

OPERATING SYSTEMS

LAB MANUAL

Academic Year : 2018-2019

Course Code : ACS106

Regulations : IARE-R16

Semester : IV

Branch : CSE

Prepared By

Dr. D.Kishore Babu, Professor

Dr. Chukka Santhaiah, Professor

Mr. N V Krishna Rao, Assistant Professor
Mr. M Rakesh, Assistant Professor

Department of Computer Science and Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal – 500 043, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

Program Outcomes

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes

PSO1 Professional Skills: The ability to research, understand and implement computer programs in the

areas related to algorithms, system software, multimedia, web design, big data analytics, and
networking for efficient analysis and design of computer-based systems of varying complexity.

PSO2 Problem-Solving Skills: The ability to apply standard practices and strategies in software project

development using open-ended programming environments to deliver a quality product for

business success.

PSO3 Successful Career and Entrepreneurship: The ability to employ modern computer languages,

environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest
for higher studies.

OPERATING SYSTEMS LAB SYLLABUS

(Practical Hours: 03, Credits: 02)

Implement the following programs on Linux platform using C language.

Exp.

No.

Division of

Experiments
List of Experiments

1
CPU

Scheduling

Algorithms

Write a C program to simulate the following non-preemptive CPU Scheduling

algorithms to find turnaround time and waiting time. a)FCFS

b) SJF

2

CPU

Scheduling

Algorithms

Write a C program to simulate the following non-preemptive CPU Scheduling

algorithms to find turnaround time and waiting time.

a) Round Robin

b) Priority

3

File Allocation

Strategies

Write a C program to simulate the following file allocation strategies.

a) Sequential

b) Indexed

c) Linked

4
Memory

Management

Techniques

Write a C program to simulate the MVT and MFT memory management techniques.

5
File

Organization

Techniques

Write a C program to simulate the following file organization techniques

a) Single level directory

b) Two level directory

6

File

Organization

Techniques

Write a C program to simulate the following file organization techniques

a) Hierarchical

b) DAG

7
Banker

Algorithms

Write a C program to simulate Bankers algorithm for the purpose of deadlock

avoidance

8 Banker

Algorithms
Write a C program to simulate Bankers algorithm for the purpose of deadlock Prevention

9 Page

Replacement

Algorithms

Write a C program to simulate page replacement algorithms FIFO

10 Page

Replacement

Algorithms

Write a C program to simulate page replacement algorithms LRU

11 Page

Replacement

Algorithms

Write a C program to simulate page replacement algorithms LFU

12
Paging

Techniques
Simulate paging technique of memory management

Lab Questions & Assignments

ATTAINMENT OF PROGRAM OUTCOMES

& PROGRAM SPECIFIC OUTCOMES

Exp.

No.

Experiment

Program

Outcomes

Attained

Program

Specific

Outcomes
Attained

1 Write a C program to simulate the following non-preemptive CPU

scheduling algorithms to find turnaround time and waiting time.
a) FCFS b) SJF

PO1, PO2,

PO4

PSO1

2 Write a C program to simulate the following non-preemptive CPU

scheduling algorithms to find turnaround time and waiting time.
a) Round Robin b) Priority

PO1, PO2,

PO4

PSO1

3 Write a C program to simulate the following file allocation
strategies.
a) Sequential b) Indexed c) Linked

PO1, PO2,

PO4

PSO1

4 Write a C program to simulate the MVT and MFT memory

management techniques.
PO1, PO2,

PO4

PSO1

5 Write a C program to simulate the following file organization
techniques
a) Single level directory b) Two level directory

PO1, PO2,

PO4

PSO1

6 Write a C program to simulate the following file organization
techniques
a) Hierarchical b) DAG

PO1, PO2,

PO4

PSO1

7 Write a C program to simulate Bankers algorithm for the purpose of

deadlock avoidance.
PO1, PO2,

PO4

PSO1

8 Write a C program to simulate Bankers algorithm for the purpose of

deadlock Prevention.
PO1, PO2,

PO4

PSO1

9 Write a C program to simulate page replacement algorithms

a) FIFO b) c) LFU
PO1, PO2 PSO1

10 Write a C program to simulate page replacement algorithms

LRU
PO1, PO2 PSO1

11 Write a C program to simulate page replacement algorithms

LFU
PO1, PO2 PSO1

12 Write a C program to simulate paging technique of memory

management.
PO1, PO2,

PO4

PSO1

OPERATING SYSTEMS LABORATORY

OBJECTIVE:

This lab complements the operating systems course. Students will gain practical experience with designing and
implementing concepts of operating systems such as system calls, CPU scheduling, process management,
memory management, file systems and deadlock handling using C language in Linux environment.

OUTCOMES:
Upon the completion of Operating Systems practical course, the student will be able to:

1. Understand and implement basic services and functionalities of the operating system using system
calls.

2. Use modern operating system calls and synchronization libraries in software/ hardware interfaces.

3. Understand the benefits of thread over process and implement synchronized programs using
multithreading concepts.

4. Analyze and simulate CPU Scheduling Algorithms like FCFS, Round Robin, SJF, and Priority.

5. Implement memory management schemes and page replacement schemes.

6. Simulate file allocation and organization techniques.

7. Understand the concepts of deadlock in operating systems and implement them in multiprogramming
system.

6

EXPERIMENT 1

OBJECTIVE
Write a C program to simulate the following non-preemptive CPU scheduling algorithms to find turnaround time
and waiting time for the above problem.

a) FCFS b) SJF

DESCRIPTION
Assume all the processes arrive at the same time.

FCFS CPU SCHEDULING ALGORITHM
For FCFS scheduling algorithm, read the number of processes/jobs in the system, their CPU burst times. The
scheduling is performed on the basis of arrival time of the processes irrespective of their other parameters. Each
process will be executed according to its arrival time. Calculate the waiting time and turnaround time of each of
the processes accordingly.

SJF CPU SCHEDULING ALGORITHM
For SJF scheduling algorithm, read the number of processes/jobs in the system, their CPU burst times. Arrange
all the jobs in order with respect to their burst times. There may be two jobs in queue with the same execution
time, and then FCFS approach is to be performed. Each process will be executed according to the length of its
burst time. Then calculate the waiting time and turnaround time of each of the processes accordingly.

PROGRAM

FCFS CPU SCHEDULING ALGORITHM
#include<stdio.h>
#include<conio.h>
main()
{

int bt[20], wt[20], tat[20], i, n;
float wtavg, tatavg;

clrscr();
printf("\nEnter the number of processes -- ");

scanf("%d", &n);

for(i=0;i<n;i++)
{

printf("\nEnter Burst Time for Process %d -- ", i);
scanf("%d", &bt[i]);

}
wt[0] = wtavg = 0;
tat[0] = tatavg = bt[0];
for(i=1;i<n;i++)
{

wt[i] = wt[i-1] +bt[i-1];
tat[i] = tat[i-1] +bt[i];
wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];

}
printf("\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");

for(i=0;i<n;i++)
printf("\n\t P%d \t\t %d \t\t %d \t\t %d", i, bt[i], wt[i], tat[i]);
printf("\nAverage Waiting Time -- %f", wtavg/n);
printf("\nAverage Turnaround Time -- %f", tatavg/n);
getch();

}

7

INPUT

Enter the number of processes -- 3

Enter Burst Time for Process 0 -- 24

Enter Burst Time for Process 1 -- 3

Enter Burst Time for Process 2 -- 3

OUTPUT

PROCESS BURST TIME WAITING TIME TURNAROUND TIME
P0 24 0 24
P1 3 24 27
P2 3 27 30

Average Waiting Time-- 17.000000
Average Turnaround Time -- 27.000000

SJF CPU SCHEDULING ALGORITHM

#include<stdio.h>
#include<conio.h>
main()
{

int p[20], bt[20], wt[20], tat[20], i, k, n, temp;
float wtavg, tatavg;
clrscr();
printf("\nEnter the number of processes -- ");
scanf("%d", &n);

for(i=0;i<n;i++)
{

p[i]=i;
printf("Enter Burst Time for Process %d -- ", i);
scanf("%d", &bt[i]);

}
for(i=0;i<n;i++)

for(k=i+1;k<n;k++)
if(bt[i]>bt[k])
{

temp=bt[i];
bt[i]=bt[k];
bt[k]=temp;

