
1

MICROCONTROLLER AND DIGITAL SIGNAL

PROCESSING LABORATORY

LAB MANUAL

Academic Year : 2019 - 2020

Course Code : AEC114

Regulations : IARE - R16

Class : VI Semester (EEE)

Prepared by

Ms.J.Sravana

Assistant Professor

Department of Electrical & Electronics Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal – 500 043, Hyderabad

2

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal – 500 043, Hyderabad

Electrical and Electronics Engineering

Vision

To produce professionally competent Electronics and Communication Engineers capable of effectively

and efficiently addressing the technical challenges with social responsibility.

Mission

The mission of the Department is to provide an academic environment that will ensure high quality

education, training and research by keeping the students abreast of latest developments in the field of

Electronics and Communication Engineering aimed at promoting employability, leadership qualities with

humanity, ethics, research aptitude and team spirit.

Quality Policy

Our policy is to nurture and build diligent and dedicated community of engineers providing a

professional and unprejudiced environment, thus justifying the purpose of teaching and satisfying the

stake holders.

A team of well qualified and experienced professionals ensure quality education with its practical

application in all areas of the Institute.

Philosophy

The essence of learning lies in pursuing the truth that liberates one from the darkness of ignorance and

Institute of Aeronautical Engineering firmly believes that education is for liberation.

Contained therein is the notion that engineering education includes all fields of science that plays a

pivotal role in the development of world-wide community contributing to the progress of civilization.

This institute, adhering to the above understanding, is committed to the development of science and

technology in congruence with the natural environs. It lays great emphasis on intensive research and

education that blends professional skills and high moral standards with a sense of individuality and

humanity. We thus promote ties with local communities and encourage transnational interactions in

order to be socially accountable. This accelerates the process of transfiguring the students into complete

human beings making the learning process relevant to life, instilling in them a sense of courtesy and

responsibility.

3

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

Electrical & Electronics Engineering

Program Outcomes

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,
and an engineering specialization to the solution of complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences,
and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the
public health and safety, and the cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with
an understanding of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions
in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of
the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary Settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports
and design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one‟s own work, as a member and leader in a team,
to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes

PSO 1 Problem Solving: Exploit the knowledge of high voltage engineering in collaboration with power

systems in innovative, dynamic and challenging environment, for the research based team work.

PSO 2 Professional Skills: Identify the scientific theories, ideas, methodologies and the new cutting edge

technologies in renewable energy engineering, and use this erudition in their professional

development and gain sufficient competence to solve the current and future energy problems

universally.

PSO 3 Modern Tools in Electrical Engineering: Comprehend the technologies like PLC, PMC, process

controllers, transducers and HMI and design, install, test, maintain power systems and industrial

applications..

4

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal – 500 043, Hyderabad

ATTAINMENT OF PROGRAM OUTCOMES

& PROGRAM SPECIFIC OUTCOMES

S. No.

Experiment

Program

Outcomes

Attained

Program

Specific

Outcomes

Attained

1
 Design and develop an assembly language program using 8086 microprocessor and to show the
following aspects, programming execution debugging to demonstrate the tool chain for WIN862 and

hardware for 8086 microprocessor.

PO1, PO2

PSO1

2

a) Write an ALP program to perform 8 Bit arithmetic operations
using 8051

b) Write an ALP program to perform 16 Bit arithmetic operations

using 8051

PO1, PO2 PSO1

3

a) write an ALP program to count the number of ones in any

number

b) Write an ALP program to count the number of zeros in any

number

PO1, PO2 PSO1

4
Write an ALP program and verify timer/counter in
8051

PO1, PO2
PSO1,
PSO2

5 Write an ALP program to interface 8051 and keyboard PO1, PO2 PSO1

6

a) Generation of linear convolution without using built in function in

MATLAB

b) Generation of circular convolution without using built in function
in MATLAB

PO1, PO2,

PO3

PSO1,

PSO2

7
Compute the Discrete Fourier Transform and IDFT with and without

fft and ifft in MATLAB

PO1, PO2,

PO3
PSO1

8 Determination of power spectrum of a given sequence. PO1, PO2 PSO1

9 Implementation of Decimation-in-time radix-2 FFT algorithm

10 Implementation of Decimation-in-frequency radix-2 FFT algorithm PO1, PO2 PSO1

11 Implementation of LP/HP IIR digital filter
PO1, PO2,

PO3
PSO1

12 Implementation of LP/HP FIR digital filter PO1, PO2 PSO1

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

CCeerrttiiffiiccaattee

This is to Certify that it is a bonafied record of Practical work

done by Sri/Kum. bearing the

Roll No. of _ Class

 Branch in the

 _ laboratory during the

Academic year under our supervision.

Head of the Department Lecture In-Charge

External Examiner Internal Examiner

6

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal – 500 043, Hyderabad

Electrical and Electronics Engineering

Course Overview:

The aim of this course is to conduct experiments on microprocessor and microcontrollers and
interfacing 8051 microcontrollers to lcd, keyboard. This course is also useful for learning basic

signals by using mat lab software.

Course Objective:

1. Develop assembly language program for arithmetic and logical operations

using 8051.

2. Implement convolution using MATLAB.

3. Implement digital signal processing algorithms using MATLAB

7

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous) Dundigal

500 043, Hyderabad

Electrical and Electronics Engineering

INSTRUCTIONS TO THE STUDENTS

1. Students are required to attend all labs.

2. Students should work individually in the hardware and software laboratories.

3. Students have to bring the lab manual cum observation book, record etc along with them

whenever they come for lab work.

4. Should take only the lab manual, calculator (if needed) and a pen or pencil to the work area.

5. Should learn the prelab questions. Read through the lab experiment to familiarize themselves

with the components and assembly sequence.

6. Should utilize 3 hour‟s time properly to perform the experiment and to record the readings. Do
the calculations, draw the graphs and take signature from the instructor.

7. If the experiment is not completed in the stipulated time, the pending work has to be carried out

in the leisure hours or extended hours.

8. Should submit the completed record book according to the deadlines set up by the instructor.

9. For practical subjects there shall be a continuous evaluation during the semester for 25

sessional marks and 50 end examination marks.

10. Out of 25 internal marks, 15 marks shall be awarded for day-to-day work and 10 marks to be

awarded by conducting an internal laboratory test.

8

LIST OF EXPERIMENTS

Week-1 DESIGN A PROGRAM USING WIN862 AND 8086 MICROPROCESSOR

Design and develop an assembly language program using 8086 microprocessor and to show the following
aspects, programming execution debugging to demonstrate the tool chain for WIN862 and hardware for 8086

microprocessor.

Week-2 8 AND 16 BIT ARITHMETIC OPERATIONS

a)Write an ALP program to perform 8 Bit arithmetic operations using 8051

b)Write an ALP program to perform 16 Bit arithmetic operations using 8051

Week-3 NUMBER OF ZEROS AND ONES IN ANY NUMBER

a)write an ALP program to count the number of ones in any number

b)Write an ALP program to count the number of zeros in any number

Week-4 TIMER / COUNTER IN 8051

Write an ALP program and verify timer/counter in 8051

Week-5 UART OPERATION IN 8051

Write an ALP program to operate UARE in 8051.

Week-6 INTERFACE SEVEN SEGMENT DISPLAY

Write an ALP program to interface 8051 and keyboard

Week-7 ADC, DAC WITH 8051

a)write an ALP program to convert analog signal to digital signal using 8051

b)write an ALP program to convert digital signal to analog signal using 8051

Week-8 CONVOLUTION

a)Generation of linear convolution without using built in function in MATLAB

b)Generation of circular convolution without using built in function in MATLAB

Week-9 DISCRETE FOURIER TRANSFORM

Compute the Discrete Fourier Transform and IDFT with and without fft and ifft in MATLAB

Week-10 POWER SPECTRUM

Determination of power spectrum of a given sequence.

WeeK-11 DIT - FAST FOURIER TRANSFROM

Implementation of Decimation-in-time radix-2 FFT algorithm

WeeK-12 DIF - FAST FOURIER TRANSFROM

Implementation of Decimation-in-frequency radix-2 FFT algorithm

WeeK-13 IIR FILTER

Implementation of LP/HP IIR digital filter

WeeK-14 FIR FILTER

Implementation of LP/HP FIR digital filter

9

Text Books:

1. Kenneth.J.Ayala. The 8051 microcontroller, 3
rd

 Edition, Cengage learning, 2010.
2. D V Hall, “Microprocessors and Interfacing”, Tata McGraw-Hill Education, 3

rd
 Edition 2013.

3. A K ray and K M Bhurchandani, “Advanced microprocessors and peripherals”, Tata McGraw-

Hill Education, 2
nd

 Edition 2006

Reference Books:

 1.Fundamentals of Digital signal processing - LoneyLudeman, John wiley, 2009.
2.Digital signal processing: fundamentals and applications - Li Tan Elsevier, 2008.

10

PROCEDUCE AND STEPS FOR USING WIN862

 INTRODUCTION:

Features of the ESA -86/88 Microprocessor Trainer

 8086 CPU operating at 8 MHz MAX mode.

 Provision for on-board 8087 (NDP) coprocessor.

 Provision for 256 KB of EPROM & 128 KB of RAM onboard

 Battery backup facility for RAM.

 48 programmable I/O lines using two 8255‟s

 Timer1 & Timer2 signals are brought out to header pins

 Priority Interrupt Controller (PIC) for eight input using 8259A

 In standalone mode using on board keypad or with PC compatible system through its RS-232

interface

 Display is 8 seven segment LED

 Designed & engineered to integrate user‟s application specific interface conveniently at a

minimum cost.

 Powerful & user-friendly keyboard / serial monitor, support in development of
application programs.

 Software support for development of programs on Computer, the RS-232C interface cable
connecting to computer from the kit facilitates transfer of files between the trainer kit &

computer for development & debugging purposes.

 High quality reliable PCB with solder mask on both sides & clear legend prints with
maximum details provided for the user.

 SPECIFICATIONS:

CPU: Intel 8086 operating at 8 MHz in MAX mode.

MEMORY: Total 1MB of memory is in the Kit provided.

EPROM: 4 JEDEC compatible sockets for EPROM

RAM: 4 JEDEC compatible sockets for RAM

PARALLEL I/O: 48 I/O lines using two 8255

SERIAL I/O: One RS-232C compatible interface Using UART 8251A

TIMER: Three 16 bit counter / timers 8253ACounter 1 is used for serial I/O Baud rate generation.

11

 8086 Trainer Kit

PIC: Programmable Interrupt controller using 8253A provides interrupts Vectors for 8 jumpers‟

selectable Internal /External sources.

 KEYBOARD / DISPLAY:

Keyboard: keyboard on to the trainer.

Display:8 seven segment displays

 INTERRUPTS:

NIM: Provision for connecting NMI to a key switch

INTR: Programmable Interrupt controller using 8259A provides Interrupt vectors for 8 jumpers
selectable Internal/ External Sources.

 INTERFACE BUS SIGNALS:

CPU BUS: All address, data & control lines are TTL compatible & are terminated in berg strip header.

PARALLEL I/O: All signals are TTL compatible & Terminated in berg strip header For PPI expansion.

SERIAL I/O: Serial port signals are terminated in Standard 9-pin „D type connector.

12

 MONITOR SOFTWARE:

128KB of serial / Keyboard monitor with Powerful commands to enter verify and Debug user programs,

including onboard Assemble and disassemble commands.

 COMPUTER INTERFACE:

This can be interfaced to host computer System through the main serial port, alsoFacilitates uploading,
downloading of Intel Hex files between computer and the trainer.

 I/O decoding:

IC U30 is used for on card I/O decoding. The following table gives the list of on card I/O devices and

their address map.

I/O device I/O address I/O register usage

8255 I (U14)

FFCO PORT A AVAILABLE TO USER
FFC2 PORT B

FFC4 PORT C

FFC6 CONTROL PORT

8255 II (U15)

FFC1 PORT A AVAILABLE TO USER
FFC3 PORT B

FFC5 PORT C

FFC7 CONTROL PORT

8253 A(U28)

FFC9 TIMER 0 AVAILABLE TO
USER

FFCB TIMER 1 USED FOR BAUD
RATE

FFCD TIMER 2 AVAILABLE TO
USER

FFCF CONTROL AVAILABLE TO
USER

8251A (U13) FFD0 DATA COMMAND
PORT STATUS

FFD2

INPUT PORT TO

DIP SWITCH

(SW1)

 USED AS I/P PORT

TO READ SW1

AND CONFIGURE
86ME

8259A (U12) FFD8 TO FFDE PRIORITY

INTERRUPT

CONTROLLER

POWER REQUIREMENTS:

+5V DC with 1300 mA current rating (Max).

13

 OPERATING CONFIGURATION:

Two different modes of operation trainer are possible. They are

(i) Serial operation

(ii) Keypad operation

The first configuration requires a computer system with an RS-232C port, can be used as the

controlling device. When a computer system is interfaced to trainer, the driver program must be resident in

the computer system.

The second mode of operation is achieved through Onboard KEYBOARD / DISPLAY. In this

mode, the trainer kit interacts with the user through a computer keyboard and 16x2 LCD Display. This

configuration eliminates the need for a computer and offers a convenient way for using the trainer as a

stand – alone system.

