig) {

 printf("Interupted");

 exit(1);

}

int main(void) {

 (void) signal(SIGINT, intr);

 while(1)

 {

 printf("to stop press /^c Cntrl + c”);

 sleep(1);

 }

}

c)

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

void q(int sig) {

printf("Interupted");

 exit(1);

 }

int main(void) {

(void) signal(SIGQUIT, q);

 while(1)

 {

 printf("to stop press Ctl^\ Cntrl + \”);

 sleep(1);

 }

}

8.5 PRE LAB QUESTION

1. What is the difference between open() and fopen()?

8.6 LAB ASSIGNMENT

1. Write a c-program to count number words in a file.

8.7 POST LAB QUESTIONS

 1. What is the difference between read(), write() and scanf, printf respectively

31

EXPERIMENT - 9

INTERPROCESS COMMUNICATIONS I

 9.1 OBJECTIVE:

 To Write a C program to implement the following IPC forms

 a) FIFO b) PIPE

9.2 RESOURCES:
Linux operating system, vi-editor, C compiler

9.3 PROGRAM LOGIC:

Read a list of arguments and exchange data between processes using system calls.

 9.4 DESCRIPTION / PROCEDURE

21. Open Linux Operating System Command Line Interface.

22. Open vi editor and type program.

23. Save file and exit from vi editor.

24. Execute c program.

25. Press ctrl +z to exit from process.

Program:

a) To write a program to implement PIPE IPC.

--sending----

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

int main()

{

 int fd;

 char * myfifo = "/tmp/myfifo";

 /* create the FIFO (named pipe) */

 mkfifo(myfifo, 0666);

 /* write "Hi" to the FIFO */

 fd = open(myfifo, O_WRONLY);

 write(fd, "Hi", sizeof("Hi"));

 close(fd);

 unlink(myfifo);

 return 0;

}

---reciving----

32

#include <fcntl.h>

#include <stdio.h>

#include <sys/stat.h>

#include <unistd.h>

#define MAX_BUF 1024

int main()

{

 int fd;

 char * myfifo = "/tmp/myfifo";

 char buf[MAX_BUF];

 /* open, read, and display the message from the FIFO */

 fd = open(myfifo, O_RDONLY);

 read(fd, buf, MAX_BUF);

 printf("Received: %s\n", buf);

 close(fd);

 return 0;

}

b) To write a program to implement PIPE IPC.

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

main()

{

int pid,pfd[2],n,a,b,c;

if(pipe(pfd)==-1)

{

printf("\nError in pipe connection\n");

exit(1);

}

pid=fork();

if(pid>0)

{

printf("\nParent Process");\

printf("\n\n\tFibonacci Series");

printf("\nEnter the limit for the series:");

scanf("%d",&n);

close(pfd[0]);

write(pfd[1],&n,sizeof(n));

close(pfd[1]);

exit(0);

}

else

{

close(pfd[1]);

read(pfd[0],&n,sizeof(n));

printf("\nChild Process");

33

a=0;

b=1;

close(pfd[0]);

printf("\nFibonacci Series is:");

printf("\n\n%d\n%d",a,b);

while(n>2)

{

c=a+b;

printf("\n%d",c);

a=b;

b=c;

n--;

}}}

9.5 PRE LAB QUESTION

1. What are process identifiers in Linux programming.

2. What is process, how you create new process?

9.6 LAB ASSIGNMENT

1. Write a program to find sum of odd numbers of parent process and sum of even numbers by
child process.

9.7 POST LAB QUESTIONS

 1. Illustrate difference between fork() and vfork() functions.

2. What are different process ids in Linux programming?

34

EXPERIMENT - 10

 MESSAGE QUEUES

 10.1 OBJECTIVE:

1. To write a C program (sender.c) to create a message queue with read and write permissions to write 3

messages to it with different priority numbers.

2. To write a C program (receiver.c) that receives the messages (from the above message queue as

specified and displays them.

10.2 RESOURCES:
Linux operating system, vi-editor, C compiler

10.3 PROGRAM LOGIC:

Read a list of arguments and exchange data between processes using system calls.

 10.4 DESCRIPTION / PROCEDURE

26. Open Linux Operating System Command Line Interface.

27. Open vi editor and type program.

28. Save file and exit from vi editor.

29. Execute c program.

30. Press ctrl +z to exit from process.

Program:

a) To write a C program (sender.c) to create a message queue with read and write permissions to write 3

messages to it with different priority numbers.