}

wt[0] = wtavg = 0;

temp=p[i];
p[i]=p[k];
p[k]=temp;

tat[0] = tatavg = bt[0];
for(i=1;i<n;i++)

{
wt[i] = wt[i-1] +bt[i-1];
tat[i] = tat[i-1] +bt[i];
wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];

}

printf("\n\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");
for(i=0;i<n;i++)

8

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", p[i], bt[i], wt[i], tat[i]);
printf("\nAverage Waiting Time -- %f", wtavg/n);
printf("\nAverage Turnaround Time -- %f", tatavg/n);
getch();

}

INPUT

Enter the number of processes -- 4

Enter Burst Time for Process 0 -- 6

Enter Burst Time for Process 1 -- 8

Enter Burst Time for Process 2 -- 7

Enter Burst Time for Process 3 -- 3

OUTPUT

PROCESS BURST TIME WAITING TIME TURNAROUND TIME
P3 3 0 3
P0 6 3 9
P2 7 9 16
P1 8 16 24

Average Waiting Time -- 7.000000
Average Turnaround Time -- 13.000000

9

EXPERIMENT 2

OBJECTIVE

Write a C program to simulate the following non-preemptive CPU scheduling algorithms to find turnaround time
and waiting time for the above problem.

a) Round Robin b) Priority

ROUND ROBIN CPU SCHEDULINGALGORITHM
For round robin scheduling algorithm, read the number of processes/jobs in the system, their CPU burst times,
and the size of the time slice. Time slices are assigned to each process in equal portions and in circular order,
handling all processes execution. This allows every process to get an equal chance. Calculate the waiting time
and turnaround time of each of the processes accordingly.

PRIORITY CPU SCHEDULING ALGORITHM
For priority scheduling algorithm, read the number of processes/jobs in the system, their CPU burst times, and
the priorities. Arrange all the jobs in order with respect to their priorities. There may be two jobs in queue with
the same priority, and then FCFS approach is to be performed. Each process will be executed according to its
priority. Calculate the waiting time and turnaround time of each of the processes accordingly.

ROUND ROBIN CPU SCHEDULING ALGORITHM
#include<stdio.h>
main()
{

int i,j,n,bu[10],wa[10],tat[10],t,ct[10],max;
float awt=0,att=0,temp=0;

clrscr();
printf("Enter the no of processes -- ");
scanf("%d",&n);

for(i=0;i<n;i++)
{

printf("\nEnter Burst Time for process %d -- ", i+1);
scanf("%d",&bu[i]);

ct[i]=bu[i];
}
printf("\nEnter the size of time slice -- ");
scanf("%d",&t);
max=bu[0];
for(i=1;i<n;i++)

if(max<bu[i])
max=bu[i];

for(j=0;j<(max/t)+1;j++)

for(i=0;i<n;i++)
if(bu[i]!=0)

if(bu[i]<=t)
{

for(i=0;i<n;i++)
{

}
else
{

}

tat[i]=temp+bu[i];
temp=temp+bu[i];
bu[i]=0;

bu[i]=bu[i]-t;
temp=temp+t;

10

wa[i]=tat[i]-ct[i];

att+=tat[i];

awt+=wa[i];

}
printf("\nThe Average Turnaround time is -- %f",att/n);
printf("\nThe Average Waiting time is -- %f ",awt/n);
printf("\n\tPROCESS\t BURST TIME \t WAITING TIME\tTURNAROUND TIME\n");

for(i=0;i<n;i++)
printf("\t%d \t %d \t\t %d \t\t %d \n",i+1,ct[i],wa[i],tat[i]);

getch();
}
INPUT

Enter the no of processes – 3
Enter Burst Time for process 1 – 24
Enter Burst Time for process 2 -- 3
Enter Burst Time for process 3 -- 3

Enter the size of time slice – 3

OUTPUT
The Average Turnaround time is – 15.666667
The Average Waiting time is -- 5.666667

PROCESS BURST TIME WAITING TIME TURNAROUND TIME
1 24 6 30
2 3 4 7
3 3 7 10

PRIORITY CPU SCHEDULING ALGORITHM
#include<stdio.h>
main()
{

int p[20],bt[20],pri[20], wt[20],tat[20],i, k, n, temp;
float wtavg, tatavg;
clrscr();
printf("Enter the number of processes --- ");
scanf("%d",&n);

for(i=0;i<n;i++)
{

p[i] = i;
printf("Enter the Burst Time & Priority of Process %d --- ",i);
scanf("%d %d",&bt[i], &pri[i]);

}
for(i=0;i<n;i++)

for(k=i+1;k<n;k++)
if(pri[i] > pri[k])
{

temp=p[i];
p[i]=p[k];
p[k]=temp;

temp=bt[i];
bt[i]=bt[k];
bt[k]=temp;

temp=pri[i];
pri[i]=pri[k];
pri[k]=temp;

11

}
wtavg = wt[0] = 0;
tatavg = tat[0] = bt[0];

for(i=1;i<n;i++)
{

wt[i] = wt[i-1] + bt[i-1];
tat[i] = tat[i-1] + bt[i];

wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];

}

printf("\nPROCESS\t\tPRIORITY\tBURST TIME\tWAITING TIME\tTURNAROUND TIME");
for(i=0;i<n;i++)

printf("\n%d \t\t %d \t\t %d \t\t %d \t\t %d ",p[i],pri[i],bt[i],wt[i],tat[i]);

printf("\nAverage Waiting Time is --- %f",wtavg/n);
printf("\nAverage Turnaround Time is --- %f",tatavg/n);
getch();

}

INPUT

Enter the number of processes -- 5
Enter the Burst Time & Priority of Process 0 --- 10

3

Enter the Burst Time & Priority of Process 1 --- 1 1
Enter the Burst Time & Priority of Process 2 --- 2 4
Enter the Burst Time & Priority of Process 3 --- 1 5
Enter the Burst Time & Priority of Process 4 --- 5 2

OUTPUT
PROCESS

PRIORITY

BURST TIME

WAITING TIME

TURNAROUND TIME

1 1 1 0 1
4 2 5 1 6
0 3 10 6 16
2 4 2 16 18
3 5 1 18 19

Average Waiting Time is --- 8.200000
Average Turnaround Time is --- 12.000000

12

EXPERIMENT 3

OBJECTIVE

Write a C program to simulate the following file allocation strategies.
a) Sequential b) Linked c)) Indexed

DESCRIPTION
A file is a collection of data, usually stored on disk. As a logical entity, a file enables to divide data into
meaningful groups. As a physical entity, a file should be considered in terms of its organization. The term "file
organization" refers to the way in which data is stored in a file and, consequently, the method(s) by which it can
be accessed.

SEQUENTIAL FILE ALLOCATION
In this file organization, the records of the file are stored one after another both physically and logically. That is,
record with sequence number 16 is located just after the 15th record. A record of a sequential file can only be
accessed by reading all the previous records.

LINKED FILE ALLOCATION
With linked allocation, each file is a linked list of disk blocks; the disk blocks may be scattered anywhere on the
disk. The directory contains a pointer to the first and last blocks of the file. Each block contains a pointer to the
next block.

INDEXED FILE ALLOCATION
Indexed file allocation strategy brings all the pointers together into one location: an index block. Each file has its
own index block, which is an array of disk-block addresses. The i

th
 entry in the index block points to the i

th
 block

of the file. The directory contains the address of the index block. To find and read the i
th

 block, the pointer in the
i
th

 index-block entry is used.