 EXECUTION PROCEDURE FOR 8086 (for registers):

i) Writing a alp PROGRAM into processor:

Switch On Power Supply

Check if DIP switches board is in serial or keyboard mode (Serial mode = 1 on, Board mode

= 4 On)

Press Reset

Press „EB‟(Examine Byte)

Enter Starting Memory location (Ex: 2000)

Press next button, Enter OP-Code value

Then press next button Enter 2
nd

 memory location and op code

.

.

.

Enter up to nth values

Execution:

Press Exec. Button

Press Go enter starting memory location

Press Exec.

Press ER (Examine Register)

Press AX (Now see the result in Ax)

14

 EXECUTION PROCEDURE FOR 8086 (for memory locations):

ii) Writing a alp PROGRAM into processor:

Switch On Power Supply

Check if DIP switches board is in serial or keyboard mode (Serial mode = 1 on, Board mode

= 4

On)

Press Reset

Press „EB‟ (Examine Byte)

Enter Starting Memory location (Ex: 2000)

Press next button, Enter OP-Code value

Then press next button Enter 2
nd

 memory location and op code

.

.

.
Enter up to nth values

Execution:

Press Exec. Button

Press Go enter starting memory location

Press Exec.

Press EB give input memory location and input values

Press Exec.

Press Go Give starting memory location

Press Exec.

Press Go Now observe the results in memory location

 WIN862 Software procedure:

Registers:
Step 1: Open Win862 icon on desktop (see Fig.1) and opened Window see fig. 2

1. 2.

15

Step 2: Click on Assembler and give starting address (Like 0000:4000) then press Enter button.

Step 3: Then write 1
st
 Instruction then press enter button.

Step 4: Then write 2
nd

 Instruction then press enter button.

Step 5: Then write up to n
th

 Instruction then press enter button and close the Assembler window.

Step 6: Now click on Dis Assembler and give starting address (Like 0000:4000) then press enter

button.

Step 7: Click on Set PC then give starting address then press Enter button.

Step 8: Click on Run (check whether program is executed or not)

Step 9: Click on view registers and observe the results in registers.

Memory locations:

Step 1: Open Win862 icon on desktop.

Step 2: Click on Assembler and give starting address (Like 0000:4000) then press Enter button.

Step 3: Then write 1
st
 Instruction then press enter button.

Step 4: Then write 2
nd

 Instruction then press enter button.

Step 5: Then write up to n
th

 Instruction then press enter button and close the Assembler window.

Step 6: Now click on Dis Assembler and give starting address (Like 0000:4000) then press enter button.

Step 7: Click on Set PC then give starting address then press Enter button.

Step 8: Click on Run (check whether program is executed or not)

Step 9: Click on view memory

Step 10: Now enter input address

Step 11: Click on Modify and Give desired input values

Step 12: Click on Set PC. Enter initial address and press Dis-Assembler

Step 13: Click on Run (check whether program is executed or not)

Step 14: Now observe the result in view memory.

Step 15: Click on view memory and enter destination address then press enter button

16

Step 16: Now observe the result.

 INTRODUCTION OF ALS SDA 8051-MEL:

The Intel‟s family of 8bit single chip microcontroller has become very popular because of their

unique and powerful instruction set, architecture and over all philosophy. The 8051 family has three

members: 8031,8051 and 8751.the 8031 have no on-chip program memory execution is from external

program memory. The 8051 has 4k bytes of factory masked ROM and has the 8751 has 4k bytes of

EPROM.

The SDA 51-MEL is a System Design Aid for learning the operation of these Microcontroller

devices. It uses 8031/51 as the controller. It is designed to assist students and engineers in learning about

the architecture and programming of 8031/51 and designing around this Microcontroller.

The address and data bus controllers separate the 8051 microcontroller multiplexed address/data

bus, creating a 16 bit address bus and 8bit data bus.

17

The monitor program for the SDA 51-MEL is contained in 32kbytes EPROM. The monitor interacts with

the user through a CRT terminal host computer system connected through serial I/O interface or through

the PC Keyboard (AT) and 16X2 LCD display.

 SPECIFICTIONS

CPU: 8051 operating at 11.0592MHZ

MEMORY: EPROM1-one JEDEC compatible 28 pin socket to provide up to

32Kbytememory using 27256 with monitor software.

EPROM2-optional-canbe used as program memory, if ram is configured

as data only.

RAM1-one JEDEC compatible 28 pin socket to provide up to 32Kbytes of

Data memory using 62256.

RAM2-one JEDEC compatible 28 pin socket to provide up to 32Kbytes

Program/data or data memory.

I/O PARALLEL: 48 I/O lines using two 8255, terminated in two 26 headers.

I/O SERAL: One RS232 compatible interface, using one chip UART lines. The lines are terminated in a 9-pin

D-type female connector.onchip UART lines are also terminated in a 10 pin FRC connector.

TIMER: Three 16 bit counter/timer using 8253programmable timers terminated in a

20pin berg stick.

KEYBOARD: EXTERNAL PC –AT keyboard

DISPLAY: Alpha numeric LCD module (2linex 16 CHARS)

BUS SIGNALS: All address data and control signals are terminated in a 50 pin header

Connector for user expansion. Controller specific lines like port lines T0,T1, INT1 etc

are terminated in this connector.

MONITOR SOFTWARE: 32Kbytes of user of user friendly monitor software (27256) that allows

Program enter, verification, debugging and execution from the system keyboard or a CRT

Terminal or a PC functioning as a terminal. File uploading/downloading option is in serial mode

THE EXTERNAL PC: AT keyboard allows users to directly assemble /disassemble

mnemonics/instructions for 8051 using the alphanumeric LCD display

OPERATING CONFIGURATION

Two different modes of Operation SDA -51MEL are possible. They are

 serial operation

18

This configuration requires an RS232 compatible terminal as the display and command entry device.

DISPLAY

TERMINAL

RS 232 C CABLE
SDA-51-MEL

A computer system is interfaced to SDA51-MEL, a driver program must be resident in the computer

system. Driver program (b30drv for DOS,TALK setup for windows) for interfacing SDA-51 MEL to a

PC has been developed by ALS and is available to the user as an optional accessory.

Keyboard Operation

This mode of operation is achieved through on board KEYBOARD/DISPLAY. In this mode,SDA-51

MEL interacts with the user through an PC/AT Keyboard and a 16x2 alphanumeric LCD display. This

eliminates the need for a terminal / host computer and offers a convenient way for using the SDA-51

MEL as a “STAND –ALONE” system.

 SERIAL MODE:

SERIAL COMMUNICATION AND SERIAL UTILITIES

OPERATING INSTRUCTIONS

To invoke this mode press < RES> and then the < ESLR> key on the KEYBOARD to transfer

control to the CRT terminal/HOST computer the prompt “SERIAL MODE” will be appears on LCD

DISPLAY > ALS 8051/31 MONITER V1.0 is displayed on the terminal to indicate that the system

interrogation mode and ready to accept the command. All command that be entered through interrogation

modes.

SYSTEM MONITER

The SDA-51-MEL operation is controlled by monitor program stored in 32kbytes of EPROM

(U5, 27256), located at SDA-51 MEL memory map (0000-7FFF).The system executes the monitor

program when ever power is turn ON or when RESET is pressed.

In serial mode, the monitor program allows the user to perform following operations,

 Communicate with the SDA-51-MEL through the CRT terminal/HOST computer, using the on

board serial I/O interface.

 Executes user programmers in real time or single step.

19

 SET break points on program,

 Examine and modify memory locations, registers and bits in SDA-51-MEL on board

program/data memory and in the 8051‟s on chip data and register memories.

 Upload and download programmers from host computer system like PC/XT/AT(in INTEL HEX

FORMAT only)

COMMANDS AVAILABLE

HELP

Syntax: H

Gives the details of the commands used in serial mode of communication.

DISPLAY COMMAND

The command is used to display the contents of register, bit memory, internal memory, program memory

and external data memory

Syntax: D

On entering this command at the monitor command prompt, the following options are displayed.

DISPLAY(R, B, M, P, D)

The options are,

R for Registers,

B for bit memory

M for Internal memory

P for program memory

D for data memory

Press „enter‟ to terminate the command.

EDIT COMMANDS

This command is used to edit the contents of register, bit memory, internal memory, program memory

and the external data memory.

Syntax: E

On entering the command letter at the monitor command the following options are displayed.

EDIT (R, B, M, P and D).

The options are,

R for registers

P for program memory

B for bit memory

M for internal memory

20

D for data memory

During editing, the following keys can be used.

P to display the previous location N or space bar to display the next location CR to update and display the

same location.

All other keys expect 0 to 9 and A to F can be used to abort the command.

 PROGRAM EXECUTION COMMANDS:

The following commands are used to control the execution of user programs. The B and C

commands set and clear breakpoint address. The GO and Step commands cause the system to enter

execution mode from interrogation mode.

G command:

The G command initiates program execution at real time (12MHZ crystal, 1micro-second cycle).

The real-time execution mode allows the user to run the user code stored in program memory. Execution

begins when the user enters a go command in interrogation mode. Real-time execution can be controlled

by breakpoints set by the user. If program halts after executing the instruction that contained the

breakpoints address, then it returns to the interrogation mode .if the breakpoints are not used, the program

runs until the user terminates execution with a call to the address 0003H.

The different formants of this command and their functions are described below.

8051>G

Enter start address: 8000

This command begins real time execution of the user program beginning with the instruction

currently addressed by the program counter. During program execution, the following message is

displayed on the screen:

 PROGRAM EXECUTION:

Execution continues until one of the following occurs:

A break point is encountered (applies only when breakpoints are enabled)

The program attempts to execute across location 0003H.this location is reserved for system operation.

After execution if break point were not specified, then all the register contents will be displayed and the

monitor comes back to interrogation mode with the prompt „8051>‟ meaning that the it is ready to a

accept the next command

Note:

21

 The system uses the current program counter address as the start address.

 It program breakpoint or data breakpoint have been enabled then the program will be executed

the command is terminated without execution of the program.

SINGLE STEL COMMAND:

This command executes one instruction at the address in the program counter

8051>S

8051>enter star address=8000<CR>

After each instruction, the system displays the values of the updated program counter,

accumulator, data, pointer register, and stack pointer. To terminate this command press ESC or SPACE

BAR. The actual format & the output of each of the instruction is given in the section serial

communication demo

BREAK COMMAND

SET BREAK COMMAND:

SYNTAX8051

Set breakpoint: up to eight breaks can be set in the user program. After giving the command „B‟ at the

prompted with the break number, enter the break no between 1 to 8.press <CR> after the break no. And

enter the break address and press <CR>to go to conform the address and press another<CR>to go to the

next break address selection or <SP><SP>to terminate the command.

CLEAR BREAKPOINTS

SYNTAX :> C

This command prompts the user for the break no,which has to be cleared. To clear all break points, enter

the break number has to be cleared.

FILE UPLOAD FROM SDA-MEL TO PC

This option allows the user to save any program in memory as file in Intel hex format. On

entering the command „F10‟ and select option 4 on following this, the driver program prompts for the

name of the file in which the data is to be stored and enter the START & END address and

press,<CR>.the program assumes a default extension of HEX for the file. This system then receives the

data and stores it in the specified file and on completion the main menu will be displayed.

22

Ex: F10

Select option 4

Enter the file name in which the data is to be stored.

Enter START address = 8000 <CR>

ENTER END address = 805F <CR>

 FILE DOWNLOAD FROM PC TO SDA-EL-MEL

This option allows the user to transfer an Intel hex file on a floppy diskette to program/data

memory. On processing „:‟ key, the following message is displayed.

Go to the main menu by pressing F10 and select option 3

On following this, the driver program prompts for the name of the file to be downloading. Enter the file

name and press <CR>. While the transfer operation in progress, the system displays the number record be

transferred.

At the end of the transfer the main menu is displayed. Go to terminal mode press <CR>, the following

message

File received O.K. will be displayed

Ex:‟:‟

Go to the main menu by pressing F10 and select option 3

 KEY BOARD MODE OF OPERATION

 At the power on the monitor automatically goes into keyboard mode, at power on the sign on message

SDA 51/31/-STA<E> HELP appears on the LCD display.

THE FUNCTION OF SOME SPECIAL KEYS ON THE PC/AT KEYBOARD ARE LISTED BELOW

KEY

LABEL
DESCRIPTION

RESET Transfers control to the monitor at location 0000H

NXT The monitor interrupts this key as a delimiter. Different commands are
explained later .

ENTER The monitor command terminator

BMOVE Selects the monitor block move command

GO Selects the monitor go command (program execution)

PREV A monitor delimiter key, and in the next coming section its usage‟s are
explained

23

STEP Selects the monitor single step function

EREG Selects the monitor examine / modify cpu register function

EDM In combination with substitute memory command this key allows the using to
examine and modify external data memory

IDM In combination with substitute memory command this key allows the using to
examine and modify internal data memory

IBM In combination with substitute memory command this key allows the using to
examine and modify internal bit memory

EPM In combination with substitute memory command this key allows the using to
examine external program memory

EPGM Used to program EPROM‟s using EPROM programmer I/F(NIFC 03)

EPRD Used to read the EPROm contents using EPROM programmer I/F(NIFC 03)

ESRL Key to invoke serial mode

ASM Key to invoke assembler mode

DSM Key to invoke di assembler mode

BS Provides back facility in assembler mode

SUBSTITUTE MEMORY COMMAND

This command is used to examine/modify the memory functions. This command wills support

examine/modification of following memories.