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdio.h>

#include <string.h>

#define MSGSZ 128

typedef struct msgbuf {

 long mtype;

 char mtext[MSGSZ];

 } message_buf;

 main()

 {

 int msqid;

 int msgflg = IPC_CREAT | 0666;

 key_t key;

 message_buf sbuf;

 size_t buf_length;

 key = 1234;

35

 (void) fprintf(stderr, "\nmsgget: Calling msgget(%#lx,\%#o)\n",key, msgflg);

 if ((msqid = msgget(key, msgflg)) < 0) {

 perror("msgget");

 exit(1);

 }

 else

 (void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid);

 sbuf.mtype = 1;

 (void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid);

 (void) strcpy(sbuf.mtext, "Did you get this?");

 (void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid);

 buf_length = strlen(sbuf.mtext) + 1 ;

 if (msgsnd(msqid, &sbuf, buf_length, IPC_NOWAIT) < 0) {

 printf ("%d, %d, %s, %d\n", msqid, sbuf.mtype, sbuf.mtext, buf_length);

 perror("msgsnd");

 exit(1);

 }

 else

 printf("Message: \"%s\" Sent\n", sbuf.mtext);

 exit(0);

 }

b) To write a C program (receiver.c) that receives the messages (from the above message queue as

specified and displays them.

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdio.h>

#define MSGSZ 128

typedef struct msgbuf {

 long mtype;

 char mtext[MSGSZ];

 } message_buf;

 main()

 {

 int msqid;

 key_t key;

 key = 1234;

 if ((msqid = msgget(key, 0666)) < 0) {

 perror("msgget");

 exit(1);

 }

 if (msgrcv(msqid, &rbuf, MSGSZ, 1, 0) < 0) {

 perror("msgrcv");

 exit(1);

 }

 printf("%s\n", rbuf.mtext);

 exit(0);}

36

10.5 PRE LAB QUESTION

1. What is the purpose of msgget(),msgsnd(),msgrcv().

2. What is structure of message queue.

10.6 LAB ASSIGNMENT

1. Implement message queues like sender and receiver, where receiver can receive the message in un-
order.

10.7 POST LAB QUESTIONS

 1. Describe use of pipe, fifos and message queues.

37

EXPERIMENT - 11

SHARED MEMORY

 11.1 OBJECTIVE:

1. To write a C program to implement shared memory form of IPC.

11.2 RESOURCES:
Linux operating system, vi-editor, C compiler

11.3 PROGRAM LOGIC:

Read a list of arguments and exchange data between processes using system calls.

 11.4 DESCRIPTION / PROCEDURE

31. Open Linux Operating System Command Line Interface.

32. Open vi editor and type program.

33. Save file and exit from vi editor.

34. Execute c program.

35. Press ctrl +z to exit from process.

Program:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#define SHMSZ 27

main()

{ char c;

 int shmid;

 key_t key;

 char *shm, *s;

 key = 5678;

 if ((shmid = shmget(key, SHMSZ, IPC_CREAT | 0666)) < 0)

 { perror("shmget");

 exit(1); }

 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1)

 { perror("shmat");

 exit(1); }

 s = shm;

 for (c = 'a'; c <= 'z'; c++)

 *s++ = c;

 *s = NULL;

 while (*shm != '*')

 sleep(1);

 exit(0);

}

shm_client.c

38

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#define SHMSZ 27

main()

{

 int shmid;

 key_t key;

 char *shm, *s;

 key = 5678;

 if ((shmid = shmget(key, SHMSZ, 0666)) < 0) {

 perror("shmget");

 exit(1); }

 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {

 perror("shmat");

 exit(1); }

 for (s = shm; *s != NULL; s++)

 putchar(*s);

 putchar('\n');

 shm = '';

 exit(0);

}

11.5 LAB VIVA QUESTIONS:

1. How many message queues can create in linux programming and what are limitations for message

queues?

2. Explain how to handle shared memory in IPC.

11.6 PRE LAB QUESTION

1. Implement message queues like sender and receiver, where sender sends number and receiver can
receive the message and find square of received number.

11.7 POST LAB QUESTIONS

1. Discuss how to attach and detach to shared memory.

39

EXPERIMENT - 12

 SOCKET PROGRAMMING

 12.1 OBJECTIVE:

1. To write client and server programs (using c) for interaction between server and client processes using

TCP Elementary functions.

2. To write client and server programs (using c) for interaction between server and client processes using

UDP Elementary functions.

12.2 RESOURCES:
Linux operating system, vi-editor, C compiler

12.3 PROGRAM LOGIC:

Read a list of arguments and exchange data between processes using system calls.