PROGRAM

SEQUENTIAL FILE ALLOCATION
#include<stdio.h>
#include<conio.h>

struct fileTable
{

char name[20];
int sb, nob;

}ft[30];

void main()
{

int i, j, n;
char s[20];
clrscr();
printf("Enter no of files :");
scanf("%d",&n);

for(i=0;i<n;i++)
{

printf("\nEnter file name %d :",i+1);
scanf("%s",ft[i].name);
printf("Enter starting block of file %d :",i+1);
scanf("%d",&ft[i].sb);
printf("Enter no of blocks in file %d :",i+1);
scanf("%d",&ft[i].nob);

}
printf("\nEnter the file name to be searched -- ");
scanf("%s",s);

for(i=0;i<n;i++)
if(strcmp(s, ft[i].name)==0)

13

if(i==n)

else
{

}
getch();

}

break;

printf("\nFile Not Found");

printf("\nFILE NAME START BLOCK NO OF BLOCKS BLOCKS OCCUPIED\n");
printf("\n%s\t\t%d\t\t%d\t",ft[i].name,ft[i].sb,ft[i].nob);
for(j=0;j<ft[i].nob;j++)

printf("%d, ",ft[i].sb+j);

INPUT:
Enter no of files :3

Enter file name 1 :A
Enter starting block of file 1 :85
Enter no of blocks in file 1 :6

Enter file name 2 :B
Enter starting block of file 2 :102
Enter no of blocks in file 2 :4

Enter file name 3 :C
Enter starting block of file 3 :60
Enter no of blocks in file 3 :4
Enter the file name to be searched -- B

OUTPUT:
FILE NAME START BLOCK

NO OF BLOCKS

BLOCKS OCCUPIED

B 102 4 102, 103, 104, 105

LINKED FILE ALLOCATION

#include<stdio.h>
#include<conio.h>

struct fileTable

{
char name[20];

int nob;

struct block *sb;
}ft[30];

struct block

{

int bno;
struct block *next;

};

void main()
{

int i, j, n;
char s[20];
struct block *temp;
clrscr();
printf("Enter no of files :");
scanf("%d",&n);
for(i=0;i<n;i++)

{
printf("\nEnter file name %d :",i+1);
scanf("%s",ft[i].name);

14

printf("Enter no of blocks in file %d :",i+1);
scanf("%d",&ft[i].nob);
ft[i].sb=(struct block*)malloc(sizeof(struct block));
temp = ft[i].sb;
printf("Enter the blocks of the file :");
scanf("%d",&temp->bno);
temp->next=NULL;

for(j=1;j<ft[i].nob;j++)
{

temp->next = (struct block*)malloc(sizeof(struct block));
temp = temp->next;

scanf("%d",&temp->bno);
}
temp->next = NULL;

}
printf("\nEnter the file name to be searched -- ");
scanf("%s",s);
for(i=0;i<n;i++)

if(strcmp(s, ft[i].name)==0)
break;

if(i==n)

else
{

printf("\nFile Not Found");

printf("\nFILE NAME NO OF BLOCKS BLOCKS OCCUPIED");
printf("\n %s\t\t%d\t",ft[i].name,ft[i].nob);
temp=ft[i].sb;

for(j=0;j<ft[i].nob;j++)
{

}
}
getch();

}

printf("%d  ",temp->bno);
temp = temp->next;

INPUT:
Enter no of files 2

Enter file 1 : A

Enter no of blocks in file 1 4
Enter the blocks of the file 1 12 23 9 4

Enter file 2 : G
Enter no of blocks in file 2 5
Enter the blocks of the file 2 88 77 66 55 44

Enter the file to be searched : G

OUTPUT:
FILE NAME NO OF BLOCKS BLOCKS OCCUPIED
G 5 88  77 66 55 44

INDEXED FILE ALLOCATION
#include<stdio.h>
#include<conio.h>

struct fileTable
{
char name[20];
int nob, blocks[30];

15

}ft[30];

void main()
{

int i, j, n;
char s[20];
clrscr();
printf("Enter no of files :");
scanf("%d",&n);
for(i=0;i<n;i++)
{

printf("\nEnter file name %d :",i+1);
scanf("%s",ft[i].name);
printf("Enter no of blocks in file %d :",i+1);
scanf("%d",&ft[i].nob);
printf("Enter the blocks of the file :");
for(j=0;j<ft[i].nob;j++)

scanf("%d",&ft[i].blocks[j]);
}

printf("\nEnter the file name to be searched -- ");
scanf("%s",s);

for(i=0;i<n;i++)
if(strcmp(s, ft[i].name)==0)

break;
if(i==n)

else
{

}

getch();
}

printf("\nFile Not Found");

printf("\nFILE NAME NO OF BLOCKS BLOCKS OCCUPIED");
printf("\n %s\t\t%d\t",ft[i].name,ft[i].nob);
for(j=0;j<ft[i].nob;j++)

printf("%d, ",ft[i].blocks[j]);

INPUT:
Enter no of files 2

Enter file 1 : A

Enter no of blocks in file 1 4
Enter the blocks of the file 1 12 23 9 4

Enter file 2 : G

Enter no of blocks in file 2 5
Enter the blocks of the file 2 88 77 66 55 44
Enter the file to be searched : G

OUTPUT:
FILE NAME NO OF BLOCKS BLOCKS OCCUPIED
G 5 88, 77, 66, 55, 44

16

EXPERIMENT 4

OBJECTIVE
Write a C program to simulate the MVT and MFT memory management techniques

DESCRIPTION
MFT (Multiprogramming with a Fixed number of Tasks) is one of the old memory management techniques in
which the memory is partitioned into fixed size partitions and each job is assigned to a partition. The memory
assigned to a partition does not change. MVT (Multiprogramming with a Variable number of Tasks) is the
memory management technique in which each job gets just the amount of memory it needs. That is, the
partitioning of memory is dynamic and changes as jobs enter and leave the system. MVT is a more ``efficient''
user of resources. MFT suffers with the problem of internal fragmentation and MVT suffers with external
fragmentation.

PROGRAM

MFT MEMORY MANAGEMENT TECHNIQUE
#include<stdio.h>
#include<conio.h>

main()
{
int ms, bs, nob, ef,n, mp[10],tif=0;
int i,p=0;

clrscr();
printf("Enter the total memory available (in Bytes) -- ");
scanf("%d",&ms);
printf("Enter the block size (in Bytes) -- ");
scanf("%d", &bs);
nob=ms/bs;
ef=ms - nob*bs;
printf("\nEnter the number of processes -- ");
scanf("%d",&n);
for(i=0;i<n;i++)
{

printf("Enter memory required for process %d (in Bytes)-- ",i+1);
scanf("%d",&mp[i]);

}

printf("\nNo. of Blocks available in memory -- %d",nob);
printf("\n\nPROCESS\tMEMORY REQUIRED\t ALLOCATED\tINTERNAL FRAGMENTATION");
for(i=0;i<n && p<nob;i++)
{

printf("\n %d\t\t%d",i+1,mp[i]);
if(mp[i] > bs)

printf("\t\tNO\t\t---");

}
if(i<n)

else
{

}

printf("\t\tYES\t%d",bs-mp[i]);
tif = tif + bs-mp[i];
p++;

printf("\nMemory is Full, Remaining Processes cannot be accomodated");

printf("\n\nTotal Internal Fragmentation is %d",tif);
printf("\nTotal External Fragmentation is %d",ef);
getch();

17

}

INPUT
Enter the total memory available (in Bytes) -- 1000

Enter the block size (in Bytes) --------300
Enter the number of processes 5

Enter memory required for process 1 (in Bytes) -- 275
Enter memory required for process 2 (in Bytes) -- 400
Enter memory required for process 3 (in Bytes) -- 290
Enter memory required for process 4 (in Bytes) -- 293
Enter memory required for process 5 (in Bytes) -- 100

No. of Blocks available in memory -- 3

OUTPUT
PROCESS

MEMORY REQUIRED

ALLOCATED

INTERNAL FRAGMENTATION

1 275 YES 25
2 400 NO -----
3 290 YES 10
4 293 YES 7

Memory is Full, Remaining Processes cannot be accommodated
Total Internal Fragmentation is 42
Total External Fragmentation is 100

MVT MEMORY MANAGEMENT TECHNIQUE
#include<stdio.h>
#include<conio.h>

main()

{
int ms,mp[10],i, temp,n=0;
char ch = 'y';

clrscr();
printf("\nEnter the total memory available (in Bytes)-- ");
scanf("%d",&ms);
temp=ms;
for(i=0;ch=='y';i++,n++)
{

printf("\nEnter memory required for process %d (in Bytes) -- ",i+1);
scanf("%d",&mp[i]);

if(mp[i]<=temp)
{

}
else
{

}

printf("\nMemory is allocated for Process %d ",i+1);
temp = temp - mp[i];

printf("\nMemory is Full");
break;

printf("\nDo you want to continue(y/n) -- ");
scanf(" %c", &ch);

}
printf("\n\nTotal Memory Available -- %d", ms);

printf("\n\n\tPROCESS\t\t MEMORY ALLOCATED ");
for(i=0;i<n;i++)

printf("\n \t%d\t\t%d",i+1,mp[i]);
printf("\n\nTotal Memory Allocated is %d",ms-temp);
printf("\nTotal External Fragmentation is %d",temp);