 External data memory (EDM)

 External program memory(EPM)

 internal data memory(IDM)

 internal bit memory(IBM)

This command is invoked using „SMEM‟ key in the ASCII key board the message “SUBSITUTE

MEMORY” appears on the display.

Then user can select any one of above mention four memories, and enter the location address to be

Examine/modify and press <NXT> to display the data present in that memory location, now user can

modify that data byte if required then again he has to press <NXT>, now PC is incremented to show the

contents of the next memory location. If the user wants to see the content of previous location i.e. if

9005H is the current PC content &he wants to see the 9004 location content then he has to

press<PREV>key.

 EXTERNAL DATA MEMORY

<SMEM><EDM><address of memory location><NXT><new byte if required><NXT>…..<ENTER>.

This command is used to enter the data in data memory (0300H to 1FFFH,4000H to 7FFFH) or data/code

into data/program memory (8000H to FFFFH).

24

INTERNAL DATA MEMORY

<SMEM><IDM><Address of the memory location><NXT><new byte if

required><NXT>… .. <ENTER>

Internal data memory ranges from 00H to 7FH(128bytes)

INTERNAL BIT MEMORY

<SMEM><IBM><Address of the memory location><NXT><new byte if

required><NXT>… .. <ENTER>

Internal bit memory ranges from 00 to 7F(128bits) values entered must be 1 or 0 only.

EXTERNAL PROGRAM MEMORY

<SMEM><EPM><Address of the memory location><NXT<NXT>…<ENTER>

If the user attempts to edit data in this region an ERROR message will be displayed.

EXAMINE/MODIFY CPU REGISTERS COMMAND

The examine/modify register command allows the user to examine/modify the contents of CPU

registers. This command is invoked using EREG key in the ASCII keyboard, the message “which

register?”appears on the first line of LCD display then the user can select the CPU register which he

wants to examine/modify through a key designator (for the key designators see the table given below)

then if <NXT> pressed the register name in the registers sequence and its content will be displayed, the

registers display sequence if A,B,R0,R1,R2,R3,R4,R5,R6,R7,PCL,PCH,PSW,SP,DPH,DPL.

DESIGNATOR(KEY) CPU REGISTERS DESIGNATIOR(KEY) CPU REGSITERS

0 RO 8 PCL

1 R1 9 PCH

2 R2 A A

3 R3 B B

4 R4 C SP

5 R5 D DPH

6 R6 E DPL

7 R7 F PSW

EXECUTE USER PROGRAM COMMAND

The execute user program command allows user to execute a program that he has

entered/downloaded. To invoke this execute user program command press <GO> now the current PC and

its data are displayed on the LCD display and then the command is completed when the user

press<ENTER>the message “PROGRAM EXECUTED” will be displayed on the LCD display.

SYNTAX: Go<Program starting address><ENTER>

25

EX: To execute a program which is having the starting address at 8000H<GO>8000<ENTER>

SINGLE STEP COMMAND

The single step command allows the user to „instruction step‟ through his program, this command

is invoked through <STEP> key when the user press<STEP> the current PC content and data of that

location are displayed on the LCD module. The user can now change the address, if required and then

press <ENTER >,the instruction at that address is executed and its contents are displayed, now by

pressing <NXT>key the display updates to next logical address and its contents. To examine register or

memory contents at this stages press<ENTER>then <EREG>/<SMEM> or any command provided to

user in keyboard mode and again to enter single step press <ENTER>and to continue the stepping process

press<NXT><NXT>….

In this single step mode, we use INT0 with its priority bit set. A such the other interrupts are not functional.

SYNTAX:

<STEP><Starting address of user program><ENTER><NXT><NXT>…..

EX:To single step a program with starting address 9000H,and in the third step exam register command has to be

invoked to see the content of registers A,B,R0, then again come back for single stepping.

<STEP>8000<ENTER><NXT><NXT><NXT><ENTER>

<EREG><A><NXT><NXT><NXT><ENTER><STEP><ENTER><NXT>

<NXT>………….

TALK software Procedure:

First identify Location of TALK software. If it is in D drive then choose run prompt and select CMD then follow

below procedure.

D:\>

ENTER

D:\>cd comm_pack86

ENTER

D:\cd comm_pack86 >cd comm_pack86

Enter

D:\cd comm_pack86 >cd comm_pack86>cd x8086

Enter

D:\cd comm_pack86 >cd comm_pack86>cd x8086>edit file name

Enter

Enter the program

Go to file and save & go to file exit

Press x8086

Enter

26

Listing destination :d

Enter

Generate cross reference (Y/N): y

Enter

Input filename: GIVE INPUT FILE NAME.ASM

Enter

Output filename:

Enter

Link assembled: Assembled Errors:

Enter

Input filename: GIVE filename.obj

Enter

Enter offset for „cseg‟: 0(Zero)

Enter

Input file name:

Enter

Output file name :

Options<D,S,A,M,X,H,E,T,1,2,3,<CR>=Default>:h

Enter

Exit

Enter

Next selected go to talk

Going to options in settings

Comport-com1

Bit per seconds -9600

Data bit -8

Parity –none

Stop bit -1

Flow control-none

Transfer mode-ASCII key

NEXT PRESS OK

Selected options in that selected target board 8086 kit

Press ok

1
st
 selected in m.p kit as keep 1 and 5 pins ON

27

Then go to options disconnected and connected, press reset button in kit

Display –als-86 monitor

Go file selected download Intel hex. File<comm._pack86>,<openx8086>,<filename>open

Enter

Display #

Next selected in kit 1&7 pins keeps ON and press reset button in kit

Selected in G

Give the address and press enter

28

EXPERIMENT -1

DESIGN A PROGRAM USING WIN862 AND 8086 MICROPROCESSOR

AIM: -

To write an assembly language program for Addition of two 16-bit numbers.

 COMPONENTS & EQUIPMENT REQUIRED: -

S.No Device Range / Rating
Quantity (in No’s)

1 8086 microprocessor kit/Win862 with

PC
 1

2 Keyboard 1

3 RPS +5v 1

 PROGRAM:

MOV AX, 4343

MOV BX, 1111
ADD AX, BX

INT 03

 Hardware:

MEMORY
LOCATION

OP-CODE MNEMONIC
OPERAND

COMMENTS

 MOV AX,4343

MOV BX,1111

ADD AX,BX

INT 3

 Observation Table

Input Output

Register Data Register Data

AX 4343 AX

BX 1111

29

II)MULTIBYTE ADDTION
 AIM: - To write an assembly language PROGRAM for MULTIBYTE ADDITION

Components & equipment required: -

S.No Device Range / Rating
Quantity (in No’s)

1 8086 microprocessor kit/Win862 with

PC

 1

2 Keyboard 1

3 RPS +5v 1

 PROGRAM:

MOV AX,0000

MOV SI,2000

MOV DI,3000

MOV BX,2008

MOV CL,04

UP : MOV AL,[SI]

ADD AL,[BX]

MOV [DI],AL

INC SI

INC BX

INC DI

DEC CL

JNZ UP

INT 03

Hardware:

MEMORY

LOCATION

OP-CODE MNEMONIC

OPERAND

COMMENTS

 MOV AX,0000

MOV SI,2000

MOV DI, 3000

MOV BX, 2008

MOV CL, 04 MOV

AL, [SI] ADD AL,

[BX] MOV [DI], AL

INC SI

INC BX

INC DI

DEC CL

30

JNZ UP

INT 3

Observation Table:

Input Output

MEMORY

LOCATION

Data
MEMORY

LOCATION

Data
MEMORY

LOCATION

Data

2000 2008 3000

2001 2009 3001

2002 200A 3002

2003 200B 3003

2004

2005

2006

2007

SUBTRACTION:

i) 16 bit subtraction

AIM: -
To write an assembly language PROGRAM for subtraction of two 16-bit numbers.

COMPONENTS & EQUIPMENT REQUIRED: -

S.No Device Range / Rating
Quantity (in No’s)

1 8086 microprocessor kit/Win862
with PC

 1

2 Keyboard 1

3 RPS +5v 1

PROGRAM:

MOV AX, 4343
MOV BX, 1111

SUB AX, BX

31

INT 03

 HARDWARE:

MEMORY

LOCATION
OP-CODE MNEMONIC

OPERAND
COMMENTS

 MOV AX,4343

MOV BX,1111

SUB AX,BX

INT 03

OBSERVATION TABLE:

Input Output

Register Data Register Data

AX 4343 AX 3232

BX 1111

i) MULTIBYTE SUBTRACTION

AIM: - PROGRAM to perform multi byte subtraction.

COMPONENTS & EQUIPMENT REQUIRED: -

S.No Device Range / Rating
Quantity (in No’s)

1 8086 microprocessor kit/Win862
with PC

 1

2 Keyboard 1

3 RPS +5v 1

PROGRAM:

MOV AX,0000

MOV SI,2000

MOV DI,3000

MOV BX,2008

MOV CL,04

UP : MOV AL,[SI]

SUB AL,[BX]

MOV [DI],AL

INC SI

INC BX

INC DI

DEC CL

JNZ UP

INT03

32

HARDWARE

MEMORY

LOCATION
OP-CODE LABEL MNEMONIC

OPERAND
COMMENTS

UP

MOV AX,0000

MOV SI, 2000

MOV DI, 3000

MOV BX, 2008

MOV CL, 04

MOV AL, [SI]

SUB AL, [BX]

MOV [DI], AL

INC SI

INC BX

INC DI

DEC CL

JNZ UP

INT 03

OBSERVATION TABLE:

Input Output

MEMORY

LOCATION

Data MEMORY

LOCATION

Data MEMORY

LOCATION

Data

2000 2008 3000

2001 2009 3001

2002 200A 3002

2003 200B 3003

2004

2005

2006

2007

C) MULTIPLICATION

i) 16 bit multiplication

33

AIM: -
To write an assembly language PROGRAM for multiplication of two 16-bit numbers.

COMPONENTS & EQUIPMENT REQUIRED: -

S.No Device Range / Rating Quantity (in No’s)

1 8086 microprocessor kit/Win862with
PC

 1

2 Keyboard 1

3 RPS +5v 1

PROGRAM:

i) Software
MOV AX, 4343

MOV BX, 1111

MUL BX

INT 03

Hardware

MEMORY

LOCATION

OP-CODE LABEL MNEMONIC

OPERAND

COMMENTS

 MOV AX,4343

MOV BX,1111

MUL BX

INT 3

Observation Table

Input Output

Register Data Register Data

AX 4343 AX EA73

BX 1111 DX 047B

ii) 16 bit multiplication (signed numbers)

AIM: -
To write an assembly language PROGRAM for multiplication of two 16-bit signed numbers.

COMPONENTS & EQUIPMENT REQUIRED: -

34

S.No Device Range / Rating
Quantity (in No’s)

1 8086 microprocessor 1
 kit/Win862with PC

2 Keyboard 1

3 RPS +5v 1

 PROGRAM

MOV SI,2000

MOV DI,3000

MOV AX,[SI]

ADD SI,02

MOV BX,[SI]

IMUL BX

MOV [DI],AX

ADD DI,02

MOV [DI],DX

INT 03

Hardware

MEMORY

LOCATION
OP-CODE LABEL

MNEMONIC

OPERAND

COMMENTS

 MOV SI,2000

MOV DI,3000

MOV AX,[SI]

ADD SI,02

MOV BX,[SI]

IMUL BX

MOV [DI],AX

ADD DI,02

MOV [DI],DX

INT 3

Observation Table

Input Output

MEMORY
LOCATION

Data MEMORY
LOCATION

Data

2000 3000

2001 3001

2002 3002

2003 3003

35

D) DIVISION

i) 16 bit division

AIM:-

To write an assembly language PROGRAM for multiplication of two 16-bit numbers.

COMPONENTS & EQUIPMENT REQUIRED: -

S.No Device Range / Rating
Quantity (in No’s)

1 8086 microprocessor kit/Win862
with PC

 1

2 Keyboard 1

3 RPS +5v 1

PROGRAM

 I) Hardware

MOV AX, 4343

MOV BX, 1111

DIV BX

INT 03

MEMORY
LOCATION

OP-CODE LABEL MNEMONIC
OPERAND

COMMENTS

 MOV AX,4343

MOV BX,1111

DIV BX

INT 3

Observation Table

Input Output

Register Data Register Data

AX 4343 AX 0003

BX 1111 DX 03F2

 RESULT:

 PRE LAB QUESTIONS:

 1.How many bit 8086microprocessor is?

 2.What is the sizeof data bus of8086?

36

 3.What is the sizeof address bus of 8086?

 4.What is the maxmemoryaddressing capacityof 8086?

 5.Which arethe basicparts of8086?

 6.Write analpprogram formultiplicationanddivisionoftwo 16bit numbers?

POST LAB QUESTIONS:

1. How to move data from one register to other

2. To swapping the data what type register used

3. What are the advantages of maximum mode

37

EXPERIMENT NO 2

 PROGRAMMING USING ARITHMETIC AND

LOGICALINSTRUCTIONS OF 8051

 Aim:-
Write an ALP program to perform 8 bit arithmetical operations by using 8051.