 12.4 DESCRIPTION / PROCEDURE

1. Open Linux Operating System Command Line Interface.

2. Open vi editor and type program.

3. Save file and exit from vi editor.

4. Execute c program.

5. Press ctrl +z to exit from process.

Program:

1. To write client and server programs (using c) for interaction between server and client processes using

TCP Elementary functions.

client.c

#include<stdio.h>

#include<unistd.h>

#include<sys/socket.h>

#include<arpa/inet.h>

#include<netinet/in.h>

#include<string.h>

main()

{

 int lfd,cfd;

 char fub[10];

 struct sockaddr_in sa;

 lfd=socket(AF_INET,SOCK_STREAM,0);

 printf("Socket was created\n");

 sa.sin_family=AF_INET;

 sa.sin_port=htons(61239);

 sa.sin_addr.s_addr=htonl(0L);

 bind(lfd,(struct sockaddr*)&sa,sizeof(sa));

 printf("Bind completed\n");

 listen(lfd,3);

 cfd=accept(lfd,0,0);

 printf("Accepted\n");

40

 read(cfd,fub,10);

 printf("Read completed\n");

 write(cfd,fub,10);

 printf("Write completed\n");

}

Server.c

#include<stdio.h>

#include<unistd.h>

#include<sys/types.h>

#include<arpa/inet.h>

#include<netinet/in.h>

#include<sys/socket.h>

main()

{

 int sfd,d;

 char buf[10];

 struct sockaddr_in sa;

 sfd=socket(AF_INET,SOCK_STREAM,0);

 printf("Socket was created\n");

 sa.sin_family=AF_INET;

 sa.sin_port=htons(61239);

 sa.sin_addr.s_addr=htons(0L);

 d=connect(sfd,(struct sockaddr*)&sa,sizeof(sa));

 if(d==0)

 {

 printf("Connected\n");

 write(sfd,"Hello",6);

 printf("Write returns : ");

 read(sfd,buf,6);

 printf("%s\n",buf);

 }

 else

 {

 printf("Not yet connected\n");

 sleep(10);

 }

}

2. To write client and server programs (using c) for interaction between server and client processes using

UDP Elementary functions.

Client.c

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>

41

#include <signal.h>
#include <unistd.h>
#define BUFSIZE 512
static void sig_usr(int);
void str_cli(FILE *fp , int sockfd , struct sockaddr *server , socklen_t len);
int main(int C, char *argv[])
{
int sd;
Struct sockaddr_in serveraddress;

/*installing signal Handlers*/

signal (SIGPIPE,sig_usr);
signal (SIGINT,sig_usr);
if (NULL==argv[1])
{
printf("Please enter the IP Address of the server\n");
exit(0);
}
if (NULL==argv[2])
{
printf("Please enter the Port Number of the server\n");
exit(0);
}
sd = socket(AF_INET, SOCK_DGRAM, 0);
if(sd < 0)
{
perror("socket");
exit(1);
}
memset(&serveraddress, 0, sizeof(serveraddress));
serveraddress.sin_family = AF_INET;
serveraddress.sin_port = htons(atoi(argv[2]));//PORT NO
serveraddress.sin_addr.s_addr = inet_addr(argv[1]);//ADDRESS
printf("Client Starting service\n");
printf("Enter Data For the server\n");
str_cli(stdin,sd ,(struct sockaddr *)&serveraddress,
sizeof(serveraddress));
}

Server.c
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>

42

#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <signal.h>
#define BUFSIZE 512
#define MYPORT 11710
#define MAXNAME 100
int main(int C, char **V)
{
int sd,n,ret;
struct sockaddr_in
38
serveraddress,cliaddr;
socklen_t length;
char clientname[MAXNAME],datareceived[BUFSIZE];
sd = socket(AF_INET, SOCK_DGRAM, 0);
if(sd < 0) {
perror("socket");
exit(1);
}
memset(&serveraddress, 0, sizeof(serveraddress));
memset(&cliaddr, 0, sizeof(cliaddr));
serveraddress.sin_family = AF_INET;
serveraddress.sin_port = htons(MYPORT);//PORT NO
serveraddress.sin_addr.s_addr = htonl(INADDR_ANY);//IP ADDRESS
ret=bind(sd,(struct sockaddr*)&serveraddress,sizeof(serveraddress));
if(ret<0)
{
perror("BIND FAILS");
exit(1);
}
for(;;)
{
printf("I am waiting\n");
/*Received a datagram*/
length=sizeof(cliaddr);
n=recvfrom(sd,datareceived,BUFSIZE,0,
(struct sockaddr*)&cliaddr , &length);
printf("Data Received from %s\n",
inet_ntop(AF_INET,&cliaddr.sin_addr,
clientname,sizeof(clientname)));
/*Sending the Received datagram back*/
datareceived[n]='\0';
printf("I have received %s\n",datareceived);
sendto(sd,datareceived,n,0,(struct sockaddr *)&cliaddr,length);
}

43

}

12.5 LAB VIVA QUESTIONS:

1. List wellknown ports for TCP and UDP.

2. What is the purpose of connect and bind function in socket?

12.6 PRE LAB QUESTION

1. Write a program to design a TCP client – server application which takes IP address, Port
number and string to be echoed as command line inputs in client application and implements
echo service.

12.7 POST LAB QUESTIONS

1. Explain about IPV6 socket address structure and compare it with IPV4 and unix socket address
 structures.