18

getch();

}

INPUT

Enter the total memory available (in Bytes) -- 1000

Enter memory required for process 1 (in Bytes) -- 400

Memory is allocated for Process 1

Do you want to continue(y/n) -- y

Enter memory required for process 2 (in Bytes) -- 275

Memory is allocated for Process 2

Do you want to continue(y/n) -- y

Enter memory required for process 3 (in Bytes) -- 550

OUTPUT
Memory is Full

Total Memory Available -- 1000

PROCESS MEMORY ALLOCATED
1 400

2 275

Total Memory Allocated is 675
Total External Fragmentation is 325

19

EXPERIMENT 5

OBJECTIVE

Write a C program to simulate the following file organization techniques
a) Single level directory b) Two level directory

DESCRIPTION
The directory structure is the organization of files into a hierarchy of folders. In a single-level directory system,
all the files are placed in one directory. There is a root directory which has all files. It has a simple architecture
and there are no sub directories. Advantage of single level directory system is that it is easy to find a file in the
directory. In the two-level directory system, each user has own user file directory (UFD). The system maintains a
master block that has one entry for each user. This master block contains the addresses of the directory of the
users. When a user job starts or a user logs in, the system's master file directory (MFD) is searched. When a user
refers to a particular file, only his own UFD is searched. This effectively solves the name collision problem and
isolates users from one another. Hierarchical directory structure allows users to create their own subdirectories
and to organize their files accordingly. A tree is the most common directory structure. The tree has a root
directory, and every file in the system has a unique path name. A directory (or subdirectory) contains a set of
files or subdirectories.

PROGRAM

SINGLE LEVEL DIRECTORY ORGANIZATION
#include<stdio.h>
struct
{

char dname[10],fname[10][10];
int fcnt;

}dir;

void main()
{

int i,ch;
char f[30];
clrscr();
dir.fcnt = 0;
printf("\nEnter name of directory -- ");
scanf("%s", dir.dname);

while(1)
{

printf("\n\n1. Create File\t2. Delete File\t3. Search File \n
4. Display Files\t5. Exit\nEnter your choice -- ");

scanf("%d",&ch);
switch(ch)
{

case 1: printf("\nEnter the name of the file -- ");
scanf("%s",dir.fname[dir.fcnt]);
dir.fcnt++;

break;
case 2: printf("\nEnter the name of the file -- ");

scanf("%s",f);
for(i=0;i<dir.fcnt;i++)
{

if(strcmp(f, dir.fname[i])==0)
{

printf("File %s is deleted ",f);
strcpy(dir.fname[i],dir.fname[dir.fcnt-1]);
break;

}
}
if(i==dir.fcnt)

printf("File %s not found",f);

20

else

break;

dir.fcnt--;

case 3: printf("\nEnter the name of the file -- ");
scanf("%s",f);

for(i=0;i<dir.fcnt;i++)
{

if(strcmp(f, dir.fname[i])==0)
{

printf("File %s is found ", f);
break;

}
}
if(i==dir.fcnt)

printf("File %s not found",f);
break;

case 4: if(dir.fcnt==0)
printf("\nDirectory Empty");

else
{

}
break;

default: exit(0);
}

printf("\nThe Files are -- ");
for(i=0;i<dir.fcnt;i++)

printf("\t%s",dir.fname[i]);

}

getch();
}

OUTPUT:

Enter name of directory -- CSE
1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- A

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- B

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- C

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 4

The Files are -- A B C

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 3

Enter the name of the file – ABC
File ABC not found

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 2

21

Enter the name of the file – B
File B is deleted

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 5

TWO LEVEL DIRECTORY ORGANIZATION

#include<stdio.h>

struct

{

}dir[10];

char dname[10],fname[10][10];
int fcnt;

void main()
{

int i,ch,dcnt,k;
char f[30], d[30];
clrscr();
dcnt=0;

while(1)
{

printf("\n\n1. Create Directory\t2. Create File\t3. Delete File");
printf("\n4. Search File\t\t5. Display\t6. Exit\t

scanf("%d",&ch);
switch(ch)

{

Enter your choice -- ");

case 1: printf("\nEnter name of directory -- ");
scanf("%s", dir[dcnt].dname);
dir[dcnt].fcnt=0;

dcnt++;
printf("Directory created");
break;

case 2: printf("\nEnter name of the directory -- ");
scanf("%s",d);
for(i=0;i<dcnt;i++)

if(strcmp(d,dir[i].dname)==0)
{

}
if(i==dcnt)

printf("Enter name of the file -- ");
scanf("%s",dir[i].fname[dir[i].fcnt]);
dir[i].fcnt++;
printf("File created");
break;

printf("Directory %s not found",d);
break;

case 3: printf("\nEnter name of the directory -- ");
scanf("%s",d);

for(i=0;i<dcnt;i++)
{
if(strcmp(d,dir[i].dname)==0)
{

printf("Enter name of the file -- ");
scanf("%s",f);
for(k=0;k<dir[i].fcnt;k++)
{

if(strcmp(f, dir[i].fname[k])==0)

22

{
printf("File %s is deleted ",f);
dir[i].fcnt--;
strcpy(dir[i].fname[k],dir[i].fname[dir[i].fcnt]);
goto jmp;
}

}
printf("File %s not found",f);
goto jmp;

}
}
printf("Directory %s not found",d);
jmp : break;

case 4: printf("\nEnter name of the directory -- ");
scanf("%s",d);

for(i=0;i<dcnt;i++)
{

if(strcmp(d,dir[i].dname)==0)
{

printf("Enter the name of the file -- ");
scanf("%s",f);
for(k=0;k<dir[i].fcnt;k++)
{

if(strcmp(f, dir[i].fname[k])==0)
{
printf("File %s is found ",f);
goto jmp1;

}
}
printf("File %s not found",f);
goto jmp1;

}
}
printf("Directory %s not found",d);

jmp1: break;
case 5: if(dcnt==0)

printf("\nNo Directory's ");

else
{

printf("\nDirectory\tFiles");
for(i=0;i<dcnt;i++)
{

}
}
break;

default:exit(0);
}

printf("\n%s\t\t",dir[i].dname);
for(k=0;k<dir[i].fcnt;k++)

printf("\t%s",dir[i].fname[k]);

}
getch();

}

OUTPUT:
1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit Enter your choice -- 1

Enter name of directory -- DIR1
Directory created

23

1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit Enter your choice -- 1
Enter name of directory -- DIR2
Directory created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 2

Enter name of the directory – DIR1
Enter name of the file -- A1
File created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 2

Enter name of the directory – DIR1
Enter name of the file -- A2
File created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 2

Enter name of the directory – DIR2
Enter name of the file -- B1
File created

1. Create Directory
4. Search File

2. Create File
5. Display

3. Delete File
6. Exit Enter your choice --

5

Directory
DIR1

Files
A1

A2

DIR2 B1

1. Create Directory
4. Search File

2. Create File
5. Display

3. Delete File
6. Exit Enter your choice --

4

Enter name of the directory – DIR
Directory not found

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 3

Enter name of the directory – DIR1
Enter name of the file -- A2
File A2 is deleted

1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit Enter your choice -- 6

24

EXPERIMENT 6

OBJECTIVE

Write a C program to simulate the following file organization techniques
a) Hierarchical c) DAG

DESCRIPTION
Hierarchical directory structure allows users to create their own subdirectories and to organize their files
accordingly. A tree is the most common directory structure. The tree has a root directory, and every file in the
system has a unique path name. A directory (or subdirectory) contains a set of files or subdirectories.