COMPONENTS & EQUIPMENT REQUIRED: -

S.No Device Range / Rating Quantity (in

No’s)

1 8051 trainer kit with keyboard 1
2 Talk with PC 1

3 RPS +5v 1

PROGRAM FOR ADDITION:

i) Software
Org 9000h

MOV A,#02

MOV B,#02

ADD A,B
LCALL 03

ii) Hardware

MEMORY LOCATION OPCODE LABEL MNEMONIC OPERAND

 MOV A,#02

MOV B,#02

ADD A,B
LCALL 03

OBSERVATION TABLE:

Input output

REGISTER Data REGISTER Data

A 02 A 04

B 02

38

PROGRAM FOR SUBTRACTION:

i) Software
Org 9000h

MOV A,#02

MOV B,#02

SUBB A,B
LCALL 03

ii) Hardware

MEMORY LOCATION OPCODE LABEL MNEMONIC OPERAND

8000 MOV A,#04

MOV B,#02

SUBB A,B
LCALL 03

OBSERVATION TABLE

Input output

REGISTER Data REGISTER Data

A 04 A 02

B 02

PROGRAM FOR MULTIPLICATION:

i) Software

Org 9000h
MOV DPTR,#9000H

MOVX A,@DPTR

MOV F0,A

INC DPTR
MOVX A,@DPTR

MUL AB

LCALL 03

39

ii) Hardware

MEMORY LOCATION OPCODE LABEL MNEMONIC OPERAND

8000 MOV DPTR,#9000

MOVX A,@DPTR
MOV F0,A

INC DPTR

MOVX A,@DPTR

MUL AB
LCALL 03

Observation Table

Input output

MEMORY LOCATION Data REGISTER Data

9000 03 A 06

9001 02

PROGRAM FOR DIVISION:

i) Software

Org 9000h
MOV DPTR,#9000H

MOVX A,@DPTR

MOV R0,A

INC DPTR
MOVX A,@DPTR

MOV F0,A

MOV A,R0
DIV AB
INC DPTR

MOV @DPTR,A

LCALL 03

40

ii)Hardware

MEMORY LOCATION OPCODE LABE
L

MNEMONIC OPERAND

 MOV DPTR,#9000
MOVX A,@DPTR

MOV R0,A

INC DPTR

MOVX A,@DPTR
MOV F0,A

MOV A,R0

DIV AB
INC DPTR

MOV @DPTR,A

LCALL 03

OBSERVATION TABLE:

Input Output

MEMORY LOCATION Data REGISTER Data

9000 03 A 06

9001 02

LOGICAL OPERATIONS:

AIM:-

To perform logical operations by using 8051.

COMPONENTS & EQUIPMENT REQUIRED: -

S.No Device Range / Rating Quantity

(in

No’s)
1 8051 trainer kit with keyboard 1

2 Talk with PC 1

3 RPS +5v 1

4 RS – 232 1

PROGRAM FOR AND OPERATION:

i) Software

ii) Hardware

Org 9000h

MOV R0,#DATA 1

MOV A,#DATA 2
ANL A,R0

MOV R1,A

 LCALL 03

41

MEMORY LOCATION OPCODE LABEL MNEMONIC OPERAND

 MOV R0,#DATA 1

MOV A,#DATA 2

ANL A,R0

MOV R1,A

LCALL 03

OBSERVATION TABLE:

Input Output

Register Data Register Data

R0 R1

A

PROGRAM FOR OR OPERATION:

i) Software
Org 9000h
MOV R0,#DATA 1

MOV A,#DATA 2

ORL A,R0

MOV R1,A

LCALL 03

ii) Hardware

MEMORY LOCATION OPCODE LABEL MEMONIC OPERAND

 MOV R0,#DATA 1

MOV A,#DATA 2
ORL A,R0
MOV R1,A

LCALL 03

OBSERVATION TABLE:

Input Output

REGISTER Data REGISTER Data

R0 R1

A

PROGRAM FOR XOR OPERATION:

i) Software

Org 9000h
MOV R0,#DATA 1
MOV A,#DATA 2

42

XRL A,R0

MOV R1,A

LCALL 03

ii) Hardware

MEMORY LOCATION OPCODE LABEL MEMONIC OPERAND

 MOV R0,#DATA 1

MOV A,#DATA 2 XRL
A,R0

MOV R1,A LCALL 03

OBSERVATION TABLE:

Input output

REGISTER Data REGISTER Data

R0 R1

A

RESULT:

PRE LAB QUESTIONS:
1. What is the function of01h ofInt 21h?

2. What is the function of02h ofInt 21h?

3. What is the function of09h ofInt21h?

4. What is the function of0Ah of Int 21h?
5. What is the function of 4ch ofInt 21h?

POST LAB QUESTIONS:

1. What do u mean by emulator

2. What is the size of flag register

3. What are ASCII codes for nos. 0 to F

4. Which no. representation system you have used

43

EXPERIMENT NO 3

NUMBER OF ZEROS AND ONE’S IN ANY NUMBER

 AIM:-
Write an ALP program to Perform number of zeros and one‟s in any number.

 COMPONENTS & EQUIPMENT REQUIRED: -

S.No Device Range / Rating Quantity (in

No’s)

1 8051 trainer kit with keyboard 1

2 Talk with PC 1

3 RPS +5v 1

4 RS – 232 1

5 FRC cables 1

 PROGRAM FOR AND OPERATION:

HARDWARE:

 Mov r1,#00

Mov r2,#00

Mov r7,#08

Mov a,#20

L1: RLC A

JC L2

Inc r1

Sjmp L3

L2:inc R2

L3:DJNZ R7,L1

Lcall 03

OBSERVATION TABLE:

MEMORY LOCATION OPCODE LABEL MEMONIC OPERAND

9000 Mov r1,#00

Mov r2,#00

Mov r7,#08

Mov a,#20

L1: RLC A

JC L2

Inc r1

Sjmp L3

44

L2:inc R2

L3:DJNZ R7,L1

Lcall 03

OBSERVATION TABLE:

Input output

REGISTER Data REGISTER Data

R0 R1

A

RESULT:

PRE LAB QUESTIONS:

1. What is the Upper 128bytes of 8051?

2. What is the PSW in 8051 ?Explain all.

3. What is the difference between 08Hand 01H functions of LCall?

4. How register banks 0,1,2,3 is selected in 8051?
5. Whichis the defaultsegmentbase: offset pairs?

POST LAB QUESTIONS:

1. Why we indicate FF as 0FF in program?

2. What is a type of queue in 8086

3. While accepting no. from user why u need to subtract 30 from that?

45

EXPERIMENT NO 4

PROGRAM AND VERIFY TIMER/COUNTER IN 8051

AIM:-

Write an ALP program to Perform Timer 0 and Timer 1 in Counter Mode and Gated Mode
operation.

COMPONENTS & EQUIPMENT REQUIRED: -

S.No Device Range / Rating Quantity

(in

No’s)
1 8051 trainer kit with keyboard 1

2 Talk with PC 1

3 RPS +5v 1

4 RS – 232 1

5 FRC cables 1

THEORY:

The 8051 has two 16 bit timer/ counters. They can be used either as a timer or event count. Each

16 bit timer accessed as two separate registers as TL0, TL1 and TH0, TH1 bytes.

PROGRAM TO VERIFY TIMER ‘0’- COUNTER MODE:

i) Software

Org 8000h
MOV A,TMOD (TMOD=89)

ORL A,#05H
MOV TMOD,A

SETB TRO (TRO=8C)
LCALL 68EAH

Loop: MOV DPTR,#0194H

MOV A,TLO (TLO=8A)

MOVX @DPTR,A

INC DPTR
MOV A,THO (THO=8C)
MOVX @DPTR,A

LCALL 6748H

SJMP LOOP

46

 Hardware

EXECUTION:

1) Short jp1 of 1&2 pins and press sw1 for manual increment
2) Short jp1 of 2&3 pins for auto increment

PROGRAM TO VERIFY TIMER ‘1’- COUNTER MODE:

i) Software

Org 8000h
MOV A,TMOD (TMOD=89)
ORL A,#50H

MOV TMOD,A
SETB TR1 (TR1=8E)

LCALL 68EAH

Loop: MOV DPTR,#0194H
MOV A,TL1 (TL1=8B)

MOVX @DPTR,A

INC DPTR
MOV A,TH1 (TH1=8D)

MOVX @DPTR,A

LCALL 6748H

SJMP LOOP

MEMORY
LOCATION

OPCODE LABEL MNEMONIC
OPERANDS

LOOP:

MOV A,TMOD

(TMOD=89) ORL

A,#05H
MOV

TMOD,A
SETB TRO

(TRO=8C)

LCALL
68EAH

MOV

DPTR,#019
4H

MOV A,TLO
(TLO=8A) MOVX
@DPTR,A
INC DPTR

MOV A,THO

(THO=8C)
MOVX

@DPTR,A

LCALL 6748H

SJMP LOOP

47

 ii)Hardware

Memory
location

OPCODE LABEL MNEMONIC

OPERANDS

LOOP:

MOVA, TMOD

(TMOD=89) ORL

A,#50H

MOV

TMOD,A

SETB TR1

(TR1=8E)

LCALL

68EAH
MOV

DPTR,#0194H

MOV A,TL1

(TL1=8B)
MOVX

@DPTR,A

INC DPTR
MOV A,TH1

(TH1=8D)

MOVX

@DPTR,A

LCALL 6748H
SJMP LOOP

EXECUTION:

2) Short jp1 of 5&6 pins and press sw2 for manual increment

3) Short jp2 of 4&5 pins for auto increment

 RESULT:

PRE LAB QUESTIONS:

1. What is the resetaddress of 8086?

2. What is the sizeof flagregister in 8086?Explain all.

3. What is the differencebetween 08Hand 01H functions ofINT21H?

4. Which is faster- Reading word size datawhosestartingaddress isat even or at odd

address of memory in 8086?

5. Whichis the defaultsegmentbase: offset pairs?

48

POST LAB QUESTIONS:

 6. Why we indicate FF as 0FF in program?
7.What is a type of queue in 8086

8.While accepting no. from user why u need to subtract 30 from that?

49

EXPERIMENT No 5

INTERFACING MATRIX/KEYBOARD TO 8051

 AIM:-

Interface a Keyboardto8051 microcontroller.

COMPONENTS & EQUIPMENT REQUIRED: -

S.No Device Range / Rating Quantity (in

No’s)

1 8051 trainer kit with keyboard 1
2 Key board module 1
3 RPS +5v 1
4 FRC cables 1
5 RS-232 cable

THEORY:

8255 is a general purpose Programmable peripheral interface device. It can be used to interface

keyboard with 8051 microcontroller. All the I/O devices require up to 3 I/O ports (Port A, Port B and Port

A) which is provided by 8255. Interface circuit also will be simple

Port A is configures as an input port to receive the row-column code.

Port B is configures as an output port to display the key(s) pressed.

Port C is configures as an output port to output zeros to the rows to detect a key.

PROGRAM:

CNTRL EQU 2043H ;CONTROL PORT ADDRESS OF 8255

PORTA EQU 2040H ;PORTA ADDRESS OF 8255

PORTB EQU 2041H ;PORTB ADDRESS OF 8255
PORTC EQU 2042H ;PORTC ADDRESS OF 8255

Software

Org 9000h

MOV A,#90H

MOV DPTR,#CNTRL

MOVX @DPTR,A
MOV B,#20H

Blink 2: MOV DPTR,#PORTB
MOV A,#FFH

MOVX @DPTR,A
MOV DPTR,#PORTC

MOV A,#00H

50

MOVX @DPTR,A

MOV A,#F0H

MOVX @DPTR,A
DJNZ B,BLNK2

Back: MOV A,#FEH

MOV B,#21H
Blink1: MOV DPTR,#PORTB

MOVX @DPTR,A

MOV DPTR,#PORTC

MOV A,#00H
MOVX@DPTR,A

MOV A,#F0H

MOVX @DPTR,A

LCALL DELAY
RL A

DJNZ B,BLNK1

SJMP BACK

Delay: MOV R0,#F7H
Oloop: MOV R1,#FFH

Iloop: DJNZ R1,ILOOP
DJNZ R0,OLOOP

RET

ii) Hardware

Memory Location OPCODE LABEL MNEMONIC OPERANDS

BLINK2:

BACK:

MOV A,#90H

MOV DPTR,#CNTRL

MOVX @DPTR,A MOV

 B,#20H

MOV DPTR,#PORTB MOV

 A,#FFH MOVX

@DPTR,A MOV

 DPTR,#PORTC MOV

 A,#00H

MOVX @DPTR,A MOV

 A,#F0H MOVX

@DPTR,A DJNZ

 B,BLNK2 MOV

 A,#FEH MOV

 B,#21H

MOV DPTR,#PORTB

51

 BLINK1:

DELAY

:

OLOOP:

ILOOP:

MOVX @DPTR,A MOV

 DPTR,#PORTC

MOV A,#00H

MOVX@DPTR,A MOV

 A,#F0H MOVX

@DPTR,A LCALL

DELAY

RL A

DJNZ B,BLNK1 SJMP

 BACK MOV

 R0,#F7H MOV

 R1,#FFH

DJNZ R1,ILOOP

DJNZ R0,OLOOP RET

RESULT:

PRE LAB QUESTIONS:

5. What is the sizeof flagregister?

6. Canyou perform 32 bit operation with 8086?How?

7. Whether8086 is compatible with Pentium processor?

8. What is 8087?Howitis different from 8086?

9. While accepting no. from user whyu need to subtract 30 fromthat?

POST LAB QUESTIONS:

1. Compare memory interfacing and IO interfacing

2. how the even odd address are for 8086

52

EXPERIMENT No 6

LINEAR CONVOLUTION AND CIRCULAR

CONVOLUTION

Aim: Generation of linear convolution without using built in function and the function convolution in

MATLAB

TOOLS REQUIRED:

1. Mat lab software

2. Personal computer

Program

clc;
close all

clear all

x=input('Enter x: ')

h=input('Enter h: ')

m=length(x); n=length(h);

X=[x,zeros(1,n)];

H=[h,zeros(1,m)]; for

i=1:n+m-1 Y(i)=0;

for j=1:m if(i-

j+1>0)

Y(i)=Y(i)+X(j)*H(i-j+1);

else

end

end

end Y

stem(Y); ylabel('Y[n]');

xlabel('-------------- >n');

title('Convolution of Two Signals without conv function');

53

CIRCULAR CONVOLUTION

Aim: Generation of circular convolution without using built in function in MATLAB

TOOLS REQUIRED:

3. Mat lab software

4. Personal computer

 Program
Clc;

close all

clear all

x=input('Enter x: ')

h=input('Enter h: ')

m=length(x); n=length(h);

X=[x,zeros(1,n)];

H=[h,zeros(1,m)]; for

i=1:n+m-1 Y(i)=0;

for j=1:m if(i-

j+1>0)

Y(i)=Y(i)+X(j)*H(i-j+1);
else

end

end

end

Y

stem(Y); ylabel('Y[n]');

xlabel(' ------------- >n');

title('Convolution of Two Signals without conv function');

54

OUTPUT AND WAVEFORMS:

55

 EXPERIMENT No 7

DFT AND IDFT OF A SEQUENCE

AIM:
DFT and IDFT of a given sequence

TOOLS REQUIRED:

5. Mat lab software

6. Personal computer

PROGRAM:

clc;

close

all; clear

all;

xn=input('Enter the sequence x(n)'); %Get the sequence from user

ln=length(xn); %find the length of the sequence

xk=zeros(1,ln); %initilise an array of same size as that of input sequence

ixk=zeros(1,ln); %initilise an array of same size as that of input

sequence

%code block to find the DFT of the sequence

%---

for k=0:ln-1

for n=0:ln-

1

xk(k+1)=xk(k+1)+(xn(n+1)*exp((-

i)*2*pi*k*n/ln)); end

end

%--

%code block to plot the input sequence

%--

t=0:ln-1;

subplot(311);

stem(t,xn);

ylabel ('Amplitude');

xlabel ('Time

56

title('Input Sequence');

%---

magnitude=abs(xk); % Find the magnitudes of individual DFT points

%code block to plot the magnitude response

%--

t=0:ln-1;

subplot(312);

stem(t,magnitude);

ylabel ('Amplitude');

xlabel ('K');

title('Magnitude Response');

%--

% Code block to find the IDFT of the sequence

%--

for n=0:ln-1

for k=0:ln-

1

ixk(n+1)=ixk(n+1)+(xk(k+1)*exp(i*2*pi*k*n/l

n)); end

end

ixk=ixk/ln

;

%--

%code block to plot the input sequence

t=0:ln-1;

subplot(313);

stem(t,ixk);ylabel ('Amplitude');xlabel ('Time Index');title('IDFT sequence');

57

OUTPUT AND WAVEFORMS:

58

Implementation of Linear convolution using DFT (Overlap-add and

Overlap-Save methods)

a)Over lap add method clc

clear all close

all

x=[1 2 3 4 5 6 7 8 9 3 5 6 7];

h=[2 2 1];
% x=input('enter x');
% h=input('enter h');
% L=input('enter L')
M=length(h) lx=length(x)

L=5;

r=rem(lx,L);
x1=[x zeros(1,L-r)];

lx1=length(x1);

nr=length(x1)/L; h1=[h

zeros(1,L-1)]; for k=1:nr

M1(k,:)=x1(((k-1)*L+1):k*L);
M2(k,:)=[M1(k,:) zeros(1,M-1)];
M3(k,:)=ifft(fft(M2(k,:)).*fft(h1)); M4(k,:)=[zeros(1,(k-1)*L) M3(k,:)

zeros(1,(nr-k)*L)];

end

y=sum(M4)

(b) Over lap save method clc;

clear all;
x=input('Enter 1st sequence X(n)= '); h=input('Enter 2nd

sequence H(n)= '); L=input('Enter length of each block L = ');

% Code to plot X(n) subplot

(2,2,1); stem(x);

stem(x,'blue'); xlabel ('n >');

ylabel ('Amplitude ------------------ >');

title('X(n)');

%Code to plot H(n)

subplot (2,2,2); stem(h);

stem(h,'black'); xlabel ('n

 ------------------------ >');

ylabel ('Amplitude ------------------ >');
title(' H(n)');

% Code to perform Convolution using Overlap Save Method

59

M=length(h);

lx=length(x);

r=rem(lx,L);

x1=[x zeros(1,L-r)];
nr=(length(x1))/L; h1=[h

zeros(1,L-1)]; for k=1:nr

Ma(k,:)=x1(((k-1)*L+1):k*L)

if k==1
Ma1(k,:)=[zeros(1,M-1) Ma(k,:)];

else

end

Ma1(k,:)=[Ma(k-1,(L-M+2):L) Ma(k,:)];

Ma2(k,:)=ifft(fft(Ma1(k,:)).*fft(h1));
end
Ma3=Ma2(:,M:(L+M-1)); y1=Ma3';

y=y1(:)'

% Representation of the Convoled Signal subplot (2,2,3:4);

stem(y,'red'); xlabel ('n

 ------------------------ >');

ylabel ('Amplitude ------------------ >');
title ('Convolved Signal');

60

EXPERIMENT-8

Implementation of Decimation-in-time radix-2 FFT algorithm

AIM:

FFT of a sequence using DIT-FFT method

TOOLS REQUIRED:

Mat lab software

Personal computer

% Direct computation of FFT

x=[1 1 0 0];

N=4;

y=fft(x,N);

stem(abs(y));

ylabel ('Amplitude');

xlabel ('N');

title('Magnitude Response');

%Matlab Program for FFT using DIT algorithm

clc; clear all; close all;

x=input('enter x[n]:');

N=length(x);

levels=nextpow2(N);

xn=[x,zeros(1,(2^levels)-

N)]; x=bitrevorder(xn)

N=length(xn);

tw=cos(2*pi*(1/N)*(0:N/2-1))-j*sin(2*pi*(1/N)*(0:N/2-

1)); for level=1:levels;

L=2^level;

twlvl=tw(1:N/L:N/2)

; for k=0:L:N-L;

for n=0:L/2-1;

61

A=x(n+k+1);

B=x(n+k+(L/2)+1)*twlvl(n+

1); x(n+k+1)=A+B;

x(n+k+(L/2)+1)=A-B;

end

end

x

end

XK

=x

n=0:N-1;

subplot(2,2,1);stem(n,xn);title('x(n)');xlabel('n');ylabel('Amplitude');

subplot(2,2,2);stem(n,real(XK));title('Real part of X(K)');xlabel('n');ylabel('Amplitude');

subplot(2,2,3);stem(n,imag(XK));title('Imag part of X(K)');xlabel('n');ylabel('Amplitude');

OUTPUT AND WAVEFORM:

enter x[n]:[1 2 3 4 4 3 2 1]

XK =

20.0000 -5.8284 - 2.4142i 0 -0.1716 - 0.4142i 0 -0.1716 + 0.4142i

0 -5.8284 + 2.4142i
1

62

EXPERIMENT-9

 Implementation of Decimation-in-frequency radix-2 FFT algorithm

AIM:

Implementation of Decimation-in-frequency radix-2 FFT algorithm

Tools Required:

Mat lab software

Personal computer

PROGRAM:
Clc;

Clear

all;

Close

all;

DECIMATION IN FREQUENCY [DIF] ALGORITHM

function q=dif(x)

t=nextpow2(length(x)); %Calculate the ndearest exponent of 2 j=[x

zeros(1,(2^t)-length(x))] ;% zero padding

N=length(j); % Length of padded structure

S=log2(N); % stages

for stage=S:-1:1 a=1;

b=1+2^(stage-1); %Initialise a and b for each stage n=0;

while(n<=2^(stage-1)-1 && a<=N && b<=N)

l=(n).*(2^(S+1-stage))./2;

e=exp((-1i)*2*pi*l/(16)); %Twiddle factor

y=j(a)+j(b);

z=(j(a)-j(b)).*e; % Butterfly structure j(a)=y;

j(b)=z;

63

a=a+1; % Increment a,b and n

b=b+1;

n=n+1;

if (stage==1)

%

Discontinuity in the butterfly

structure

if(rem(1,a)==1) % in a particular stage

a=a+2^(stage-1);

b=b+2^(stage-1); n=0;

end

end

if(stage~=1) if(rem(a,2^(stage-1))==1)

a=a+2^(stage-1); b=b+2^(stage-1);

n=0;

end

end

end

end

j=bitrevorder(j); % Bit reverse the output sequence disp(j);

q=j;

64

Implementation of IIR digital filter using Chebyshev (Type I and II) method

To Design a Chebyshev-I High pass filter for the given specifications using Matlab.

% To design a chebyshev-1 Hihpass filter for the given

specifications clf;

aphap=input('passband attenuation in db='); %passband attenuation in db

alphas=input('stopband attenuation in db=')% stopband attenuation in db

wp=.3*pi;% passband frequency in rad

ws=.2*pi;% stopband frequency in rad

%order and cutoff frequency of the filter

[n,wn]=cheb1ord(wp/pi,ws/pi,alphap,alphas);

%system function of the filter

[b,a]=cheby1(n,alphap,wn,'high');

w=0:0.01:pi;

[h,ph]=freqz(b,a,w);

m=20*log10(abs(h))

;

65

 an=angle(h);

subplot(1,2,1);

plot(ph/pi,m);

grid;

xlabel('normalised frequency');

ylabel('gain in db');

title('magnitude response');

subplot(1,2,2);

plot(ph/pi,an);

grid;

xlabel('normalised frequency');

ylabel('phase in rad');

title('phase response'); disp(b);

disp(a);

INPUTS:

passband attenuation in db=1

stopband attenuation in db=15

66

OUTPUT WAVE FORMS:

B=0.2790 -0.8371 0.8371 -0.2790

A=1.0000 -0.7794 0.5677 0.1150

67

EXPERIMENT-10

Implementation of FIR digital filter using window (Rectangular,

Hamming, Hanning, Bartlett) methods

AIM:

To Write a Matlab program of FIR Low pass and high pass filter using rectangular,

Hanning Hamming, Blackman and Kaiser window..

TOOL:

MATLAB Software 9.0

PROGRAM:

%MATLAB program of FIR Low pass filter using Hanning %Hamming, Blackman and Kaiser

window clf;

wc=.5*pi;

N=25;

w=0:0.1:pi

;

b=fir1(N,wc/pi,blackman(N+1))

; h=freqz(b,1,w);

subplot(3,2,1)

plot(w/pi,abs(h))

grid;xlabel('normalised frequency');

ylabel('magnitude in dB')

title('FIR LPF USING BLACKMAN WINDOW')

b=fir1(N,wc/pi,hamming(N+1))

; h=freqz(b,1,w);

68

subplot(3,2,2)

plot(w/pi,abs(h));

grid;

xlabel('normalised frequency');

ylabel('magnitude in dB')

title('FIR LPF USING HAMMING WINDOW')

b=fir1(N,wc/pi,hanning(N+1))

; h=freqz(b,1,w);

subplot(3,2,3)

plot(w/pi,abs(h));

grid;

xlabel('normalised frequency');

ylabel('magnitude in dB')

title('FIR LPF USING HANNING WINDOW')

b=fir1(N,wc/pi,kaiser(N+1,3.5))

; h=freqz(b,1,w);

subplot(3,2,4)

plot(w/pi,abs(h));

grid;

xlabel('normalised frequency');

ylabel('magnitude in dB')

title('FIR LPF USING KAISER WINDOW')

69

OUTPUT WAVEFORMS:

Result :

PROGRAM:

%FIR Filter design window

techniques clc;

clear all;

close all;

rp=input('enter passband ripple');

rs=input('enter the stopband ripple');

fp=input('enter passband freq');

fs=input('enter stopband freq');

f=input('enter sampling freq ');

beta=input('enter beta value');

wp=2*fp/f; ws=2*fs/f;

num=-20*log10(sqrt(rp*rs))-

13; dem=14.6*(fs-fp)/f;

70

n=ceil(num/dem);

n1=n+1; if(rem(n,2)~=0) n1=n; n=n-

1; end

c=input('enter your choice of window function 1. rectangular 2. triangular 3.kaiser: \n ');

if(c==1) y=rectwin(n1);

disp('Rectangular window filter response');

if (c==2) y=triang(n1);

disp('Triangular window filter response');

end

if(c==3) y=kaiser(n1,beta);

disp('kaiser window filter response');

end

%HPF

b=fir1(n,wp,'high',y);

[h,o]=freqz(b,1,256)

;

m=20*log10(abs(h))

; plot(o/pi,m);

title('HPF');

ylabel('Gain in dB-->');

xlabel('(b) Normalized frequency-->');

INPUT:

enter passband ripple:0.02

enter the stopband ripple:0.01

enter passband freq:1000 enter

71

stopband freq:1500 enter

sampling freq: 10000 enter

beta value:5

OUTPUT WAVEFORM:

enter your choice of window function 1. rectangular 2. triangular 3.kaiser: 2

Triangular window filter response

72

enter your choice of window function 1. rectangular 2. triangular 3.kaiser:

3

kaiser window filter response

73

EXPERIMENT-11

Implementation of FIR digital filter using frequency sampling method

AIM:

Decimation by factor D

TOOLS REQUIRED:

Mat lab software

Personal computer

PROGRAM:

N= 64; % FFT length = filter length

np = floor(N/2) + 1; % number of independent frequency points n = 0:np-1;

w = n*2*pi/N; % frequency vector

M = sin(n*pi/(np-1)); % some desired magnitude response
D = M.*exp(-1i*(N-1)/2*w); % desired complex frequency response (linear phase)

D = [D,conj(D(N-np+1:-1:2))]; % append redundant points for IFFT h = ifft(D); %

compute impulse response

max(abs(imag(h))) % should be very close to 0

h = real(h); % remove numerical inaccuracies

% check result

[H,w2] = freqz(h,1,4*N);

plot(w/2/pi,abs(D(1:np)),'.',w2/2/pi,abs(H))

OUTPUT AND WAVEFORM

Implementation of optimum equiripple FIR digital filter using window methods

AIM:

To Write a Matlab program of FIR Low pass and high pass filter using rectangular, Hanning

Hamming, Blackman and Kaiser window.