HIERARCHICAL DIRECTORY ORGANIZATION
#include<stdio.h>
#include<graphics.h>
struct tree_element
{

char name[20];
int x, y, ftype, lx, rx, nc, level;
struct tree_element *link[5];

};
typedef struct tree_element node;
void main()
{

int gd=DETECT,gm;
node *root;
root=NULL;
clrscr();
create(&root,0,"root",0,639,320);
clrscr();
initgraph(&gd,&gm,"c:\tc\BGI");
display(root);
getch();
closegraph();

}
create(node **root,int lev,char *dname,int lx,int rx,int x)
{

int i, gap;
if(*root==NULL)
{

(*root)=(node *)malloc(sizeof(node));
printf("Enter name of dir/file(under %s) : ",dname);
fflush(stdin);
gets((*root)->name);
printf("enter 1 for Dir/2 for file :");
scanf("%d",&(*root)->ftype);
(*root)->level=lev;
(*root)->y=50+lev*50;
(*root)->x=x;
(*root)->lx=lx;
(*root)->rx=rx;
for(i=0;i<5;i++)

(*root)->link[i]=NULL;
if((*root)->ftype==1)
{

printf("No of sub directories/files(for %s):",(*root)->name); scanf("%d",&(*root)>nc);
if((*root)->nc==0)

gap=rx-lx;

else
gap=(rx-lx)/(*root)->nc;

}

Enter 1 for Dir/2 for File: 2 25

else

}
}

display(node *root)
{

for(i=0;i<(*root)->nc;i++)

create(&((*root)>link[i]),lev+1,(*root)>name,lx+gap*i,lx+gap*i+gap,
lx+gap*i+gap/2);

(*root)->nc=0;

int i;
settextstyle(2,0,4);
settextjustify(1,1);
setfillstyle(1,BLUE);
setcolor(14);
if(root !=NULL)
{

for(i=0;i<root->nc;i++)
line(root->x,root->y,root->link[i]->x,root->link[i]->y);
if(root->ftype==1)
bar3d(root->x-20,root->y-10,root->x+20,root>y+10,0,0);
else
fillellipse(root->x,root->y,20,20);
outtextxy(root->x,root->y,root->name);
for(i=0;i<root->nc;i++)

display (root->link[i]);

}
}

INPUT
Enter Name of dir/file(under root): ROOT
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for ROOT): 2
Enter Name of dir/file(under ROOT): USER1
Enter 1 for Dir/2 for File: 1

No of subdirectories/files(for USER1): 1
Enter Name of dir/file(under USER1): SUBDIR1
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for SUBDIR1): 2
Enter Name of dir/file(under USER1): JAVA
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for JAVA): 0
Enter Name of dir/file(under SUBDIR1): VB
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for VB): 0
Enter Name of dir/file(under ROOT): USER2
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for USER2): 2
Enter Name of dir/file(under ROOT): A
Enter 1 for Dir/2 for File: 2
Enter Name of dir/file(under USER2): SUBDIR2
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for SUBDIR2): 2
Enter Name of dir/file(under SUBDIR2): PPL
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for PPL): 2
Enter Name of dir/file(under PPL): B
Enter 1 for Dir/2 for File: 2

Enter Name of dir/file(under PPL): C

draw_link_lines();
26

SUBDIR

VB JAVA

A

B C D E

PPL

SUBDIR

AI

Enter Name of dir/file(under SUBDIR): AI
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for AI): 2
Enter Name of dir/file(under AI): D
Enter 1 for Dir/2 for File: 2
Enter Name of dir/file(under AI): E
Enter 1 for Dir/2 for File: 2

OUTPUT

DAG

#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<string.h>
struct tree_element

{
char name[20];
int x,y,ftype,lx,rx,nc,level;
struct tree_element *link[5];

};
typedef struct tree_element node;
typedef struct

{
char from[20];
char to[20];
}link;
link L[10]; int nofl;
node * root;

void main()
{
int gd=DETECT,gm;
root=NULL;
clrscr();
create(&root,0,"root",0,639,320);
read_links();
clrscr();
initgraph(&gd,&gm,"c:\tc\BGI");

USER1 USER2

ROOT

display(root);
getch();
closegraph();

}
read_links()
{

int i;
printf("how many links");
scanf("%d",&nofl);
for(i=0;i<nofl;i++)

{
printf("File/dir:");
fflush(stdin);
gets(L[i].from);
printf("user name:");
fflush(stdin);
gets(L[i].to);

}
}
}
draw_link_lines()
{
int i,x1,y1,x2,y2;
for(i=0;i<nofl;i++)
{
search(root,L[i].from,&x1,&y1);
search(root,L[i].to,&x2,&y2);
setcolor(LIGHTGREEN);
setlinestyle(3,0,1);
line(x1,y1,x2,y2);
setcolor(YELLOW);
setlinestyle(0,0,1);

}
}
search(node *root,char *s,int *x,int *y)
{
int i;
if(root!=NULL)
{

if(strcmpi(root->name,s)==0)
{
*x=root->x;
*y=root->y;
return;

}
else
{
for(i=0;i<root->nc;i++)
search(root->link[i],s,x,y);
}
}
}
create(node **root,int lev,char *dname,int lx,int rx,int x)
{
int i,gap;
if(*root==NULL)
{

(*root)=(node *)malloc(sizeof(node));
printf("enter name of dir/file(under %s):",dname); fflush(stdin);

27

28

gets((*root)->name);
printf("enter 1 for dir/ 2 for file:");
scanf("%d",&(*root)->ftype); (*root)->level=lev;
(*root)->y=50+lev*50;
(*root)->x=x;
(*root)->lx=lx;
(*root)->rx=rx;
for(i=0;i<5;i++)
(*root)->link[i]=NULL;
if((*root)->ftype==1)

{
printf("no of sub directories /files (for %s):",(*root)->name);
scanf("%d",&(*root)->nc);
if((*root)->nc==0)
gap=rx-lx;

else
gap=(rx-lx)/(*root)->nc;
for(i=0;i<(*root)->nc;i++)

create(& ((*root)->link[i]) , lev+1 ,
(*root)->name,lx+gap*i,lx+gap*i+gap,lx+gap*i+gap/2);
}

else (*root)->nc=0;
}
}
/* displays the constructed tree in graphics mode */
display (node *root)
{
int i;
settextstyle(2,0,4);
settextjustify(1,1);
setfillstyle(1,BLUE);
setcolor(14);
if(root !=NULL)
{
for(i=0;i<root->nc;i++)
{
line(root->x,root->y,root->link[i]->x,root->link[i]->y);
}
if(root->ftype==1) bar3d(root->x-20,root->y-10,root->x+20,root->y+10,0,0);
else
fillellipse(root->x,root->y,20,20);
outtextxy(root->x,root->y,root->name);
for(i=0;i<root->nc;i++)

{
display (root->link[i]);
}

}
}

OUTPUT:

Enter Name of dir/file (under root): ROOT
Enter 1 for Dir / 2 For File : 1
No of subdirectories / files (for ROOT) :2
Enter Name of dir/file (under ROOT): USER 1
Enter 1 for Dir /2 for file:1
No of subdirectories /files (for USER 1): 2
Enter Name of dir/file (under USER1): VB

29

Enter 1 for Dir /2 for file:1
No of subdirectories /files (for VB): 2
Enter Name of dir/file (under VB): A
Enter 1 for Dir /2 for file:2
Enter Name of dir/file (under VB): B
Enter 1 for Dir /2 for file:2
Enter Name of dir/file (under USER1): C Enter
1 for Dir /2 for file:2
Enter Name of dir/file (under ROOT): USER2
Enter 1 for Dir /2 for file:1
No of subdirectories /files (for USER2): 1
Enter Name of dir/file (under USER2):JAVA
Enter 1 for Dir /2 for file:1
No of subdirectories /files (for JAVA):2
Enter Name of dir/file (under JAVA):D
Enter 1 for Dir /2 for file:2
Enter Name of dir/file (under JAVA):HTML
Enter 1 for Dir /2 for file:1
No of subdirectories /files (for HTML):0
How many links:2
File/Dir: B
User Name:
USER 2
File/Dir:
HTML User
Name:
USER1

30

EXPERIMENT 7

OBJECTIVE

Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance.

DESCRIPTION
In a multiprogramming environment, several processes may compete for a finite number of resources. A process
requests resources; if the resources are not available at that time, the process enters a waiting state. Sometimes, a
waiting process is never again able to change state, because the resources it has requested are held by other waiting
processes. This situation is called a deadlock. Deadlock avoidance is one of the techniques for handling deadlocks. This
approach requires that the operating system be given in advance additional information concerning which resources a
process will request and use during its lifetime. With this additional knowledge, it can decide for each request whether or
not the process should wait. To decide whether the current request can be satisfied or must be delayed, the system must
consider the resources currently available, the resources currently allocated to each process, and the future requests and
releases of each process. Banker’s algorithm is a deadlock avoidance algorithm that is applicable to a system with
multiple instances of each resource type.

Deadlock avoidance.

#include<stdio.h>
struct file
{

int all[10];
int max[10];
int need[10];
int flag;

};

void main()
{

struct file f[10];
int fl;
int i, j, k, p, b, n, r, g, cnt=0, id, newr;
int avail[10],seq[10];

clrscr();
printf("Enter number of processes -- ");
scanf("%d",&n);
printf("Enter number of resources -- ");
scanf("%d",&r);

for(i=0;i<n;i++)
{

printf("Enter details for P%d",i);
printf("\nEnter allocation\t -- \t");
for(j=0;j<r;j++)

scanf("%d",&f[i].all[j]);
printf("Enter Max\t\t -- \t");
for(j=0;j<r;j++)

scanf("%d",&f[i].max[j]);
f[i].flag=0;

}
printf("\nEnter Available Resources\t -- \t");
for(i=0;i<r;i++)

scanf("%d",&avail[i]);

printf("\nEnter New Request Details -- ");
printf("\nEnter pid \t -- \t");
scanf("%d",&id);
printf("Enter Request for Resources \t -- \t");
for(i=0;i<r;i++)

31

{

scanf("%d",&newr);
f[id].all[i] += newr;

avail[i]=avail[i] - newr;

}

for(i=0;i<n;i++)
{

for(j=0;j<r;j++)
{

}
}
cnt=0;
fl=0;

f[i].need[j]=f[i].max[j]-f[i].all[j];
if(f[i].need[j]<0)

f[i].need[j]=0;

while(cnt!=n)
{

g=0;
for(j=0;j<n;j++)
{

if(f[j].flag==0)
{

b=0;
for(p=0;p<r;p++)
{

if(avail[p]>=f[j].need[p])
b=b+1;

}
if(b==r)
{

else
b=b-1;

printf("\nP%d is visited",j);
seq[fl++]=j;
f[j].flag=1;
for(k=0;k<r;k++)

avail[k]=avail[k]+f[j].all[k];
cnt=cnt+1;
printf("(");
for(k=0;k<r;k++)

printf("%3d",avail[k]);
printf(")");
g=1;

}
}

}

if(g==0)
{

printf("\n REQUEST NOT GRANTED -- DEADLOCK OCCURRED");
printf("\n SYSTEM IS IN UNSAFE STATE");

goto y;
}

}
printf("\nSYSTEM IS IN SAFE STATE");
printf("\nThe Safe Sequence is -- (");
for(i=0;i<fl;i++)

printf("P%d ",seq[i]);

printf(")");
y: printf("\nProcess\t\tAllocation\t\tMax\t\t\tNeed\n");

for(i=0;i<n;i++)

32

{
printf("P%d\t",i);
for(j=0;j<r;j++)

printf("%6d",f[i].all[j]); for(j=0;j<r;j++)
printf("%6d",f[i].max[j]); for(j=0;j<r;j++)
printf("%6d",f[i].need[j]); printf("\n");

}
getch();
}

INPUT

Enter number of processes

– 5

Enter number of resources
Enter details for P0

 -- 3

Enter allocation -- 0 1 0

Enter Max -

Enter details for P1

Enter allocation -- 2 0 0

Enter Max -

Enter details for P2

Enter allocation -- 3 0 2

Enter Max -

Enter details for P3

Enter allocation -- 2 1 1

Enter Max -

Enter details for P4

Enter allocation -- 0 0 2

Enter Max -

Enter Available Resources --

3 3 2

Enter New Request Details --
Enter pid -- 1

Enter Request for Resources -- 1 0 2

OUTPUT
P1 is visited(5 3 2)

P3 is visited(7 4 3)

P4 is visited(7 4 5)
P0 is visited(7 5 5)

P2 is visited(10 5 7)

SYSTEM IS IN SAFE STATE

The Safe Sequence is -- (P1 P3 P4 P0 P2)

Process Allocation

Max

Need

P0 0 1 0 7 5 3 7 4 3
P1 3 0 2 3 2 2 0 2 0
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

for(i=1;i<= pno;i++) 33

EXPERIMENT 8

OBJECTIVE
Simulate Bankers algorithm for dead lock prevention

DESCRIPTION

We can prevent Deadlock by eliminating any of the above four Mutual Exclusion. Hold and Wait. No preemption.
Circular wait condition. Eliminate Mutual Exclusion It is not possible to dis-satisfy the mutual exclusion because some

resources, such as the tap drive and printer, are inherently non-shareable. Eliminate Hold and wait, Allocate all required

resources to the process before start of its execution, this way hold and wait condition is eliminated but it will lead to low

device utilization.

#include< stdio.h>
#include< conio.h>
void main()

{
int allocated[15][15],max[15][15],need[15][15],avail[15],tres[15],work[15],flag[15];
int pno,rno,i,j,prc,count,t,total;
count=0;
clrscr();

printf("\n Enter number of process:");
scanf("%d",&pno);
printf("\n Enter number of resources:");
scanf("%d",&rno);
for(i=1;i< =pno;i++)
{
flag[i]=0;

}

printf("\n Enter total numbers of each resources:");
for(i=1;i<= rno;i++)

scanf("%d",&tres[i]);

printf("\n Enter Max resources for each process:");
for(i=1;i<= pno;i++)

{
printf("\n for process %d:",i);
for(j=1;j<= rno;j++)
scanf("%d",&max[i][j]);

}

printf("\n Enter allocated resources for each process:");
for(i=1;i<= pno;i++)

{
printf("\n for process %d:",i);
for(j=1;j<= rno;j++)
scanf("%d",&allocated[i][j]);
}

printf("\n available resources:\n");
for(j=1;j<= rno;j++)

{
avail[j]=0;
total=0;

34

{
total+=allocated[i][j];

}
avail[j]=tres[j]-total;
work[j]=avail[j];

printf(" %d \t",work[j]);
}

do
{

for(i=1;i<= pno;i++)
{
for(j=1;j<= rno;j++)
{

need[i][j]=max[i][j]-allocated[i][j];
}

}
printf("\n Allocated matrix Max need");

for(i=1;i<= pno;i++)

{
printf("\n");
for(j=1;j<= rno;j++)

{
printf("%4d",allocated[i][j]);

}
printf("|");
for(j=1;j<= rno;j++)
{
printf("%4d",max[i][j]);

}
printf("|");
for(j=1;j<= rno;j++)
{

printf("%4d",need[i][j]);
}

}
prc=0;

for(i=1;i<= pno;i++)
{
if(flag[i]==0)
{
prc=i;

for(j=1;j<= rno;j++)
{
if(work[j]< need[i][j])
{
prc=0;
break;

}

}
}

if(prc!=0)
break;

}
if(prc!=0)

{
printf("\n Process %d completed",i);

3 0 2| 3 2 2| 0 2 0 35

count++;
printf("\n Available matrix:");
for(j=1;j<= rno;j++)

{
work[j]+=allocated[prc][j];
allocated[prc][j]=0;
max[prc][j]=0;

flag[prc]=1;
printf(" %d",work[j]);

}
}

}
while(count!=pno&&prc!=0);
if(count==pno)
printf("\nThe system is in a safe state!!");

else
printf("\nThe system is in an unsafe state!!");
getch();

}

OUTPUT

Enter number of process:5

Enter number of resources:3

Enter total numbers of each resources:10 5 7

Enter Max resources for each process:
for process 1:7 5 3

for process 2:3 2 2

for process 3:9 0 2

for process 4:2 2 2

for process 5:4 3 3

Enter allocated resources for each process:
for process 1:0 1 0

for process 2:3 0 2

for process 3:3 0 2

for process 4:2 1 1

for process 5:0 0 2

available resources:

2 3 0

Allocated matrix Max need
0 1 0| 7 5 3| 7 4 3

36

3 0 2| 9 0 2| 6 0 0
2 1 1| 2 2 2| 0 1 1
0 0 2| 4 3 3| 4 3 1

Process 2 completed
Available matrix: 5 3 2
Allocated matrix Max need

0 1 0| 7 5 3| 7 4 3
0 0 0| 0 0 0| 0 0 0
3 0 2| 9 0 2| 6 0 0
2 1 1| 2 2 2| 0 1 1
0 0 2| 4 3 3| 4 3 1

Process 4 completed
Available matrix: 7 4 3
Allocated matrix Max need

0 1 0| 7 5 3| 7 4 3
0 0 0| 0 0 0| 0 0 0
3 0 2| 9 0 2| 6 0 0
0 0 0| 0 0 0| 0 0 0
0 0 2| 4 3 3| 4 3 1

Process 1 completed
Available matrix: 7 5 3
Allocated matrix Max need

0 0 0| 0 0 0| 0 0 0
0 0 0| 0 0 0| 0 0 0
3 0 2| 9 0 2| 6 0 0
0 0 0| 0 0 0| 0 0 0
0 0 2| 4 3 3| 4 3 1

Process 3 completed
Available matrix: 10 5 5
Allocated matrix Max need

0 0 0| 0 0 0| 0 0 0
0 0 0| 0 0 0| 0 0 0
0 0 0| 0 0 0| 0 0 0
0 0 0| 0 0 0| 0 0 0
0 0 2| 4 3 3| 4 3 1

Process 5 completed
Available matrix: 10 5 7
The system is in a safe state!!