.

TOOL:

MATLAB Software 9.0

74

PROGRAM:

%MATLAB program of FIR Low pass filter using Hanning

%Hamming, Blackman and Kaiser

window clf;

wc=.5*pi;

N=25;

w=0:0.1:pi

;

b=fir1(N,wc/pi,blackman(N+1))

; h=freqz(b,1,w);

subplot(3,2,1)

plot(w/pi,abs(h))

grid;xlabel('normalised frequency');

ylabel('magnitude in dB')

title('FIR LPF USING BLACKMAN WINDOW')

b=fir1(N,wc/pi,hamming(N+1))

; h=freqz(b,1,w);

subplot(3,2,2)

plot(w/pi,abs(h));

grid;

xlabel('normalised frequency');

ylabel('magnitude in dB')

title('FIR LPF USING HAMMING WINDOW')

b=fir1(N,wc/pi,hanning(N+1))

; h=freqz(b,1,w);

subplot(3,2,3)

plot(w/pi,abs(h));

75

grid;

xlabel('normalised frequency');

ylabel('magnitude in dB')

title('FIR LPF USING HANNING WINDOW')

b=fir1(N,wc/pi,kaiser(N+1,3.5))

; h=freqz(b,1,w);

subplot(3,2,4)

plot(w/pi,abs(h));

grid;

xlabel('normalised frequency');

ylabel('magnitude in dB')

title('FIR LPF USING KAISER WINDOW')

OUTPUT WAVEFORMS:

76

PROGRAM:

%FIR Filter design window

techniques clc;

clear all;

close all;

rp=input('enter passband ripple');

rs=input('enter the stopband ripple');

fp=input('enter passband freq');

fs=input('enter stopband freq');

f=input('enter sampling freq ');

beta=input('enter beta value');

wp=2*fp/f; ws=2*fs/f;

num=-20*log10(sqrt(rp*rs))-

13; dem=14.6*(fs-fp)/f;

n=ceil(num/dem);

n1=n+1; if(rem(n,2)~=0) n1=n; n=n-

1; end

c=input('enter your choice of window function 1. rectangular 2. triangular 3.kaiser: \n ');

if(c==1) y=rectwin(n1);

disp('Rectangular window filter response');

end

if (c==2) y=triang(n1);

disp('Triangular window filter response');

77

end

if(c==3) y=kaiser(n1,beta);

disp('kaiser window filter response');

end

%HPF

b=fir1(n,wp,'high',y);

[h,o]=freqz(b,1,256)

;

m=20*log10(abs(h))

; plot(o/pi,m);

title('HPF');

ylabel('Gain in dB-->');

xlabel('(b) Normalized frequency-->');

INPUT:

enter passband ripple:0.02

enter the stopband ripple:0.01

enter passband freq:1000 enter

stopband freq:1500 enter

sampling freq: 10000 enter

beta value:5

78

OUTPUT

enter your choice of window function 1. rectangular 2. triangular 3.kaiser:

2

Triangular window filter response

enter your choice of window function 1. rectangular 2. triangular 3.kaiser:

1

Rectangular window filter response

79

enter your choice of window function 1. rectangular 2. triangular 3.kaiser:

3

kaiser window filter response

80

9. DTMF Tone Generation and Detection Using Goertzel Algorithm

AI

M:

DTMF Tone Generation and Detection Using Goertzel Algorithm

TOOLS REQUIRED:

Mat lab software

Personal computer

PROGRAM:

close all;clear all

% DTMF tone generator

fs=8000;

t=[0:1:204]/fs;

x=zeros(1,length(t));

x(1)=1;

y852=filter([0 sin(2*pi*852/fs)],[1 -2*cos(2*pi*852/fs) 1],x);

y1209=filter([0 sin(2*pi*1209/fs)],[1 -2*cos(2*pi*1209/fs)

1],x); y7=y852+y1209;

subplot(2,1,1);plot(t,y7);grid

ylabel('y(n) DTMF: number 7');

xlabel('time (second)');

title('signal tone number 7')

Ak=2*abs(fft(y7))/length(y7);Ak(1)=Ak(1)/

2; f=[0:1:(length(y7)-1)/2]*fs/length(y7);

subplot(2,1,2);plot(f,Ak(1:(length(y7)+1)/2));grid

81

ylabel('Spectrum for y7(n)');

xlabel('frequency (Hz)');

title('absolute value of signal tone number 7')

OUTPUT WAVEFORM:

82

EXPERIMENT – 12

Implementation of sampling rate conversion by decimation,

interpolation and a rational factor using MATLAB

AIM:

Sampling rate conversion by a factor I/D

TOOLS REQUIRED:

Mat lab software

Personal computer

PROGRAM:

clc; close all; clear all;

L = input('Enter Up-sampling factor :');

M = input('Enter Down-sampling factor :');

N = input('Enter number of samples :');

n = 0:N-1;

x = sin(2*pi*0.43*n) +

sin(2*pi*0.31*n); y = resample(x,L,M);

subplot(2,1,1); stem(n,x(1:N));

axis([0 29 -2.2 2.2]);

title('Input Sequence');

xlabel('Time index n');

ylabel('Amplitude'); subplot(2,1,2);

m = 0:(N*L/M)-1;

stem(m,y(1:N*L/M));

axis([0 (N*L/M)-1 -2.2

2.2]);

title('Output Sequence');

xlabel('Time index n'); ylabel('Amplitude');

83

OUTPUT AND WAVEFORM:

84

85

INTRODUCTION TO DSP PROCESSORS

86

EXPERIEMENTS

(Using DSP Kit)

A signal can be defined as a function that conveys information, generally about the state or

behavior of a physical system. There are two basic types of signals viz Analog (continuous time

signals which are defined along a continuum of times) and Digital (discrete-time).

Remarkably, under reasonable constraints, a continuous time signal can be adequately

represented by samples, obtaining discrete time signals. Thus digital signal processing is an ideal

choice for anyone who needs the performance advantage of digital manipulation along with

today‟s analog reality.

Hence a processor which is designed to perform the special operations (digital manipulations) on

the digital signal within very less time can be called as a Digital signal processor. The difference

between a DSP processor, conventional microprocessor and a microcontroller are listed below.

Microprocessor: or General Purpose Processor such as Intel xx86 or Motorola 680xx

Family

Contains - only CPU

-No RAM

-No ROM

-No I/O ports

-No Timer

MICROCONTROLLER

87

Such as 8051 family Contains - CPU

- RAM

- ROM

- I/O ports

- Timer &

- Interrupt circuitry

Some Micro Controllers also contain A/D, D/A and Flash Memory

DSP PROCESSORS

Such as Texas instruments and Analog Devices Contains

- CPU

- RAM

- ROM

- I/O ports

- Timer

Optimized for

- fast arithmetic

- Extended precision

- Dual operand fetch

- Zero overhead loop

- Circular buffering

The basic features of a DSP Processor are

88

Feature Use

Fast-Multiply accumulate Most DSP algorithms, including filtering,

transforms, etc. are multiplication- intensive

Multiple – access memory architecture Many data-intensive DSP operations require

reading a program instruction and multiple data

items during each instruction cycle for best

performance

Specialized addressing modes Efficient handling of data arrays and first-in,

first-out buffers in memory

Specialized program control Efficient control of loops for many iterative

DSP algorithms. Fast interrupt handling for

frequent I/O operations.

On-chip peripherals and I/O interfaces On-chip peripherals like A/D converters allow

for small low cost system designs. Similarly I/O

interfaces tailored for common peripherals

allow clean interfaces to off-chip I/O devices.

A digital signal processor (DSP) is an integrated circuit designed for high-speed data

manipulations, and is used in audio, communications, image manipulation, and other data-

acquisition and data-control applications. The microprocessors used in personal computers are

optimized for tasks involving data movement and inequality testing. The typical applications

requiring such capabilities are word processing, database management, spread sheets, etc. When

it comes to mathematical computations the traditional microprocessor are deficient particularly

where real-time performance is required. Digital signal processors are microprocessors

optimized for basic mathematical calculations such as additions and multiplications.

FIXED VERSUS FLOATING POINT:

89

Digital Signal Processing can be divided into two categories, fixed point and floating point

which refer to the format used to store and manipulate numbers within the devices. Fixed point

DSPs usually represent each number with a minimum of 16 bits, although a different length can

be used. There are four common ways that these 216 i,e., 65,536 possible bit patterns can

represent a number. In unsigned integer, the stored number can take on any integer value from 0

to 65,535, signed integer uses two's complement to include negative numbers from - 32,768 to

32,767. With unsigned fraction notation, the 65,536 levels are spread uniformly between 0 and 1

and the signed fraction format allows negative numbers, equally spaced between -1 and 1. The

floating point DSPs typically use a minimum of 32 bits to store each value. This results in many

more bit patterns than for fixed point, 232 i,e., 4,294,967,296 to be exact. All floating point

DSPs can also handle fixed point numbers, a necessity to implement counters, loops, and signals

coming from the ADC and going to the DAC. However, this doesn't mean that fixed point math

will be carried out as quickly as the floating point operations; it depends on the internal

architecture.

C VERSUS ASSEMBLY:

DSPs are programmed in the same languages as other scientific and engineering applications,

usually assembly or C. Programs written in assembly can execute faster, while programs written

in C are easier to develop and maintain. In traditional applications, such as programs run on PCs

and mainframes, C is almost always the first choice. If assembly is used at all, it is restricted to

short subroutines that must run with the utmost speed.

HOW FAST ARE DSPS?

The primary reason for using a DSP instead of a traditional microprocessor is speed: the ability

to move samples into the device and carry out the needed mathematical operations, and output

the processed data. The usual way of specifying the fastness of a DSP is: fixed point

90

systems are often quoted in MIPS (million integer operations per second). Likewise, floating

point devices can be specified in MFLOPS (million floating point operations per second).

TMS320 FAMILY:

The Texas Instruments TMS320 family of DSP devices covers a wide range, from a 16-bit fixed-

point device to a single-chip parallel-processor device. In the past, DSPs were used only in

specialized applications. Now they are in many mass-market consumer products that are

continuously entering new market segments. The Texas Instruments TMS320 family of DSP

devices and their typical applications are mentioned below.

C1x, C2x, C2xx, C5x, and C54x:

The width of the data bus on these devices is 16 bits. All have modified Harvard architectures.

They have been used in toys, hard disk drives, modems, cellular phones, and active car

suspensions.

C3x:

The width of the data bus in the C3x series is 32 bits. Because of the reasonable cost and

floating-point performance, these are suitable for many applications. These include almost any

filters, analyzers, hi-fi systems, voice-mail, imaging, bar-code readers, motor control, 3D

graphics, or scientific processing.

C4x:

This range is designed for parallel processing. The C4x devices have a 32-bit data bus and are

floating-point. They have an optimized on-chip communication channel, which enables a

number of them to be put together to form a parallel-processing cluster. The C4x range devices

have been used in virtual reality, image recognition, telecom routing, and parallel-processing

systems.

C6x:

The C6x devices feature Velocity, an advanced very long instruction word (VLIW) architecture

developed by Texas Instruments. Eight functional units, including two multipliers and six

91

arithmetic logic units (ALUs), provide 1600 MIPS of cost-effective performance. The C6x DSPs

are optimized for multi-channel, multifunction applications, including wireless base stations,

pooled modems, remote-access servers, digital subscriber loop systems, cable modems, and

multi-

INTRODUCTION TO TMS 320 C6713 DSK

The high–performance board features the TMS320C6713 floating-point DSP. Capable of

performing 1350 million floating point operations per second, the C6713 DSK the most

powerful DSK development board.