37

EXPERIMENT 9

OBJECTIVE
Write a C program to simulate page replacement algorithms

FIFO

DESCRIPTION
Page replacement is basic to demand paging. It completes the separation between logical memory and physical
memory. With this mechanism, an enormous virtual memory can be provided for programmers on a smaller physical
memory. There are many different page-replacement algorithms. Every operating system probably has its own
replacement scheme. A FIFO replacement algorithm associates with each page the time when that page was brought into
memory.

PROGRAM

FIFO PAGE REPLACEMENT ALGORITHM
#include<stdio.h>
#include<conio.h>
main()
{

int i, j, k, f, pf=0, count=0, rs[25], m[10], n;
clrscr();
printf("\n Enter the length of reference string -- ");
scanf("%d",&n);
printf("\n Enter the reference string -- ");
for(i=0;i<n;i++)

scanf("%d",&rs[i]);
printf("\n Enter no. of frames -- ");
scanf("%d",&f);

for(i=0;i<f;i++)
m[i]=-1;

printf("\n The Page Replacement Process is -- \n");
for(i=0;i<n;i++)
{

for(k=0;k<f;k++)
{

}

if(k==f)
{

}

if(m[k]==rs[i])
break;

m[count++]=rs[i];
pf++;

for(j=0;j<f;j++)
printf("\t%d",m[j]);

if(k==f)
printf("\tPF No. %d",pf);

printf("\n");
if(count==f)

count=0;
}
printf("\n The number of Page Faults using FIFO are %d",pf);
getch();

}

38

INPUT
Enter the length of reference string – 20
Enter the reference string --7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
Enter no. of frames -- 3

OUTPUT
The Page Replacement Process is –

7 -1 -1 PF No. 1
7 0 -1 PF No. 2
7 0 1 PF No. 3
2 0 1 PF No. 4
2 0 1

2 3 1 PF No. 5
2 3 0 PF No. 6
4 3 0 PF No. 7
4 2 0 PF No. 8
4 2 3 PF No. 9
0 2 3 PF No. 10
0 2 3

0 2 3

0 1 3 PF No. 11
0 1 2 PF No. 12
0 1 2

0 1 2

7 1 2 PF No. 13
7 0 2 PF No. 14
7 0 1 PF No. 15

39

EXPERIMENT 10

OBJECTIVE
Write a C program to simulate page replacement algorithms

LRU

DESCRIPTION
When a page must be replaced, the oldest page is chosen. If the recent past is used as an
approximation of the near future, then the page that has not been used for the longest period of
time can be replaced. This approach is the Least Recently Used (LRU) algorithm. LRU replacement
associates with each page the time of that page's last use. When a page must be replaced, LRU chooses
the page that has not been used for the longest period of time

#include<stdio.h>
#include<conio.h>
main()

{
int i, j , k, min, rs[25], m[10], count[10], flag[25], n, f, pf=0, next=1; clrscr();
printf("Enter the length of reference string -- ");
scanf("%d",&n);
printf("Enter the reference string -- ");
for(i=0;i<n;i++)

{
scanf("%d",&rs[i]); flag[i]=0;
}
printf("Enter the number of frames -- "); scanf("%d",&f);
for(i=0;i<f;i++)

{
count[i]=0; m[i]=-1;
}
printf("\nThe Page Replacement process is -- \n");
for(i=0;i<n;i++)
{
for(j=0;j<f;j++)
{
if(m[j]==rs[i])
{
flag[i]=1;

count[j]=next;

next++;

}

}

if(flag[i]==0)

{
if(i<f)
{

m[i]=rs[i];
count[i]=next;
next++;

}
else
{
min=0;
for(j=1;j<f;j++)
if(count[min] > count[j]) min=j;
m[min]=rs[i];

count[min]=next;
next++;

}

40

pf++;

}
for(j=0;j<f;j++)

printf("%d\t", m[j]);

if(flag[i]==0)

printf("PF No. -- %d" , pf);
printf("\n");

}
printf("\nThe number of page faults using LRU are %d",pf);
getch();
}

INPUT
Enter the length of reference string -- 20
Enter the reference string -- 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
Enter the number of frames -- 3

OUTPUT
The Page Replacement process is --

7 -1 -1 PF No. -- 1
7 0 -1 PF No. -- 2
7 0 1 PF No. -- 3
2 0 1 PF No. -- 4
2 0 1

2 0 3 PF No. -- 5
2 0 3

4 0 3 PF No. -- 6
4 0 2 PF No. -- 7
4 3 2 PF No. -- 8
0 3 2 PF No. -- 9
0 3 2

0 3 2

1 3 2 PF No. -- 10
1 3 2

1 0 2 PF No. -- 11
1 0 2

1 0 7 PF No. -- 12
1 0 7

1 0 7
The number of page faults using LRU are 12

41

EXPERIMENT 11

OBJECTIVE
Write a C program to simulate page replacement algorithms

LFU

DESCRIPTION
When a page must be replaced, LRU chooses the page that has not been used for the longest period of time. Least
frequently used (LFU) page-replacement algorithm requires that the page with the smallest count be replaced. The
reason for this selection is that an actively used page should have a large reference count.

LFU PAGE REPLACEMENT ALGORITHM
#include<stdio.h>
#include<conio.h>

main()
{
int rs[50], i, j, k, m, f, cntr[20], a[20], min, pf=0;
clrscr();
printf("\nEnter number of page references -- ");
scanf("%d",&m);
printf("\nEnter the reference string -- ");
for(i=0;i<m;i++)

scanf("%d",&rs[i]);
printf("\nEnter the available no. of frames -- ");
scanf("%d",&f);

for(i=0;i<f;i++)
{
cntr[i]=0;
a[i]=-1;

}
Printf(“\nThe Page Replacement Process is – \n“);
for(i=0;i<m;i++)

{
for(j=0;j<f;j++)
if(rs[i]==a[j])
{
cntr[j]++;
break;
if(j==f)
{
min = 0;
for(k=1;k<f;k++)
if(cntr[k]<cntr[min]) min=k;
a[min]=rs[i];
cntr[min]=1;
pf++;

}
printf("\n");
for(j=0;j<f;j++)
printf("\t%d",a[j]);
if(j==f)
printf(“\tPF No. %d”,pf);
}

printf("\n\n Total number of page faults -- %d",pf);
getch();
}

42

INPUT Enter number of page references -- 10
Enter the reference string -- 1 2 3 4 5 2 5 2 5 1 4 3

Enter the available no. of frames -- 3 40

OUTPUT
1 -1 -1 PF No. 1
1 2 -1 PF No. 2
1 2 3 PF No. 3
4 2 3 PF No. 4
5 2 3 PF No. 5
5 2 3

5 2 3

5 2 1 PF No. 6
5 2 4 PF No. 7
5 2 3 PF No. 8

Total number of page faults -- 8

43

EXPERIMENT 12

OBJECTIVE
Write a C program to simulate paging technique of memory management.

DESCRIPTION
In computer operating systems, paging is one of the memory management schemes by which a computer stores
and retrieves data from the secondary storage for use in main memory. In the paging memory-management
scheme, the operating system retrieves data from secondary storage in same-size blocks called pages. Paging is a
memory-management scheme that permits the physical address space a process to be noncontiguous. The basic
method for implementing paging involves breaking physical memory into fixed-sized blocks called frames and
breaking logical memory into blocks of the same size called pages. When a process is to be executed, its pages
are loaded into any available memory frames from their source.

PROGRAM
#include<stdio.h>
#include<conio.h>

main()
{

int ms, ps, nop, np, rempages, i, j, x, y, pa, offset;
int s[10], fno[10][20];

printf("\nEnter Logical Address to find Physical Address ");
printf("\nEnter process no. and pagenumber and offset -- ");
scanf("%d %d %d",&x,&y, &offset);

if(x>np || y>=s[i] || offset>=ps)
printf("\nInvalid Process or Page Number or offset");

else
{

}
getch();

}

pa=fno[x][y]*ps+offset;
printf("\nThe Physical Address is -- %d",pa);

INPUT
Enter the memory size – 1000
Enter the page size -- 100
The no. of pages available in memory are --- 10

Enter number of processes -- 3

Enter no. of pages required for p[1]-- 4
Enter pagetable for p[1] --- 8 6

9

5

Enter no. of pages required for p[2]-- 5

Enter pagetable for p[2] --- 1 4 5 7 3

Enter no. of pages required for p[3]-- 5

OUTPUT

Memory is Full

Enter Logical Address to find Physical Address
Enter process no. and pagenumber and offset -- 2

3

60

The Physical Address is -- 760

44

LAB QUESTIONS & ASSIGNMENTS

45

EXPERIMENT 1

PRE-LAB QUESTIONS
1. Define operating system?

2. What are the different types of operating systems?

3. Define a process?

4. What is CPU Scheduling?

5. Define arrival time, burst time, waiting time, turnaround time?

POST-LAB QUESTIONS
1. What is the advantage of round robin CPU scheduling algorithm?

2. Which CPU scheduling algorithm is for real-time operating system?

3. In general, which CPU scheduling algorithm works with highest waiting time?

4. Is it possible to use optimal CPU scheduling algorithm in practice?

5. What is the real difficulty with the SJF CPU scheduling algorithm?

ASSIGNMENT QUESTIONS
1. Write a C program to implement round robin CPU scheduling algorithm for the following given scenario. All

the processes in the system are divided into two categories – system processes and user processes. System

processes are to be given higher priority than user processes. Consider the time quantum size for the

system processes and user processes to be 5 msec and 2 msec respectively.

2. Write a C program to simulate pre-emptive SJF CPU scheduling algorithm.

EXPERIMENT 2

PRE-LAB QUESTIONS
1. What is multi-level queue CPU Scheduling?

2. Differentiate between the general CPU scheduling algorithms like FCFS, SJF etc and multi-level queue CPU

Scheduling?

3. What are CPU-bound I/O-bound processes?

POST-LAB QUESTIONS
1. What are the parameters to be considered for designing a multilevel feedback queue scheduler?

2. Differentiate multi-level queue and multi-level feedback queue CPU scheduling algorithms?

3. What are the advantages of multi-level queue and multi-level feedback queue CPU scheduling algorithms?

ASSIGNMENT QUESTIONS
1. Write a C program to simulate multi-level queue scheduling algorithm considering the following scenario.

All the processes in the system are divided into two categories – system processes and user processes.

System processes are to be given higher priority than user processes. Consider each process priority to be

from 1 to 3. Use priority scheduling for the processes in each queue.

EXPERIMENT 3

PRE-LAB QUESTIONS
1. Define file?

2. What are the different kinds of files?

3. What is the purpose of file allocation strategies?

POST-LAB QUESTIONS
1. Identify ideal scenarios where sequential, indexed and linked file allocation strategies are most appropriate?

2. What are the disadvantages of sequential file allocation strategy?

3. What is an index block?

4. What is the file allocation strategy used in UNIX?

46

ASSIGNMENT QUESTIONS
1. Write a C program to simulate a two-level index scheme for file allocation?

EXPERIMENT 4

PRE-LAB QUESTIONS
1. What is the purpose of memory management unit?

2. Differentiate between logical address and physical address?

3. What are the different types of address bindingtechniques?

4. What is the basic idea behind contiguous memory allocation?

5. How is dynamic memory allocation useful in multiprogramming operating systems?

POST-LAB QUESTIONS
1. Differentiate between equal sized and unequal sized MFT schemes?

2. What is the advantage of MVT memory management scheme over MFT?

ASSIGNMENT QUESTIONS
1. Write a C program to simulate MFT memory management scheme with unequal sized partitions.

EXPERIMENT 5

PRE-LAB QUESTIONS
1. Differentiate between the memory management schemes MFT and MVT?

2. What is dynamic memory allocation?

3. What is external fragmentation?

POST-LAB QUESTIONS
1. Which of the dynamic contiguous memory allocation strategies suffer with external fragmentation?

2. What are the possible solutions for the problem of external fragmentation?

3. What is 50-percent rule?

4. What is compaction?

5. Which of the memory allocation techniques first-fit, best-fit, worst-fit is efficient? Why?

ASSIGNMENT QUESTIONS
1. Write a C program to implement compaction technique.

EXPERIMENT 6

PRE-LAB QUESTIONS
1. What are the advantages of noncontiguous memory allocation schemes?

2. What is the process of mapping a logical address to physical address with respect to the paging memory

management technique?

3. Define the terms – base address, offset?

POST-LAB QUESTIONS
1. Differentiate between paging and segmentation memory allocation techniques?

2. What is the purpose of page table?

3. Whether the paging memory management technique suffers with internal or external fragmentation

problem. Why?

4. What is the effect of paging on the overall context-switching time?

ASSIGNMENT QUESTIONS
1. Write a C program to simulate two-level paging technique.

2. Write a C program to simulate segmentation memory management technique.

47

EXPERIMENT 7

PRE-LAB QUESTIONS
1. Define directory?

2. Describe the general directory structure?

3. List the different types of directory structures?

POST-LAB QUESTIONS
1. Which of the directory structures is efficient? Why?

2. Which directory structure does not provide user-level isolation and protection?

3. What is the advantage of hierarchical directory structure?

ASSI7GNMENT QUESTIONS
1. Write a C to simulate acyclic graph directory structure?

2. Write a C to simulate general graph directory structure?

EXPERIMENT 8

PRE-LAB QUESTIONS
1. Define resource. Give examples.

2. What is deadlock?

3. What are the conditions to be satisfied for the deadlock to occur?

POST-LAB QUESTIONS
1. How can be the resource allocation graph used to identify a deadlock situation?

2. How is Banker’s algorithm useful over resource allocation graph technique?

3. Differentiate between deadlock avoidance and deadlock prevention?

ASSIGNMENT QUESTIONS
1. Write a C program to implement deadlock detection technique for the following scenarios?

a. Single instance of each resource type

b. Multiple instances of each resource type

EXPERIMENT 9

PRE-LAB QUESTIONS
1. What is disk scheduling?

2. List the different disk scheduling algorithms?

3. Define the terms – disks seek time, disk access time and rotational latency?

POST-LAB QUESTIONS
1. What is the advantage of C-SCAN algorithm over SCAN algorithm?

2. Which disk scheduling algorithm has highest rotational latency? Why?

ASSIGNMENT QUESTIONS
1. Write a C program to implement SSTF disk scheduling algorithm?

EXPERIMENT 10

PRE-LAB QUESTIONS
1. Define the concept of virtual memory?

2. What is the purpose of page replacement?

3. Define the general process of page replacement?

4. List out the various page replacement techniques?

5. What is page fault?

48

POST-LAB QUESTIONS

1. Which page replacement algorithm suffers with the problem of Belady’s anomaly?

2. Define the concept of thrashing? What is the scenario that leads to the situation of thrashing?

ASSIGNMENT QUESTIONS
1. Write a C program to simulate LRU-approximation page replacement algorithm?

a. Additional-Reference bits algorithm

b. Second-chance algorithm

EXPERIMENT 11

PRE-LAB QUESTIONS
1. What are the benefits of optimal page replacement algorithm over other page replacement algorithms?

POST-LAB QUESTIONS
1. Why can’t the optimal page replacement technique be used in practice?

EXPERIMENT 12

PRE-LAB QUESTIONS
1. What is the need for process synchronization?

2. Define a semaphore?

3. Define producer-consumer problem?

POST-LAB QUESTIONS
1. Discuss the consequences of considering bounded and unbounded buffers in producer-consumerproblem?

2. Can producer and consumer processes access the shared memory concurrently? If not which technique

provides such a benefit?

ASSIGNMENT QUESTIONS
1. Write a C program to simulate producer-consumer problem using message-passing system.