The DSK is USB port interfaced platform that allows to efficiently develop and test applications

for the C6713. With extensive host PC and target DSP software support, the DSK provides ease-

of-use and capabilities that are attractive to DSP engineers. The 6713 DSP Starter Kit (DSK) is a

low-cost platform which lets customers evaluate and develop applications for the Texas

Instruments C67X DSP family. The primary features of the DSK are:

92

1. 225 MHz TMS320C6713 Floating Point DSP

2. AIC23 Stereo Codec

3. Four Position User DIP Switch and Four User LEDs

4. On-board Flash and SDRAM

TI‟ s Code Composer Studio development tools are bundled with the 6713DSK providing the user

with an industrial-strength integrated development environment for C and assembly

programming. Code Composer Studio communicates with the DSP using an on-board JTAG

emulator through a USB interface. The TMS320C6713 DSP is the heart of the system. It is a core

member of Texas Instruments‟ C64X line of fixed point DSPs whose distinguishing features are

an extremely high performance 225MHz VLIW DSP core and 256Kbytes of internal memory.

On- chip peripherals include a 32-bit external memory interface (EMIF) with integrated SDRAM

controller, 2 multi-channel buffered serial ports (McBSPs), two on-board timers and an enhanced

DMA controller (EDMA). The 6713 represents the high end of TI‟ s C6700 floating point DSP

line both in terms of computational performance and on-chip resources.

The 6713 has a significant amount of internal memory so many applications will have all code

and data on-chip. External accesses are done through the EMIF which can connect to both

synchronous and asynchronous memories. The EMIF signals are also brought out to standard TI

expansion bus connectors so additional functionality can be added on daughter card modules.

DSPs are frequently used in audio processing applications so the DSK includes an on-board

codec called the AIC23. Codec stands for coder/decoder, the job of the AIC23 is to code analog

input samples into a digital format for the DSP to process, then decode data coming out of the

DSP to generate the processed analog output. Digital data is sent to and from the codec on

McBSP1.

93

The DSK has 4 light emitting diodes (LEDs) and 4 DIP switches that allow users to interact with

programs through simple LED displays and user input on the switches. Many of the included

examples make use of these user interfaces Options.

The DSK implements the logic necessary to tie board components together in a programmable

logic device called a CPLD. In addition to random glue logic, the CPLD implements a set of 4

software programmable registers that can be used to access the on-board LEDs and DIP switches

as well as control the daughter card interface.

94

AIC23 Codec

The DSK uses a Texas Instruments AIC23 (part #TLV320AIC23) stereo codec for input and

output of audio signals. The codec samples analog signals on the microphone or line inputs and

converts them into digital data so it can be processed by the DSP. When the DSP is finished with

the data it uses the codec to convert the samples back into analog signals on the line and

headphone outputs so the user can hear the output.

The codec communicates using two serial channels, one to control the codec‟s internal

configuration registers and one to send and receive digital audio samples. McBSP0 is used as the

unidirectional control channel. It should be programmed to send a 16-bit control word to the

AIC23 in SPI format. The top 7 bits of the control word should specify the register to be modified

and the lower 9 should contain the register value. The control channel is only used when

configuring the codec, it is generally idle when audio data is being transmitted, McBSP1 is used

as the bi-directional data channel. All audio data flows through the data channel. Many data

formats are supported based on the three variables of sample width, clock signal source and serial

data format. The DSK examples generally use a 16-bit sample width with the codec in master

mode so it generates the frame sync and bit clocks at the correct sample rate without effort on the

DSP side. The preferred serial format is DSP mode which is designed specifically to operate with

the McBSP ports on TI DSPs.

DSK hardware installation

95

 Shut down and power off the PC

 Connect the supplied USB port cable to the board

 Connect the other end of the cable to the USB port of PC

 Plug the other end of the power cable into a power outlet

 Plug the power cable into the board

 The user LEDs should flash several times to indicate board is operational

 When you connect your DSK through USB for the first time on a Windows

Loaded PC the new hardware found wizard will come up. So, Install the drivers (The CCS CD

contains the require drivers for C6713 DSK).

TROUBLESHOOTING DSK CONNECTIVITY

If Code Composer Studio IDE fails to configure your port correctly, perform the following steps:

Test the USB port by running DSK Port test from the start menu

Use Start->Programs->Texas Instruments->Code Composer Studio-> Code Composer Studio

C6713 DSK Tools -> C6713 DSK Diagnostic Utilities

The below Screen will appear

Select 6713 DSK Diagnostic Utility Icon from Desktop, The Screen Look like as below

Select Start Option

Utility Program will test the board

After testing Diagnostic Status you will get PASS

96

97

EXTRA Syllabus

 Implementation of DFT USING TMS 320C6713 Kit

a) Sine wave generation using lookup table with values

generated from MATLAB

AIM:

Computation of N-point DFT of a Sequence Using DSK Code composer studio

EQUIPMENTS:

TMS 320C6713 Kit.

RS232 Serial

Cable Power Cord

Operating System – Windows

XP Software – CCStudio_v3.1

98

THEORY:

In this program the Discrete Fourier Transform (DFT) of a sequence x[n] is generated by using

the formula,

N-1

X (k) = Σ x(n) e

-2πjk

/

N
 Where, X(k) DFT of sequence

x[n] n=0

N represents the sequence length and it is calculated by using the command „length‟. The DFT

of any sequence is the powerful computational tool for performing frequency analysis of

discrete-time signals.

PROGRAM:

#include <stdio.h>

#include <math.h>

int N,k,n,i;

float

pi=3.1416,sumre=0,sumim=0,out_real[8]={0.0},out_imag[8]={0.0}; int

x[32];

void main(void)

{

printf("enter the length of the sequence\n");

scanf("%d",&N);

printf("\nenter the sequence\n");

99

for(i=0;i<N;i++)

scanf("%d",&x[i]);

for(k=0;k<N;k++)

{

sumre=0;

sumim=0;

for(n=0;n<N;n++

)

{

sumre=sumre+x[n]*cos(2*pi*k*n/N)

; sumim=sumim-

x[n]*sin(2*pi*k*n/N);

}

out_real[k]=sumre;

out_imag[k]=sumim;

printf("DFT of the sequence:\n");

printf("x[%d]=\t%f\t+\t%fi\n",k,out_real[k],out_imag[k]);

}

}

PROCEDURE:

 Open code composer studio, make sure the dsp kit is turned on.

 Start a new project using „project-new „ pull down menu, save it in a separate

directory(d:11951a0xxx) with name dft.

100

 Write the program and save it as dft.c

 Add the source files dft.c to the project using „project->add files to project‟ pull down menu.

 Add the linker command file hello.cmd.

(path: c:ccstudio_v3.1\tutorial\dsk6713\hello1\hello.cmd)

 Add the run time support library file rts6700.lib.

(path: c:ccstudio_v3.1\c6000\cgtools\lib\rts6700.lib)

 Compile the program using the „project-compile‟ pull down menu

 Build the program using the „project-build‟ pull down menu

 Load the program (dft.out) in program memory of dsp chip using the„file-load program‟ pull

down menu.

 Debug-> run

 To view output graphically select view ->graph ->time and frequency.

OUTPUT AND WAVEFORM:

enter the length of the sequence

4

enter the sequence

1 2 3 4

DFT of the sequence:

x[0]= 10.000000 + 0.000000i

DFT of the sequence:

x[1]= -1.999963 + 2.000022i

DFT of the sequence:

x[2]= -2.000000 + 0.000059i

DFT of the sequence:

101

x[3]= -2.000108 + -1.999934i

Empty Space for

Calculations Insert Graph

Sheet (Normal)

102

GENERATION OF SINE WAVE USING C6713 DSK

AIM:

To generate a real time sinewave using TMS320C6713 DSK

EQUIPMENTS:

TMS 320C6713 Kit.

RS232 Serial

Cable Power Cord

Operating System – Windows

XP Software – CCStudio_v3.1

PROCEDURE:

1. Connect CRO to the LINE OUT socket.

2. Now switch ON the DSK and bring up Code Composer Studio on PC

3. Create a new project with name sinewave.pjt

4. From File menu->New->DSP/BIOS Configuration->Select dsk6713.cdb and save it as “

sinewave.cdb”

5. Add sinewave.cdb to the current project

6. Create a new source file and save it as sinewave.c

7. Add the source file sinewave.c to the project

8. Add the library file “dsk6713bsl.lib” to the project

(Path: C:\CCStudio\C6000\dsk6713\lib\dsk6713bsl.lib)

9. Copy files “dsk6713.h” and “dsk6713_aic23.h” to the Project folder

(Path: C:\CCStudio_v3.1\C6000\dsk6713\include)

10. Build (F7) and load the program to the DSP Chip (File->Load Program(.out file))

11. Run the program (F5)

12. Observe the waveform that appears on the CRO screen and ccstudio simulator.

103

%% matlab code to generate the sine values of the look table

n=1:48;

x=sin(2*pi*n*1000/48000);

x1=round(x*2^15);

// c program for generation of sine wave using c6713 DSK

#include "sinewavecfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

short loop=0;

short gain=1;

Int16 outbuffer[256];

Const short BUFFERLENGTH=256; int i=0;

DSK6713_AIC23_Config

config={0x0017,0x0017,0x00d8,0x00d8,0x0011,0x0000,0x0000,0x0043,0x0081,0x0001};

Int16 sine_table[48]={4277,8481,12540,16384,19948,23170,25997,28378,30274,31651,32488,

32766,32488,31651,30274,28378,25997,23170,19948,16384,12540,8481,4277,0,-4277,-8481,

-12540,-16384,-19948,-23170,-25997,-28378,-30274,-31651,-32488,-32766,-32488,-31651,

-30274,-28378,-25997,-23170,-19948,-16384,-12540,-8481,-

4277,0}; Uint32 fs=DSK6713_AIC23_FREQ_48KHZ;

void main()

{

DSK6713_AIC23_CodecHandle hCodec;

DSK6713_init();

hCodec=DSK6713_AIC23_openCodec(0,

&config); DSK6713_AIC23_setFreq(hCodec, fs);

while(1)

{

outbuffer[i]=sine_table[loop];

while(!DSK6713_AIC23_write(hCodec,

sine_table[loop])*gain); i++;

if(i==BUFFERLENGTH) i=0;

if(++loop>47) loop=0;

}

}

104

WAVEFORM:

a) output from code composer studio

b) output from the CRO

INSERT GRAPH SHEET (NORMAL)

105

14. IR and FIR Filter Implementation using DSP Kits

FIR FILTER USING RECTANGULAR WINDOW

AIM:

To generate a real time fir filter through Rectangular window using TMS320C6713 DSK

EQUIPMENTS:

TMS 320C6713 Kit.

RS232 Serial

Cable Power Cord

Operating System – Windows

XP Software – CCStudio_v3.1

PROCEDURE:

1. Connect CRO to the LINE OUT sockets.

2. Now switch ON the DSK and bring up Code Composer Studio on PC

3. Create a new project with name sinewave.pjt

4. From File menu->New->DSP/BIOS Configuration->Select dsk6713.cdb and save it as “

firfliter.cdb”

5. Add firfilter.cdb to the current project

6. Create a new source file and save it as firfilter.c

7. Add the source file firfilter.c to the project

8. Add the library file “dsk6713bsl.lib” to the project

(Path: C:\CCStudio\C6000\dsk6713\lib\dsk6713bsl.lib)

9. Copy files “dsk6713.h” and “dsk6713_aic23.h” to the Project folder

(Path: C:\CCStudio_v3.1\C6000\dsk6713\include)

10. Build (F7) and load the program to the DSP Chip (File->Load Program(.out file))

11. Run the program (F5)

12. Observe the waveform that appears on the CRO screen and ccstudio simulator.

106

// c program for generation of fir filter using c6713 DSK

#include "firfiltercfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

#include "stdio.h"

Float filter_coeff[]={-0.020203,-0.016567,0.009656,0.027335,0.011411,-0.023194,-

0.033672,0.000000,0.043293,0.038657,-0.025105,-0.082004,-0.041842,0.115971,0.303048,

0.386435,0.303048,0.115971,-0.041842,-0.082004,-0.025105,0.038657,0.043293,0.000000,-

0.033672,-0.023194,0.011411,0.027335,0.009656,-0.016567,-0.020203};//FIR Low pass

Rectangular Filter pass band range 0-1500Hz

DSK6713_AIC23_Config

config={0x0017,0x0017,0x00d8,0x00d8,0x0011,0x0000,0x0000,0x0043,0x0081,0x0001};

void main()

{

DSK6713_AIC23_CodecHandle hCodec;

Uint32 l_input, r_input,l_output, r_output;

DSK6713_init();

hCodec = DSK6713_AIC23_openCodec(0,

&config); DSK6713_AIC23_setFreq(hCodec, 1);

while(1)

{

while(!DSK6713_AIC23_read(hCodec,

&l_input));

while(!DSK6713_AIC23_read(hCodec,

&r_input));

l_output=(Int16)FIR_FILTER(&filter_coeff

,l_input); r_output=l_output;

while(!DSK6713_AIC23_write(hCodec,

l_output));

while(!DSK6713_AIC23_write(hCodec,

r_output));

}

DSK6713_AIC23_closeCodec(hCodec);

107

}

signed int FIR_FILTER(float * h, signed int x)

{

int i=0;

signed long output=0;

static short int in_buffer[100];

in_buffer[0] = x;

for(i=30;i>0;i--)

in_buffer[i] = in_buffer[i-

1]; for(i=0;i<32;i++)

output = output + h[i] * in_buffer[i];

return(output);

}

WAVEFORM:

a) Waveforms of input and output from cro

b) Function generator (input signal frequency at 1 KHz)

108

c) C6713 DSK

d) Function generator (input signal frequency at 1500Hz)

e) Waveforms of input and output from CRO (output signal attenuates)

d) Function generator (input signal frequency at 2000Hz)

109

a) Waveforms of input and output from CRO (output signal fully attenuated)

INSERT GRAPH SHEET (NORMAL)

110

15.FIR FILTER USING KAISER WINDOW (HIGH PASS)

AIM:

To generate a real time fir filter through Kaiser Window using TMS320C6713 DSK

EQUIPMENTS:

TMS 320C6713 Kit.

RS232 Serial

Cable Power Cord

Operating System – Windows

XP Software – CCStudio_v3.1

PROCEDURE:

1. Connect CRO to the LINE OUT sockets.

2. Now switch ON the DSK and bring up Code Composer Studio on PC

3. Create a new project with name sinewave.pjt

4. From File menu->New->DSP/BIOS Configuration->Select dsk6713.cdb and save it as

“firfliter_kaiser.cdb”

5. Add firfilter.cdb to the current project

6. Create a new source file and save it as firfilter_kaiser.c

7. Add the source file firfilter_kaiser.c to the project

8. Add the library file “dsk6713bsl.lib” to the project

(Path: C:\CCStudio\C6000\dsk6713\lib\dsk6713bsl.lib)

9. Copy files “dsk6713.h” and “dsk6713_aic23.h” to the Project folder

(Path: C:\CCStudio_v3.1\C6000\dsk6713\include)

10. Build (F7) and load the program to the DSP Chip (File->Load Program (.out file))

11. Run the program (F5)

12. Observe the waveform that appears on the CRO screen and ccstudio simulator.

111

// c program for generation of fir filter using c6713 DSK

#include

"firfilter_kaisercfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

#include "stdio.h"

float filter_coeff[]={0.000000,-0.000138,-0.000611,-0.001345,-0.001607, 0.000000, 0.004714,

0.012033,0.018287,0.016731,0.000000,-0.035687,-0.086763,-0.141588,-0.184011,0.800005, -

0.184011,-0.141588,-0.086763,-0.035687,0.000000,0.016731,0.018287,0.012033,0.004714, -

0.000000,-0.001607,-0.001345,-0.000611,-0.000138,0.000000};//FIR High pass Kaiser filter pass

band range 800Hz-3.5KHz

void main()

{

DSK6713_AIC23_CodecHandle hCodec;

Uint32 l_input, r_input,l_output, r_output;

DSK6713_init();

hCodec = DSK6713_AIC23_openCodec(0,

&config); DSK6713_AIC23_setFreq(hCodec, 1);

while(1)

{

while(!DSK6713_AIC23_read(hCodec, &l_input));

while(!DSK6713_AIC23_read(hCodec, &r_input));

l_output=(Int16)FIR_FILTER(&filter_coeff ,l_input);

r_output=l_output;

while(!DSK6713_AIC23_write(hCodec, l_output));

112

while(!DSK6713_AIC23_write(hCodec, r_output));

}

DSK6713_AIC23_closeCodec(hCodec);

}

signed int FIR_FILTER(float * h, signed int x)

{

int i=0;

signed long output=0;

static short int in_buffer[100];

in_buffer[0] = x;

for(i=30;i>0;i--)

in_buffer[i] = in_buffer[i-

1]; for(i=0;i<32;i++)

output = output + h[i] * in_buffer[i];

//output = x;

return(output);

}

WAVEFORM:

a) Waveforms of input and output from CRO

b) function generator (input signal frequency at 500Hz)

113

c) C6713 DSK

d) function generator (input signal frequency at 800Hz)

e) Waveforms of input and output from CRO

d) function generator (input signal frequency at 1.1kHz)

e) Waveforms of input and output from CRO

114

Insert Graph Sheet (Normal)

IIR filter using Butterworth Approximation (low pass)

AIM:

To generate a real time iir filter through Butterworth approximation using TMS320C6713 DSK

EQUIPMENTS:

TMS 320C6713 Kit.

RS232 Serial

Cable Power Cord

Operating System – Windows

XP Software – CCStudio_v3.1

PROCEDURE:

1. Connect CRO to the LINE OUT socket.

2. Now switch ON the DSK and bring up Code Composer Studio on PC

3. Create a new project with name sinewave.pjt

4. From File menu->New->DSP/BIOS Configuration->Select dsk6713.cdb and save it as

“iirfliter.cdb”

5. Add firfilter.cdb to the current project

6. Create a new source file and save it as iirfilter.c

7. Add the source file iirfilter.c to the project

8. Add the library file “dsk6713bsl.lib” to the project

115

(Path: C:\CCStudio\C6000\dsk6713\lib\dsk6713bsl.lib)

9. Copy files “dsk6713.h” and “dsk6713_aic23.h” to the Project folder

(Path: C:\CCStudio_v3.1\C6000\dsk6713\include)

10. Build (F7) and load the program to the DSP Chip (File->Load Program(.out file))

11. Run the program (F5)

12. Observe the waveform that appears on the CRO screen and ccstudio simulator.

// c program for generation of iir filter using c6713 DSK

#include "iirfiltercfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

#include "stdio.h"

const signed int filter_coeff [] = {15241,15241,15241,32761,10161,7877};

//IIR_BUTERWORTH_LP FILTER pass band range 0-

8kHz DSK6713_AIC23_Config

config={0x0017,0x0017,0x00d8,0x00d8,0x0011,0x0000,0x0000,0x0043,0x0081,0x0001};

void main()

{

DSK6713_AIC23_CodecHandle hCodec;

Uint32 l_input, r_input,l_output, r_output;

DSK6713_init();

hCodec = DSK6713_AIC23_openCodec(0,

&config); DSK6713_AIC23_setFreq(hCodec, 3);

while(1)

{

while(!DSK6713_AIC23_read(hCodec, &l_input));

while(!DSK6713_AIC23_read(hCodec, &r_input));

l_output=IIR_FILTER(&filter_coeff ,l_input);

r_output=l_output;

while(!DSK6713_AIC23_write(hCodec, l_output));

while(!DSK6713_AIC23_write(hCodec, r_output));

}

116

DSK6713_AIC23_closeCodec(hCodec);

}

signed int IIR_FILTER(const signed int * h, signed int x1)

{

static signed int x[6] =

{0,0,0,0,0,0}; static signed int y[6]

= {0,0,0,0,0,0}; int temp=0;

temp = (short int)x1;

x[0] = (signed int) temp;

temp = ((int)h[0] *

x[0]);

temp += ((int)h[1] * x[1]);

temp += ((int)h[1] * x[1]);

temp += ((int)h[2] * x[2]);

temp -= ((int)h[4] * y[1]);

temp -= ((int)h[4] * y[1]);

temp -= ((int)h[5] * y[2]);

temp >>=15;

if (temp > 32767)

{

temp = 32767;

}

else if (temp < -32767)

{

temp = -32767;

}

y[0] = temp;

y[2] = y[1];

y[1] = y[0];

x[2] = x[1];

x[1] = x[0];

return (temp<<2);

}

117

RESULT:

a) Waveforms of input and output from CRO

b) function generator (input signal frequency at 1KHz)

b) C6713 DSK

c) function generator (input signal frequency at 8kHz)

d) Waveforms of input and output from CRO

118

e) function generator (input signal frequency at 10kHz)

g) Waveforms of input and output from CRO (output signal attenuated)

Insert Graph Sheet t

119

Annexure –I

VIVA QUESTIONS

GENERATION OF SINUSOIDAL SIGNAL QUESTIONS

1. What is the difference between sin & cos signals?

2. What is meant by signal?

3. What is the difference between time domain & frequency domain signal?

4. What is the difference between periodic & a periodic signal.

5. What is the difference between orthogonal and orthonormal signals?

6. What is the need for Fourier series & Fourier transform?

7. What is the difference between discrete & digital signals?

8. What is the difference between even signal & odd signal?

9. What is the difference between power signal & energy signal?

10. What is the difference between amplitude scaling & time scaling of a signal?

11. What is the difference between deterministic & random signal?

LINEAR CONVOLUTION QUESTIONS

1. What is the requirement for convolution?.

2. What is the difference between convolution & correlation?

3. What is meant by impulse response?

4. Is it possible to represent any discrete time signal in terms of impulses? If yes,

represent by using example.

5. Draw the h(2n-k) & h(n-2k) for the following sequence h(n) = { 4 3 2 1} assume (i) k= 3

(ii) k =5.

6. Write the expressions for LTI system convolution formula & causal LTI system

convolution formula.

7. What us the length of linear convolution if length of input & impulse responses are N1 &

N2 respectively?

8. What is the difference between continuous and discrete convolution?

120

CIRCULAR CONVOLUTION QUESTIONS

1. Why we need circular convolution?

2. What is the difference between circular & linear convolution?

3. What is the length of output sequence after circular convolution if the lengths of input &

impulse responses are M1 & M2 respectively?

4. State the circular convolution property of DFT?

5. Where we required convolution property?

6. What does zero padding mean? Where we required this concept?

7. What is difference between linear shifting & circular shifting of signal? Show with

example.

8. What is difference between linear & circular folding of signal? Show with example.

9. What is the advantage with sectioned convolution?

FAST FOURIER TRANSFORM QUESTION

1. What is the difference between continuous time & discrete time Fourier transform?

2. What is the condition for convergence of Fourier transform?

3. What is the difference between discrete Time Fourier Transform (DTFT)& DFT?

4. What is the difference between Z transform & DFT?

5. State convolution property of the DFT? Where we could use the convolution property?

6. State Parseval‟s theorem.

7. State correlation property of the DFT.?

8. What is the difference between radix 2 & radix4 FFT algorithms?

9. Why we need FFT?.

10. What is the difference between decimation in time (DIT FFT) & Decimation in

frequency(DIFFFT) algorithms?

11. What is meant by „in-place‟ computation in DIF & DIF algorithms?

12. Which properties are used in FFT to reduce no of computations?

FIR FILTER QUESTIONS

1. What are the advantages of FIR as compared to IIR?

2. How many types of FIR design methods are used in real time?.

3. What is meant by Gibbs Phenomenon? Where we found such type of effect in FIR

Filters?

121

4. What are the advantages& disadvantages of Rectangular window FIR filter as

Compared to remaining window techniques?

5. Which window technique having less peak amplitude of side lobe as compared to all?

6. What do you understand by linear phase responce?

7. To design all types of filters what would be the expected impulse response?

8. What are the properties of FIR filter?.

9. How the zeros in FIR filter is located?

10. What are the desirable characteristics of the window?

11. What are the specifications required to design filter

IIR FILTER QUESTIONS

1. What is meant by IIR filter?

2. What is the difference between recursive & non-recursive systems?

3. Write the difference equation for IIR system.

4. What are the mapping techniques in IIR filter design? Discuss the advantage &

disadvantages of them.

5. What are IIR analog filters? What are the advantages & disadvantages of them?

6. What is the disadvantage in impulse invariance method?

7. What does warping effect mean? Where we found this effect? How can we eliminate

warping effect?

8. Explain the pole mapping procedure of Impulse invariant & bilinear transformation

method.

9. For given same specification which difference we found in Butter worth & chebyshev

filter.

10. What is the difference between type I & type II chebyshev filters?.

11. Where the poles are located for Butter worth & chedbyshev filters?

12. What is meant by spectral transformation?

13. Why we need spectral transformation in IIR filter?

POWER SPECTRUM DENSITY QUESTION

1. What is the difference between correlation & auto correlation function?

2. What is the difference between PSD & ESD?

122

3. What is the unit for energy density spectrum?

4. What is the formula for PSD of a function?

5. “Same power density spectrum signals always have same magnitude & phase spectrums”

Is above statement true (or) False: Justify your answer.

6. If we know the impulse response of the system, the How can you find output signal

power density from the input signal?

7. What is the unit for power density spectrum?

8. What is the relation between auto correlation & PSD of a function?

DSP PROCESSORS QUESTIONS

1. How many types of DSP processors are available in the market?

2. TMS 320C6X, „C‟ stands for what?

3. What are the features of TMS 320C6X processor?

4. What is meant by VLIW architecture? Why we required in DSP processor?

5. How many functional units are in TMS 320C6X DSP processor?

6. What is meant by Circular addressing mode how is it useful for DSP?

7. Which instruction is used to move 16 bit constant in to the upper bits of a register?

8. What is the difference between Von Neumann architecture & Harvard architecture?

9. Which architecture is used in DSP processor?

10. How many instructions can we execute per cycle in TMS320C6X DSP processor?

11. What are the applications for the TMS320 DSP‟s?

12. Which soft ware tool is required to compile and run the DSP assembly program?

13. What is the difference between full version Code composer studio &DSK CCS?

